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Preface

Optimization is minimization or maximization of a given real-valued function with or

without some constraints on its independent variables. For optimization problems with

continuous variables, a possible way to solve such an optimization problem is to generate

a sequence which approaches a solution in the search space. In the case of linear pro-

gramming, one thinks of interior point methods instead of the simplex method. From a

viewpoint of numerical computation, it is preferable that the search space is endowed with

coordinate systems. This suggests that continuous optimization problems should be dealt

with on manifolds. One of the simplest examples of manifolds is the Euclidean space,

which is a vector space endowed with an inner product and can be covered with only one

coordinate system. A number of researches on optimization methods on the Euclidean

space have been done. Methods for solving unconstrained optimization problems on the

Euclidean space, which include the steepest descent, Newton’s, and the conjugate gradient

methods, exploit natural geometrical objects such as straight lines, the Euclidean gradient

of the objective function, and so on. These methods are called unconstrained optimization

methods.

However, if unconstrained optimization methods are applied to problems with con-

straints, they may fail to solve the problems by generating sequences subject to the con-

straints, since the constraints are not taken into account in the procedure of such methods

for generating sequences. It is to be noted that the Euclidean space is the simplest exam-

ple of a manifold. In particular, constraints resulting from problems in numerical linear

algebra naturally define submanifolds of the Euclidean space, which are endowed with re-

spective induced metrics. In order to generalize optimization methods so as to be effective

on manifolds, the manifolds should be taken as Riemannian manifolds, since geometric

objects such as straight line and the gradient are easily extended on Riemannian mani-

folds. Beyond Euclidean optimization, this thesis studies several topics of Riemannian op-

timization, where the adjective “Riemannian” stems from Riemannian geometry, which is

the differential geometry of smooth manifolds with Riemannian metric. If an optimization

problem is subject to some constraints in the Euclidean space and if the search space of the

problem forms a Riemannian manifold, it is natural to employ the Riemannian version of

unconstrained optimization methods, which are generalizations of Euclidean unconstrained

methods. Furthermore, once a Riemannian optimization method has been developed for a

general Riemannian optimization problem, the method can be applied not only to problems
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on submanifolds of the Euclidean space, but also to those on more abstract Riemannian

manifolds which are not necessarily embedded to the Euclidean space.

In this thesis, as a part of theoretical researches on general Riemannian optimization

methods, the existing conjugate gradient method is improved and the global convergence

analysis for the algorithm proposed in the improved method is provided. On the other

hand, from an application point of view, Riemannian optimization methods are set up for

the real and complex singular value decomposition problems to propose new algorithms

with high accuracy. The performance of computers has been improved dramatically to

support science and technology. However, it is also important to develop and improve

various algorithms theoretically. The author hopes that the thesis makes contribution to

the field of Riemannian optimization and will be helpful for further development of the

research.

Hiroyuki Sato

September 2013
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Chapter 1

Introduction

1.1 Overview of Euclidean and Riemannian optimiza-

tion

1.1.1 Euclidean optimization

A problem of minimizing or maximizing the value of a given real-valued function with

or without some constraint conditions is called an optimization problem. The function

to be minimized or maximized in the problem is called the objective function. Opti-

mization problems appear not only in science and engineering but also in economics and

many other fields. Optimization problems are classified into several classes according to

the characteristics of their properties and a number of methods for solutions have been

developed [All07,Diw08,GGT04].

In some optimization problems, the variables of the objective function are restricted to

be discrete values such as integers. Problems of this type are called discrete optimization

problems [NW88, Sch03]. The traveling salesman problem [LLKS85] and the knapsack

problem [KPP04] are typical examples of discrete optimization problems. In contrast with

this, if the variables are continuous ones ranging over a domain, the problems are referred

to as continuous optimization problems [Ber99, FH10, LY08, NW06, Rus06, Sny05], which

are mainly focused on in this thesis. The continuous variables are usually real numbers.

Continuous optimization problems are conventionally described on the Euclidean space R
n

and formulated as follows:

Problem 1.1.1.

minimize f(x), (1.1.1)

subject to gi(x) = 0, i ∈ E (1.1.2)

hj(x) ≤ 0, j ∈ I, (1.1.3)

x ∈ R
n, (1.1.4)
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where the objective function f and constraint functions gi, hj are real-valued functions on

R
n and often assumed to be smooth, and where E and I are sets of indices for equality

and inequality constraints, respectively. Problem 1.1.1 with either the set E or I being

non-empty should be called a constrained optimization problem on R
n. To the contrary, if

both E and I are empty, that is, (1.1.2) and (1.1.3) are non-existent, then Problem 1.1.1

becomes an unconstrained optimization problem on R
n [DS83,Fle13].

Optimization on the Euclidean space is called Euclidean optimization. In this thesis,

as far as Euclidean optimization techniques are discussed, f , gi, and hj in Problem 1.1.1

are assumed to be smooth unless otherwise noted. Continuous optimization problems

are typically solved by iterative algorithms which generate sequences of points converg-

ing to respective solutions. Methods for solving unconstrained optimization problems are

generally simpler than those for solving constrained ones. Unconstrained optimization

methods include the steepest descent method, Newton’s method and the quasi-Newton

method [Bro70,Fle70,Gol70,Sha70], the conjugate gradient method [HS52,FR64], and so

on. Since these methods exploit information of the objective function without attention to

the constraints, generated sequences are not subject to the constraints in general, so that

such methods fail to solve constrained optimization problems. In order to solve constrained

optimization problems, the augmented Lagrangian method [Hes69, Pow73], the interior

point method [FGW02], the sequential quadratic programming method [PM76], and so

on, are employed. In addition, constrained optimization problems are classified into more

concrete categories, such as linear programming [Kar84], quadratic programming [GHN01],

second-order cone programming [AG03], semidefinite programming [VB96], and so on, in

which optimization methods have been individually developed.

1.1.2 Some motivating examples for Riemannian optimization

There are typical optimization problems which should be solved beyond the traditional

frameworks on the Euclidean space. For a given n × n real symmetric matrix A, we

consider the following practical optimization problem:

Problem 1.1.2.

minimize
xT Ax

xT x
, (1.1.5)

subject to x ∈ R
n, x �= 0, (1.1.6)

where the superscript T denotes the transposition of a vector (this notation will be also

used for the transposition of a matrix later). The objective function of the problem is called

the Rayleigh quotient. According to the Courant-Fischer min-max theorem [GVL12], an

optimal solution to Problem 1.1.2 is an eigenvector associated with the smallest eigenvalue

of A. Problem 1.1.2 is an unconstrained optimization problem on R
n
∗ , where R

n
∗ is R

n with

the origin removed. Against expectations, almost all sequences generated by Newton’s
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method for the problem do not even converge to a local optimal solution in general. Indeed,

according to [AMS08], Newton’s equation for the search direction ξk ∈ R
n at the k-th

iterate xk ∈ R
n (see Chapter 2) is written out as

2

xT
k xk

(
In − 2

xkx
T
k

xT
k xk

)(
A − xT

k Axk

xT
k xk

In

)(
In − 2

xkx
T
k

xT
k xk

)
ξk = − 2

xT
k xk

(
A − xT

k Axk

xT
k xk

In

)
xk,

(1.1.7)

where In is the identity matrix of size n. The equation (1.1.7) has a unique solution ξk = xk

if and only if the Rayleigh quotient xT
k Axk/x

T
k xk is not an eigenvalue of A. For ξk = xk,

the resulting next point is xk+1 = xk +ξk = 2xk. Therefore, almost all sequences generated

by Newton’s method for this problem cannot converge to any stationary point x∗ except

for the case that the origin 0, the initial point x0, and the target point x∗ are on the same

straight line and xT
0 Ax0/x

T
0 x0 is an eigenvalue of A. Thus, we cannot obtain an optimal

solution by Newton’s method in general.

Another set up for Problem 1.1.2 is possible on account of the scale invariance of the

objective function (1.1.5). Using the scale invariance, one can translate the problem into

an equivalent problem of the form:

Problem 1.1.3.

minimize xT Ax, (1.1.8)

subject to xT x = 1, (1.1.9)

x ∈ R
n. (1.1.10)

Problem 1.1.3 is a constrained optimization problem on R
n, to which the augmented La-

grangian method can be applied. The augmented Lagrangian function LA(x, λ; μ) for

Problem 1.1.3 is defined as

LA(x, λ; μ) := xT Ax − λ(xT x − 1) + μ(xT x − 1)2. (1.1.11)

The presence of the last squared term in the right-hand side of (1.1.11) makes the aug-

mented Lagrangian method different from the standard Lagrangian method. The LA is

viewed as a combination of the standard Lagrangian function and the quadratic penalty

function. In the augmented Lagrangian method, not only x but also λ and μ are to be

updated at every iterate in order to make the sequence reach optimal ones. The updat-

ing of λ and μ is somewhat artificial and also critical for the convergence property of the

algorithm.

If we introduce the notion of manifold, some of constrained optimization problems can

be viewed as unconstrained optimization problems, to which unconstrained optimization

techniques such as the steepest descent and Newton’s methods, if adapted suitably on

manifolds, can be applied to show better convergence properties. If we use the notion of

sphere, Problem 1.1.3 is put verbatim in the form,

3



Problem 1.1.4.

minimize xT Ax, (1.1.12)

subject to x ∈ Sn−1, (1.1.13)

where Sn−1 :=
{
x ∈ R

n |xT x = 1
}

denotes the (n − 1)-dimensional unit sphere. The ob-

jective function is considered to be defined on Sn−1 and Problem 1.1.4 is regarded as

an unconstrained optimization problem on Sn−1. However, traditional unconstrained op-

timization techniques on the Euclidean space in the original form cannot be applied to

Problem 1.1.4, since the linear structure of the domain of the objective function is lost.

It is worth pointing out that the sphere Sn−1 is an example of manifolds. Further, Sn−1

can be endowed with the natural induced Riemannian metric from the standard Euclidean

inner product R
n through

〈ξ, η〉x = ξT η, ξ, η ∈ TxS
n−1, (1.1.14)

where we regard tangent vectors in TxS
n−1 as vectors in R

n. A manifold endowed with a

Riemannian metric is called a Riemannian manifold and optimization on Riemannian man-

ifolds is called Riemannian optimization. Riemannian optimization techniques have been

intensively researched and developed in the last two decades, in order to solve optimization

problems on Riemannian manifolds such as Problem 1.1.4.

In their paper entitled “The geometry of algorithms with orthogonality constraints,”

Edelman, Arias, and Smith set up several algorithms for unconstrained problems on the

Stiefel and the Grassmann manifolds [EAS98]. In their book entitled “Optimization Al-

gorithms on Matrix Manifolds,” Absil, Mahony, and Sepulchre developed algorithms for

optimization problems on a general Riemannian manifold and discussed the convergence

properties of the algorithms [AMS08]. A detailed exposition of these results will be pro-

vided together with a review of optimization methods on the Euclidean space in Chapter

2.

Like the Rayleigh quotient problem on the sphere, which is related to the smallest

eigenvalue and the associated eigenvector of a symmetric matrix, some of Riemannian

optimization problems can be associated to problems in numerical linear algebra. For

example, Problem 1.1.4 is generalized to a problem on the real Stiefel manifold St(p, n) :={
Y ∈ R

n×p |Y T Y = Ip

}
with the integer p not greater than n as follows:

Problem 1.1.5.

minimize tr(Y T AY N), (1.1.15)

subject to Y ∈ St(p, n), (1.1.16)

where N is a constant diagonal matrix of the form N = diag(μ1, . . . , μp) with 0 < μ1 <

· · · < μp. It can be shown that the j-th column of an optimal solution Y∗ to this problem is

4



a normalized eigenvector associated with the j-th smallest eigenvalue of A. The diagonal

matrix N in the problem is necessary to ensure that the columns of the Y∗ are sorted in

ascending order of the corresponding eigenvectors from the left.

If eigenvectors themselves are not of interest but only the linear subspace spanned

by p eigenvectors associated with the p smallest eigenvalues is of importance, then the

matrix N in Problem 1.1.5 should be removed. The resulting function tr(Y T AY ) has O(p)

invariance, where O(p) is the orthogonal group, so that the search space should be reduced

to the quotient manifold St(p, n)/O(p), which is called the Grassmann manifold denoted

by Grass(p, n). The resulting problem on the Grassmann manifold Grass(p, n) is expressed

as follows:

Problem 1.1.6.

minimize tr(Y T AY ), (1.1.17)

subject to [Y ] ∈ Grass(p, n) := O(n)/ St(p, n), (1.1.18)

where [Y ] ∈ Grass(p, n) denotes the equivalence class represented by Y ∈ St(p, n). An

optimal solution [Y∗] to the problem corresponds to the space spanned by eigenvectors

associated with the p smallest eigenvalues. An important point to note here is that the

Grassmann manifold Grass(p, n) = O(n)/ St(p, n) in this form is not embedded to the

Euclidean space, while the sphere Sn−1 and St(p, n) are naturally embedded to R
n and

R
n×p, respectively. The Grassmann manifold Grass(p, n) can be, however, viewed as the

set of all orthogonal projection matrices of rank p [HM94,HHT07];

Grass(p, n) �
{
X ∈ R

n×n|XT = X, X2 = X, rank(X) = p
}

(1.1.19)

=
{
X = Y Y T |Y ∈ St(p, n)

}
. (1.1.20)

This view together with Problem 1.1.6 leads us to the following problem:

Problem 1.1.7.

minimize tr(AX), (1.1.21)

subject to X ∈ Grass(p, n) :=
{
X ∈ R

n×n|XT = X, X2 = X, rank(X) = p
}

. (1.1.22)

The joint diagonalization problem is another problem which can be formulated as a

Riemannian optimization problem on St(p, n). It is well known that the mutually com-

muting symmetric matrices are simultaneously diagonalizable. Let A1, A2, . . . , AK be K

real n×n symmetric matrices, which does not necessarily mutually commute. For these K

matrices, the approximate joint diagonalization problem can be formulated on the Stiefel

manifold St(p, n) as follows [TCA09]:

5



Problem 1.1.8.

maximize
K∑

l=1

‖diag(Y T AlY )‖2
F , (1.1.23)

subject to Y ∈ St(p, n), (1.1.24)

where ‖·‖F denotes the Frobenius norm of the matrix concerned, and diag(·) denotes the

diagonal part of the matrix in the parentheses. The present problem is closely related

to the independent component analysis [CA02, Car99, CS93]. Problems 1.1.5, 1.1.6, and

1.1.8 can be also formulated as constrained Euclidean optimization problems. However,

the advantage of solving them as Riemannian optimization problems is that we can make

full use of the geometrical structures of the manifolds just as the case of Problem 1.1.4.

An important problem other than the eigenvalue problem in numerical linear algebra

is the singular value decomposition problem. The singular value decomposition is a very

important matrix factorization in frequent use in various fields such as signal and image

processing, control theory, and statistics [GVL12,WB12,ZCW12]. While the latter problem

is also expected to be formulated as an optimization problem on a Riemannian manifold,

such a research had not been developed. One of aims of the present thesis is to study the

singular value decomposition problem in the form of a Riemannian optimization problem.

The singular value decomposition can be applied to any matrices, even if they are

rectangular ones. While the eigenvalue decomposition of an n × n real symmetric matrix

A takes the form

A = PΛP T , P ∈ O(n), Λ = diag(λ1, . . . , λn), (1.1.25)

the singular value decomposition of an m × n real matrix A with m ≥ n takes the form

A = UΣV T , U ∈ O(m), V ∈ O(n), Σ =

(
Σ1

0

)
, (1.1.26)

where Σ1 = diag (σ1, . . . , σn) with σ1 ≥ · · · ≥ σn ≥ 0. In [HM94], the problem of a full

decomposition of A into the form (1.1.26) is translated into an optimization problem on

the product manifold O(m) × O(n), that is,

Problem 1.1.9.

maximize tr(UT AV N), (1.1.27)

subject to (U, V ) ∈ O(m) × O(n), (1.1.28)

where N =
(
N1 0

)
∈ R

n×m, N1 = diag(μ1, . . . , μp) with μ1 > · · · > μn > 0. Since Prob-

lem 1.1.5 about a truncated eigenvalue decomposition has a matrix variable Y ∈ St(p, n),

which corresponds to the matrix P ∈ O(n) in (1.1.25), the truncated singular value decom-

6



position problem, which is to find the largest p (≤ n) singular values and the corresponding

left and right singular vectors, is expected to be formulated as a Riemannian optimization

problem on a manifold other than O(m) × O(n). Indeed, Absil et al. [AMS08] suggest to

replace the manifold O(m) × O(n) in Problem 1.1.9 with the manifold St(p,m) × St(p, n)

(see Problem 1.2.1). We will prove that this generalized problem is truly equivalent to the

truncated singular value decomposition problem and will develop optimization algorithms

for it.

The problems mentioned in this subsection are listed in Table 1.1. We here note that

maximizing problems are rewritten into minimizing problems by multiplying the objective

functions by −1 in the table. Table 1.2 shows the progresses in the study of the problems.

Table 1.1: Several Riemannian optimization problems. The matrices A and A1, . . . , AK

are the target matrices to be decomposed in the problems. The diagonal matrices N in
Problems 1.1.5, 1.1.9, and 1.2.1 are constant matrices. All of the other vector and matrices
such as x and X,Y in the objective functions are variables on the manifolds in question.

Problem No. Manifold Objective function Attainment

1.1.4 Sn−1 xT Ax Leftmost eigenvector

1.1.5 St(p, n) tr(Y T AY N) p leftmost eigenvectors

1.1.6
Grass(p, n) as a
quotient manifold

tr(Y T AY )
Leftmost p-dimensional

eigenspace

1.1.7 Grass(p, n) as a
submanifold

tr(AX)
Leftmost p-dimensional

eigenspace

1.1.8 St(p, n) −∑K
l=1‖diag(Y T AlY )‖2

F

Approximate joint
diagonalizing matrix

1.1.9 O(m) × O(n) tr(UT AV N) Full SVD

1.2.1
(in Sec. 1.2.2) St(p,m) × St(p, n) tr(UT AV N) Truncated SVD
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Table 1.2: Progresses in the study of the problems in Table 1.1. We note that the reference
[SI13] is the author’s paper on which Chapter 4 of this thesis is based.

Problem No. Progress Reference

1.1.4 Well studied. [AMS08,Bro93]

1.1.5 Well studied. [EAS98,HM94]

1.1.6 Well studied. [AMS08,EAS98]

1.1.7 Currently being studied. [HHT07]

1.1.8
with p = n Developed to some extent. [Yer02,WS97]

1.1.8
with p < n Not well developed. [TCA09]

1.1.9
Formulated in Riemannian optimization.
However, algorithms to solve it had not
been developed enough before [SI13].

[HM94]

1.2.1
(in Sec. 1.2.2)

Suggested to be studied in Riemannian
optimization. However, it had not been
studied before [SI13].

[AMS08,SI13]
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1.1.3 Optimization algorithms on the Euclidean space and on

Riemannian manifolds

In the Euclidean space, the line search strategies are often used to construct iterative op-

timization algorithms such as the steepest descent, Newton’s, and the conjugate gradient

methods. The steepest descent method has the global convergence property, but the speed

of convergence is practically very slow. In contrast with this, a sequence generated by New-

ton’s method, if it converges, exhibits a very fast convergence speed. However, Newton’s

method does not have a global convergence property. On the other hand, the conjugate

gradient method has the global convergence property and generate sequences which con-

verge faster than those generated by the steepest descent method (but slower than those

generated by Newton’s method). The speed of convergence of a sequence generated by the

conjugate gradient method is practically fast.

These methods are generalized to those on Riemannian manifolds. The steepest descent

and Newton’s methods on Riemannian manifolds have been developed and proved to have

the same convergence properties as those on the Euclidean space.

To the contrary, for the conjugate gradient method, generalized algorithms on Rieman-

nian manifolds have been developing. In particular, an algorithm which is of practical use

and which has a global convergence property without any special assumptions had not

been proposed before the author’s paper [SIarb]. We shall discuss a proposed algorithm at

full length in this thesis.

In the next section, the problems to be tackled in this thesis are introduced in detail.

1.2 Overview of the topics in the thesis

The interest of this thesis centers on Riemannian optimization algorithms with applications

to numerical linear algebra. The theory of Riemannian optimization has been developed

to some extent, but still stays in the stage of development. For example, the conjugate

gradient method on the Euclidean space has been generalized to that on Riemannian

manifolds. However, the resulting method does not have a global convergence property

in general. One of main purposes of this thesis is to improve the existing Riemannian

conjugate gradient method and to prove the global convergence property of the proposed

method.

The theory should be practically applied. As is discussed in Section 1.1, the theory of

Riemannian optimization has indeed a great potential to solve practical problems. Another

purpose of the thesis is to develop methods for solving problems in numerical linear algebra

on the basis of Riemannian optimization. In particular, the singular value decompositions

of real and complex matrices are formulated as Riemannian optimization problems and

solved to provide efficient algorithms.
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1.2.1 Riemannian conjugate gradient method

It is an empirical fact that the convergence speed of the steepest descent method is of-

ten very slow (see Subsection 4.4.1, for example). On the other hand, Newton’s method

generally generates quickly convergent sequences, but its convergence property is local.

Among unconstrained optimization methods on the Euclidean space, the conjugate gra-

dient method is known to generate sequences with global convergence property and the

generated sequences are shown to converge faster than those generated by the steepest

descent method. An extension of the conjugate gradient method to that on a Riemannian

manifold is expected to solve Riemannian optimization problems efficiently.

The conjugate gradient method on a Riemannian manifold was proposed by Smith

in his paper entitled “Optimization techniques on Riemannian manifolds” [Smi94]. In the

conjugate gradient method in [Smi94], he proposed to use the parallel translation of tangent

vectors along a geodesic on the manifold in question. However, the parallel translation

of a tangent vector cannot be computed even for the Stiefel manifold St(p, n) in general.

In [AMS08], the notion of a vector transport is introduced instead of the parallel translation

in order to resolve the computational difficulties. The global convergence property of the

Riemannian conjugate gradient method with the vector transport was discussed by Ring

and Wirth in [RW12]. In [RW12], they proved that a sequence generated by the algorithm is

globally convergent under the assumption that the vector transport in use does not increase

the norm of the search direction vector. In fact, a sequence generated by the algorithm

may not converge, if the assumption is not satisfied. Some numerical experiments will

be performed in Chapter 3 to illustrate the situation where generated sequences are not

convergent.

In order to improve the global convergence property of the Riemannian conjugate gra-

dient method, the notion of a scaled vector transport will be introduced in Chapter 3. In

the new proposed algorithm, the scaled vector transport is applied only if the vector trans-

port increases the norm of the previous search direction vector. The proposed Riemannian

conjugate gradient method with a scaled vector transport is shown to have the global con-

vergence property even if the vector transport in use increases the norm of tangent vectors,

since the scaling cancels the effect of the increase of the norm.

1.2.2 Singular value decomposition of a real matrix and the cor-

responding optimization problem on a real product mani-

fold

In [AMS08], it is suggested that the truncated singular value decomposition problem can

be set up as a Riemannian optimization problem on St(p,m) × St(p, n) as follows:

Problem 1.2.1.

maximize tr(UT AV N), (1.2.1)
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subject to (U, V ) ∈ St(p,m) × St(p, n), (1.2.2)

where N is defined to be N = diag(μ1, . . . , μp) with μ1 > · · · > μp > 0. We here note

that the order of the values of the diagonal elements of the matrix N differs from N in

Problem 1.1.5. In Chapter 4, we will prove that solving Problem 1.2.1 is indeed equivalent

to performing the truncated singular value decomposition.

To this end, the geometry of the manifold St(p,m) × St(p, n) is intensively studied to

acquire requisites such as the gradient and the Hessian of the objective function of the

problem in Chapter 4. Then, a hybrid algorithm which consists of the conjugate gradient

and Newton’s methods is proposed. In other words, the conjugate gradient method is

used in the first part of the algorithm to obtain an approximate optimal solution to the

problem, and then Newton’s method is applied with the approximate solution as an initial

point, which forms the second part of the algorithm. Switching from the conjugate gradient

method to Newton’s method makes the convergence speed much faster than keeping the

conjugate gradient method running, since Newton’s method ensures that the generated

sequence converges quadratically. If we use the scaled conjugate gradient method which

is proposed in Chapter 3, it is ensured that the conjugate gradient part of the hybrid

algorithm resolves the difficulty that Newton’s method does not generally have a global

convergence property.

1.2.3 Complex singular value decomposition and Riemannian

optimization

The singular value decomposition of an m × n complex manifold takes the form

A = UΣV H , U ∈ U(m), V ∈ U(n), Σ =

⎛
⎜⎜⎜⎝

Σ1

0

⎞
⎟⎟⎟⎠ , (1.2.3)

where the superscript H denotes the Hermitian conjugation of a matrix, U(n) is the unitary

group, and where Σ1 = diag (σ1, . . . , σn) with σ1 ≥ · · · ≥ σn ≥ 0.

The complex singular value decomposition is expected to be reformulated as a Rie-

mannian optimization problem on the product manifold St(p,m, C) × St(p, n, C), where

St(p, n, C) is the complex Stiefel manifold defined by St(p, n, C) :=
{
Y ∈ C

n×p |Y HY = Ip

}
.

Since we will deal with the complex Stiefel manifold St(p, n, C) only in Chapter 5, we simply

denote the real Stiefel manifold by St(p, n) in the other chapters. While the real singu-

lar value decomposition problem is equivalent to Problem 1.2.1, the function of the form

(1.2.1) with U ∈ St(p,m, C) and V ∈ St(p, n, C) cannot be an objective function of the

optimization problem on St(p, m, C) × St(p, n, C). This is because the function (1.2.1) is

no longer real-valued if U and V are complex matrices. Therefore, it is not straightforward
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to establish an optimization problem on St(p,m, C) × St(p, n, C). In fact, the complex

singular value decomposition problem can be reformulated as the following problem:

Problem 1.2.2.

maximize Re(tr(UHAV N)), (1.2.4)

subject to (U, V ) ∈ St(p,m, C) × St(p, n, C), (1.2.5)

where Re(·) denotes the real part of the quantity in the parentheses. It will be shown in

Chapter 5 that the truncated complex singular value decomposition is indeed equivalent

to Problem 1.2.2.

In order to put Problem 1.2.2 into a real one, the real manifold Stp(p, n), which is the

intersection of the real Stiefel manifold and the “quasi-symplectic set”, is introduced. This

can be regarded as an expression of St(p, n, C) in a real form (see (5.2.33)). Problem 1.2.2

is reformulated as a real optimization problem on Stp(p,m)×Stp(p, n), for which Newton’s

equation can be derived in a similar manner to the case of Problem 1.2.1. The resulting

Newton’s method for Problem 1.2.1 is in turn rewritten as an algorithm for Problem 1.2.2,

which results in the complex singular value decomposition.

1.3 Outline of the thesis

In this thesis, Riemannian optimization is studied from both the theoretical and application

viewpoints. Theory and application are mutually-supportive and neither can be lacking as a

whole. In this thesis, the Riemannian conjugate gradient method for a problem on a general

Riemannian manifold will be theoretically improved to have a global convergence property.

This improvement in turn ensures that the conjugate gradient method for the singular value

decomposition related problem (Problem 1.2.1) on the product manifold St(p,m)×St(p, n)

works well. Consequently, a more efficient algorithm is naturally proposed, which will be

generalized to that for the complex case.

The organization of this thesis is as follows:

Chapter 2 starts with a brief exposition of unconstrained optimization techniques in the

Euclidean space and proceeds to a generalization of the methods to those on a Riemannian

manifold. The last part of this chapter is concerned with a review of the geometry of the

real Stiefel manifold, which is necessary to set up the singular value decomposition as a

Riemannian optimization problem.

Chapter 3 provides a new Riemannian conjugate gradient method through the intro-

duction of the notion of a scaled vector transport. The strong Wolfe step condition, which

is used to find the step size at each iterate, is also discussed on a general Riemannian

manifold. A new algorithm with a scaled vector transport will be proposed. The global

convergence property of the proposed algorithm is proved theoretically and numerical ex-

periments show the efficiency of the algorithm. In addition, numerical experiments also
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show that there are problems which the existing algorithm cannot solve efficiently but the

proposed algorithm can do. This chapter is based on [SIarb].

Chapters 4 and 5 are devoted to the (truncated) real and complex singular value de-

composition algorithms based on Riemannian optimization, respectively. They are based

on [SI13] and [SIara].

In Chapter 4, the singular value decomposition of an m × n real matrix is dealt with.

The decomposition problem is reformulated as a Riemannian optimization problem on the

product manifold St(p,m) × St(p, n). The steepest descent, Newton’s, and the conjugate

gradient methods for the present optimization problem are developed, and the advantage

and disadvantage of each algorithm are discussed. Furthermore, the conjugate gradient

and Newton’s methods are put together to give a hybrid algorithm. However, Newton’s

equation for the problem is practically difficult to solve unless p = 1. Therefore, an

algorithm for solving Newton’s equation with p = 1 is provided and the original problem

is divided into p subproblems in Newton’s part of the proposed hybrid algorithm. If

a sufficiently approximate solution to the problem is available in advance, the conjugate

gradient part can be skipped. Numerical experiments are performed to show that Newton’s

method can improve approximate solutions, which are obtained by MATLAB’s svd function

for example. At the end of the chapter, degenerate optimal solutions, which appear if the

target matrix A has degenerate singular values, are also studied.

In Chapter 5, Newton’s method developed in Chapter 4 is extended to the complex

case. It is shown that the complex singular value decomposition problem is translated into

a Riemannian optimization problem on the product of two complex Stiefel manifolds. For

feasibility purpose, the problem is equivalently rewritten as a problem on the product of

two real manifolds. The Riemannian geometry of the real product manifold in question

is investigated after Chapter 4. Then, Newton’s method on the real product manifold is

developed and is converted to that on the complex product manifold. Moreover, like the al-

gorithm given in Chapter 4, the proposed algorithm divides into easier subproblems, which

can be solved in parallel. The resulting algorithm provides a new complex singular value

decomposition algorithm. In a similar manner to that in Chapter 4, numerical experiments

are also performed to show that the present algorithm may improve the accuracy of an

approximate complex singular value decomposition.

Chapter 6 contains conclusions and discussions on the results in comparison with the

existing algorithms with constraints taken into account.
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Chapter 2

A Brief Review of Optimization

Methods and Basic Facts on the Real

Stiefel Manifold

In this chapter, we make a brief review of several optimization methods both on the Eu-

clidean space and on Riemannian manifolds. As is explained in Introduction, the truncated

singular value decompositions of a real matrix is reformulated as a Riemannian optimiza-

tion problem on the product of the real Stiefel manifolds. In view of this fact, the geometry

of the real Stiefel manifold is reviewed within the scope of Riemannian optimization.

2.1 A Review of unconstrained optimization methods

on the Euclidean space

2.1.1 General framework

We consider the following general unconstrained optimization problem on R
n:

Problem 2.1.1.

minimize f(x), (2.1.1)

subject to x ∈ R
n, (2.1.2)

There have been developed several optimization methods such as the steepest descent,

Newton’s, and the conjugate gradient methods. They have the following common frame-

work called the line search strategy.

14



Algorithm 2.1.1 The line search strategy on the Euclidean space R
n

1: Choose an initial point x0 ∈ R
n.

2: for k = 0, 1, 2, . . . do
3: Compute the search direction ηk ∈ R

n and the step size tk > 0.
4: Compute the next iterate xk+1 = xk + tkηk.
5: end for

The choice of the search direction ηk ∈ R
n and the step size tk > 0 in Step 3 of Algorithm

2.1.1 characterizes the individual optimization methods.

As will be discussed in the following subsections, in each of the above-mentioned three

methods, the search direction ηk is distinctively computed by using the Euclidean gradient

fx(xk) of f at xk. The angle θk between the search direction ηk and the negative gradient

−fx(xk) is defined through

cos θk = − fx(xk)
T ηk

‖fx(xk)‖‖ηk‖
, (2.1.3)

where ‖·‖ denotes the standard Euclidean norm. The search direction ηk is called a descent

direction if it satisfies fx(xk)
T ηk < 0. By the definition (2.1.3) of the angle θk, a descent

direction makes an angle of less than π/2 with −fx(xk) and produces a decrease in f . More

generally, the direction sequence {ηk} is called gradient-related to the sequence {xk} if the

following property holds: For any subsequence {xk}k∈K that converges to a non-stationary

point of f , the corresponding subsequence {ηk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

fx(xk)
T ηk < 0. (2.1.4)

It is clear that a bounded sequence of descent directions is gradient-related. Several con-

vergence results on sequences in R
n have been developed for optimization methods which

generate gradient-related direction sequences. While the gradient and the conjugate gra-

dient methods generate descent directions, Newton’s method does not even generate a

gradient-related direction sequence in general. In this thesis, we assume that a search di-

rection vector is always a descent one when we consider line search methods. This means

that when we apply Newton’s method we take an initial point in a vicinity of a minimum

point of the objective function. For more details of a gradient-related direction sequence,

see [Ber99] (for Euclidean version) and [AMS08] (for Riemannian version).

There are also several choices of computing the step size tk > 0. The step size is often

computed so as to satisfy the Armijo or Wolfe condition with descent search directions.

What to do in the line search methods at the k-th iterate xk is to search for the step size

tk > 0 on the half-line xk + tηk, t > 0, emanating from xk in the direction of ηk, in such a

manner that the value f(xk+1) of the objective function f at the next iterate

xk+1 = xk + tkηk (2.1.5)
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may sufficiently decrease. The steepest descent and the conjugate gradient methods pro-

duce a descent direction in every iteration if the step size is successfully computed. To the

contrary, Newton’s method does not necessarily produce a descent direction. In Newton’s

method, it is natural to fix the step size to tk = 1. Newton’s method with tk = 1 is referred

to as the pure form of Newton’s method. In this thesis, we deal with the pure form of

Newton’s method and we call it simply Newton’s method.

Apart from the line search strategy, the trust region strategy is also used, though we

do not deal with it in this thesis. See [NW06] for more detail on the trust region strategy.

Some optimization methods have the global convergence property, that is, every accu-

mulation point of a sequence with any initial point is a stationary point. Other methods

such as Newton’s method do not have the global convergence property. However, if a se-

quence generated by Newton’s method converges, the speed of convergence is fast. The

rate of convergence is defined as follows [Kel99,LY08]:

Definition 2.1.1. Let {xk} be a sequence converging to a point x∗ on R
n. The sequence

{xk} is said to converge linearly to x∗ if there exist a constant c ∈ (0, 1) and an integer

K ≥ 0 such that

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖, k ≥ K. (2.1.6)

The sequence {xk} is said to converge superlinearly to x∗ if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0. (2.1.7)

The sequence {xk} is said to converge to x∗ with order at least q, if there exist a real number

q > 1, a constant c > 0, and an integer K ≥ 0 such that

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖q, k ≥ K. (2.1.8)

If q = 2 in (2.1.8), the {xk} is said to converge quadratically to x∗.

2.1.2 Exact line search and the Armijo and the Wolfe conditions

Before proceeding to specific optimization methods, we review several line search strate-

gies. How to choose a step size is critical for the convergence property of an optimization

algorithm. We here suppose that the current iterate xk and the search direction ξk are

already obtained and we fix them throughout this subsection. We also assume that the ξk

is a descent direction. The line search at the iterate xk is to solve the following problem

exactly or inexactly:

Problem 2.1.2.

minimize f(xk + tηk), (2.1.9)

16



subject to t ∈ R, t > 0. (2.1.10)

In the exact line search, the step size tk > 0 is determined to be

tk = arg min
t>0

f(xk + tηk). (2.1.11)

For some particular problems in which the objective function takes a simple form such as a

quadratic one, the right-hand side of (2.1.11) can be written out explicitly, so that the exact

line search can be easily performed. However, for a general objective function, the exact

line search is difficult to apply, and we end up with solving Problem 2.1.2 approximately

in general.

In inexact line search strategies, we need to find a step size tk > 0 satisfying some

reasonable conditions at the iterate xk. We here review two of well-known criteria for

tk > 0. One is the Armijo condition given by

f(xk + tkηk) ≤ f(xk) + c1tkfx(xk)
T ηk (2.1.12)

for some predetermined constant c1 ∈ (0, 1). The Armijo condition ensures that the de-

termined step size gives rise to a sufficient decrease in the objective function. Especially,

for ᾱ > 0, β, σ ∈ (0, 1), the step size tk := βmᾱ to be defined with m being the smallest

nonnegative integer satisfying

f(xk) − f(xk + βmᾱηk) ≥ −σfx(xk)
T βmᾱηk (2.1.13)

meets the Armijo condition. Such a tk is called the Armijo step size. The Armijo condition

(2.1.12) is satisfied for a sufficiently small tk > 0. However, if tk is too small, then xk+1 is

too close to xk, and this may cause slow convergence.

Another approach to the line search is to use the Wolfe condition given by

f(xk + tηk) ≤ f(xk) + c1tkfx(xk)
T ηk, (2.1.14)

fx(xk + tηk)
T ηk ≥ c2fx(xk)

T ηk (2.1.15)

for predetermined constant c1 and c2 with 0 < c1 < c2 < 1. The Wolfe condition is a

combination of the Armijo condition (2.1.12) and the curvature condition (2.1.15), which

rules out excessively short steps. The Wolfe condition plays an important role in the

conjugate gradient method. This is because Zoutendijk’s theorem 2.1.1 [Zou70,NW06] to

be stated in the below guarantees that algorithms with the Wolfe condition have a certain

property which leads to the global convergence property of the conjugate gradient method.

We introduce an assumption before stating Zoutendijk’s theorem.

Assumption 2.1.1. Let f be bounded below on R
n and continuously differentiable in an

open set N containing the sublevel set L := {x ∈ R
n | f(x) ≤ f(x0)}, where x0 ∈ R

n is the
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initial point of the algorithm in question. Furthermore, the gradient fx of f is Lipschitz

continuous on N , that is, there exists a Lipschitz constant L > 0 such that

‖fx(x) − fx(y)‖ ≤ L‖x − y‖, x, y ∈ N . (2.1.16)

Theorem 2.1.1. Consider Problem 2.1.1 with the objective function f satisfying Assump-

tion 2.1.1. Let {xk} be a sequence generated by Algorithm 2.1.1 with the Wolfe condition.

If every search direction ηk is a descent one, then it holds that

∞∑
k=0

cos2 θk‖fx(xk)‖2 < ∞, (2.1.17)

where the angles θk are defined by (2.1.3).

In the conjugate gradient method, the strong Wolfe condition, which is a strict version

of the Wolfe condition, is often used. The strong Wolfe condition consists of two inequalities

f(xk + tηk) ≤ f(xk) + c1tkfx(xk)
T ηk, (2.1.18)

|fx(xk + tηk)
T ηk| ≤ c2|fx(xk)

T ηk|, (2.1.19)

that is, the curvature condition (2.1.15) in the Wolfe condition is replaced by a more strict

condition (2.1.19). We here note that fx(xk)
T ηk < 0 on account of the assumption that ηk

is a descent direction.

2.1.3 Steepest descent method

In the steepest descent method, the search direction ηk at the iterate xk is determined by

ηk = −fx(xk), (2.1.20)

which is the negative gradient of f at xk. The negative gradient −fx(xk) is the steepest

descent direction at xk in the sense that the unit vector −fx(xk)/‖fx(xk)‖ is the solution

to the following problem:

Problem 2.1.3.

minimize fx(xk)
T η (2.1.21)

subject to ‖η‖ = 1. (2.1.22)

We here note that fx(xk)
T η is the Fréchet derivative Df(xk)[η] of f at xk in the direction

of η.

If f satisfies Assumption 2.1.1, it is clear that the inequality (2.1.17) in Zoutendijk’s

theorem 2.1.1 with cos θk = 1 ensures that limk→∞‖fx(xk)‖ = 0 for a sequence {xk}
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generated by the steepest descent method with the Wolfe condition. However, the steepest

descent method is shown to have the global convergence property, if only the Armijo

condition without the curvature condition (2.1.15) is imposed in the algorithm, as is stated

in the following. The steepest descent method with the Armijo condition is written in the

form:

Algorithm 2.1.2 Euclidean steepest descent method for Problem 2.1.1

1: Choose an initial point x0 ∈ R
n.

2: for k = 0, 1, 2, . . . do
3: Compute the search direction ηk = −fx(xk) and the Armijo step size tk > 0.
4: Compute the next iterate xk+1 = xk + tkηk.
5: end for

Theorem 2.1.2. [Ber99] Let {xk} be a sequence generated by Algorithm 2.1.2. Then, every

accumulation point of {xk} is a stationary point.

2.1.4 Newton’s method

Newton’s method is originally a method to solve the equation

g(x) = 0, (2.1.23)

where the function g : R
n → R

n is continuously differentiable. Assume that the Jacobian

matrix J(xk) of g at the current iterate xk is invertible. The updating formula is then

xk+1 = xk − J(xk)
−1g(xk). (2.1.24)

From an optimization viewpoint, we need to find a point x∗ at which the gradient fx of

the objective function f vanishes. Then, Newton’s method in optimization is applied to

g(x) = fx(x), and the search direction ηk ∈ R
n is determined by Newton’s equation

fxx(xk)[ηk] = −fx(xk), (2.1.25)

where fxx(xk) is the Hessian matrix of f at the current iterate xk. If the Hessian matrix

fxx(xk), hence the inverse (fxx(xk))
−1, is positive definite, the resulting Newton vector

ηk = −(fxx(xk))
−1fx(xk) is a descent direction since

fx(xk)
T ηk = −fx(xk)

T (fxx(xk))
−1fx(xk) < 0. (2.1.26)

Then, the line search method discussed in Subsection 2.1.2 can be effectively combined

with Newton’s method. However, the Newton vector ηk is not guaranteed to be a descent

direction in general. In Newton’s method for a generic problem, the step size is often fixed

to tk = 1. The resulting algorithm is stated as follows:
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Algorithm 2.1.3 Euclidean Newton’s method for Problem 2.1.1

1: Choose an initial point x0 ∈ R
n.

2: for k = 0, 1, 2, . . . do
3: Compute the search direction ηk as the solution to

fxx(xk)[ηk] = −fx(xk). (2.1.27)

4: Compute the next iterate xk+1 = xk + ηk.
5: end for

Newton’s method does not generally have the global convergence property. However,

a merit of Newton’s method lies in its fast local convergence speed, as is shown in the

following:

Theorem 2.1.3. [NW06] Suppose that f is twice differentiable and that the Hessian fxx is

Lipschitz continuous in a neighborhood of a stationary point x∗. Suppose also that the Hes-

sian fxx is Lipschitz continuous in a neighborhood of a solution x∗ at which the fxx(x∗) is

positive definite. Then, any sequence {xk} generated by Algorithm 2.1.3 converges quadrat-

ically to x∗ if the initial point x0 is sufficiently close to x∗.

2.1.5 Conjugate gradient method

We again note that one of the main topics of this thesis is to propose a new, globally

convergent conjugate gradient method on a Riemannian manifold. In this subsection, we

carefully review the conjugate gradient method on the Euclidean space as a preparation.

The conjugate gradient method on R
n is originally developed as a tool for solving linear

systems of equations [HS52], which minimizes the quadratic objective function φ(x) :=

xT Ax/2 − bT x of x ∈ R
n, where A and b are an n × n symmetric positive-definite matrix

and an n-dimensional column vector, respectively. The conjugate gradient method for

this purpose is especially called the linear conjugate gradient method. Since the objective

function xT Ax/2 − bT x can be rewritten as

1

2
xT Ax − bT x =

1

2
(Ax − b)T A−1(Ax − b) − 1

2
bT A−1b, (2.1.28)

it can be easily observed that the minimum point of the objective function is a unique

solution to Ax = b. In the linear conjugate gradient method, the initial search direction η0

is chosen to be just the steepest descent direction −φx(x0) = −(Ax0 − b), and the search

direction ηk with k ≥ 1 is computed from the steepest descent direction at xk and the

previous search direction ηk−1 by

ηk = −φx(xk) + βkηk−1 = −(Axk − b) + βkηk−1, (2.1.29)
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where the scalar βk is determined so that the current and previous search directions, ηk

and ηk−1, may be conjugate with respect to A, that is,

ηT
k Aηk−1 = 0. (2.1.30)

More specifically, the βk takes the form

βk =
(Axk − b)T Aηk−1

ηT
k−1Aηk−1

, (2.1.31)

which is also obtained by applying the Gram-Schmidt orthogonalization procedure without

normalization (in which the inner product of two vectors a1 and a2 are defined as aT
1 Aa2) to

the vector −φx(xk) and the preceding directions η0, . . . , ηk−1. In fact, the current direction

ηk satisfies

ηT
k Aηj = 0, j < k ≤ n, (2.1.32)

and the step size tk is calculated via the exact line search as

tk = arg min
t>0

φ(xk + tηk) = −(Axk − b)T ηk

ηT
k Aηk

. (2.1.33)

The βk defined by (2.1.31) can be put in the form

βk =
φx(xk)

T φx(xk)

φx(xk−1)T φx(xk−1)
=

φx(xk)
T (φx(xk) − φx(xk−1))

φx(xk−1)T φx(xk−1)
, (2.1.34)

where use has been made of the fact that φx(xk)
T φx(xi) = 0 with i = 0, . . . , k − 1, which

can be easily proved by induction. The expression (2.1.34) of βk is a key to a generalization

of the linear conjugate gradient method to a nonlinear conjugate gradient method.

The nonlinear conjugate gradient method can be applied for a generic objective function

f [NW06]. In the nonlinear conjugate gradient method, the search direction ηk is computed

after the manner of the linear conjugate method as

ηk = −fx(xk) + βkηk−1, k ≥ 0, (2.1.35)

where β0 = 0, and where βk with k ≥ 1 are determined in several possible manners. A

possible choice for βk comes from (2.1.31),

βk =
fx(xk)

T fxx(xk−1)ηk−1

ηT
k−1fxx(xk−1)ηk−1

. (2.1.36)

Note that in the linear conjugate gradient method, we have φxx = A. However, Eq. (2.1.36)

for a general f is impractical since the Hessian matrix fxx should be computed at each

iterate. There are more practical choices of βk without reference to the Hessian matrix.
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For example, βk are computed by

βFR
k =

fx(xk)
T fx(xk)

fx(xk−1)T fx(xk−1)
, (2.1.37)

or

βPR
k =

fx(xk)
T (fx(xk) − fx(xk−1))

fx(xk−1)T fx(xk−1)
, (2.1.38)

which are the generalizations of the right-hand sides of (2.1.34), where FR and PR are

abbreviations of Fletcher-Reeves and Polak-Ribière, respectively [NW06]. Many other

choices of βk have been also developed. The Fletcher-Reeves type conjugate gradient

method on R
n is usually performed along with the strong Wolfe condition and is formulated

to provide the algorithm:

Algorithm 2.1.4 Euclidean Fletcher-Reeves type conjugate gradient method for Problem
2.1.1
1: Choose an initial point x0 ∈ R

n.
2: Set η0 = −fx(x0).
3: for k = 0, 1, 2, . . . do
4: Compute the step size tk > 0 satisfying the strong Wolfe condition, consisting of

(2.1.18) and (2.1.19) with 0 < c1 < c2 < 1/2. Set

xk+1 = xk + tkηk. (2.1.39)

5: Set

βk+1 =
(fx(xk+1))

T (fx(xk+1))

(fx(xk))
T (fx(xk))

, (2.1.40)

ηk+1 = −fx(xk+1) + βk+1ηk. (2.1.41)

6: end for

The Fletcher-Reeves type conjugate gradient method has the global convergence prop-

erty as the following theorem indicates:

Theorem 2.1.4. [AB85] Suppose that the objective function f satisfies Assumption 2.1.1.

Then, the sequence {xk} generated by Algorithm 2.1.4 satisfies

lim inf
k→∞

‖fx(xk)‖ = 0. (2.1.42)

Theorem 2.1.4 is proved on the basis of Zoutendijk’s theorem 2.1.1 and the following lemma.

Lemma 2.1.1. Algorithm 2.1.4 generates descent directions ηk which satisfy

− 1

1 − c2

≤ fx(xk)
T ηk

‖fx(xk)‖2
≤ 2c2 − 1

1 − c2

, k = 0, 1, . . . . (2.1.43)
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2.2 Riemannian optimization methods

As is discussed in Chapter 1, a number of optimization problems can be formulated on

Riemannian manifolds. Let M be a Riemannian manifold endowed with a Riemannian

metric 〈·, ·〉. An unconstrained optimization problem on M is generally described as follows:

Problem 2.2.1.

minimize f(x), (2.2.1)

subject to x ∈ M, (2.2.2)

where f is assumed to be smooth throughout this section unless otherwise noted.

When we generalize Euclidean optimization methods to Riemannian ones, several ob-

jects have to be generalized so as to make sense on Riemannian manifolds. For example,

in the steepest descent method on R
n, the search direction is determined as −fx(xk). The

Euclidean gradient fx(xk) should be replaced by the gradient defined on M . Also, even if

M is a submanifold of R
n and fx(xk) makes sense, the half line with the negative Euclidean

gradient −fx(xk) is not suitable for a search direction, since it does not generically lie in

the submanifold M . With these matters in mind, we should take a search direction ηk as

a tangent vector on M at xk and replace the search line by another concept to be defined

on M .

2.2.1 Line search and retraction

If M is the Euclidean space R
n, the line search can be performed with the updating formula

(2.1.5). However, Eq. (2.1.5) does not make sense on a general manifold M . Indeed, the

operation of addition is not defined on M in general. Even if M is a submanifold of R
n

and the addition can be defined, the resulting vector xk + tkηk is no longer sitting on M . In

order to generalize the line search (2.1.5) on R
n to that on M , the addition in Eq. (2.1.5)

should be replaced by another suitable operation. A natural alternative to the line search is

a search along the geodesic emanating from xk in the direction of ηk, but the geodesic will

cause computational difficulty except for a few particular manifolds where the geodesics

admit a tractable closed-form expression. A computationally efficient way is to use the

following retraction map introduced in [AMS08].

Definition 2.2.1. Let M and TM be a manifold and the tangent bundle of M , respectively.

Let R : TM → M be a smooth map and Rx the restriction of R to TxM . The R is called

a retraction on M , if it has the following properties:

1. Rx(0x) = x, where 0x denotes the zero element of TxM .

2. With the canonical identification T0xTxM � TxM , Rx satisfies

DRx(0x) = idTxM , (2.2.3)
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where DRx(0x) denotes the derivative of Rx at 0x, and idTxM the identity map on

TxM .

As is easily seen, the exponential map on M is a typical example of a retraction. For a

more detailed discussion about retractions, see [AM12].

Suppose that xk ∈ M and ηk ∈ TxM are the current iterate and the search direction,

respectively, in an iterative optimization algorithm with a retraction R. Let γk be a curve

on M defined by γk(t) = Rxk
(tηk). The first condition in Definition 2.2.1 means that

γk(0) = xk. The second condition implies that γ̇k(0) = ηk. Thus, the curve γk proves to be

emanating from xk in the direction of ηk. Therefore, at each iterate, the retraction gives

rise to an appropriate curve on M for searching the next iterate. In order to generalize the

line search on R
n to an appropriate search on M , the line search (2.1.5) should be replaced

by a search along the curve γk so that for a suitable determined tk > 0 the resulting next

iterate

xk+1 = Rxk
(tkηk) (2.2.4)

may produce sufficient decrease in f .

If we can find a computationally preferable retraction, we can perform a Riemannian

optimization procedure as follows:

Algorithm 2.2.1 The general framework of Riemannian optimization methods for Prob-
lem 2.2.1
1: Choose an initial point x0 ∈ M .
2: for k = 0, 1, 2, . . . do
3: Compute the search direction ηk ∈ Txk

M and the step size tk > 0.
4: Compute the next iterate by xk+1 := Rxk

(tkηk), where R is a retraction on M .
5: end for

As in the Euclidean optimization, the choice of a search direction and a step size depends

on optimization methods.

We proceed to computing procedure for a step size. In what follows, we fix xk ∈ M

and ηk ∈ Txk
M as a current iterate and a search direction, respectively. We also assume

that ηk is a descent direction, that is, 〈grad f(xk), ηk〉xk
< 0. The step size in the exact

search is determined by

tk = arg min
t>0

f(Rxk
(tηk)). (2.2.5)

Since it is difficult to find tk in general, inexact search strategies are of practical use.

The Armijo condition (2.1.12) on R
n is generalized to that on M which is expressed as

f(Rxk
(tηk)) ≤ f(xk) + c1tk〈grad f(xk), ηk〉xk

, (2.2.6)

where c1 ∈ (0, 1) is constant uniformly for all k ≥ 0. From a numerical viewpoint, we

perform a backtracking algorithm to find a step size satisfying the Armijo condition. That
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is, for given parameters ᾱ > 0, β, σ ∈ (0, 1), the step size tk is determined by tk := βmᾱ

in such a way that m may be the smallest nonnegative integer satisfying

f(xk) − f(Rxk
(βmᾱηk)) ≥ −σ〈grad f(xk), β

mᾱηk〉xk
. (2.2.7)

The tk = βmᾱ thus determined is called the Armijo step size as in Euclidean optimization.

The Wolfe condition should be also generalized from R
n to M . In [RW12] and [SIarb],

the Wolfe condition on M is discussed, which is closely related to the notion of a vector

transport (see Subsection 2.2.2) and crucial for the convergence property of the conjugate

gradient method on M . We will discuss the (strong) Wolfe condition on M in more detail

in Subsection 2.2.5 and Section 3.2.

2.2.2 Vector transport

In the (nonlinear) conjugate gradient method on the Euclidean space R
n, the search direc-

tions ηk are computed by (2.1.35). However, on a Riemannian manifold M , grad f(xk) ∈
Txk

M and ηk−1 ∈ Txk−1
M belong to different tangent spaces, so that − grad f(xk)+βkηk−1

in Eq. (2.1.35) fails to make sense on M . In order to modify the vector addition into a

suitable operation on M , Smith proposed to use the parallel translation of tangent vectors

along a geodesic [Smi94]. However, no computationally efficient formula is known for the

parallel translation along a geodesic even for the Stiefel manifold St(p, n) except when it

reduces to the sphere (p = 1) or the orthogonal group (p = n). Absil et al. [AMS08]

proposed the notion of a vector transport as an alternative to the parallel translation as

follows:

Definition 2.2.2. A vector transport T on a manifold M is a smooth map

TM ⊕ TM → TM : (ηx, ξx) 
→ Tηx(ξx) ∈ TM (2.2.8)

satisfying the following properties for all x ∈ M :

1. There exists a retraction R, called the retraction associated with T , such that

π (Tηx(ξx)) = Rx (ηx) , (2.2.9)

where π (Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx),

2. T0x(ξx) = ξx for all ξx ∈ TxM ,

3. Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

The vector transport is a generalization of the parallel translation and can enhance com-

putational efficiency of algorithms, if defined suitably.
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One of the most reasonable choices for vector transport is the differentiated retraction

T R defined by

T R
ηx

(ξx) := DRx(ηx)[ξx], ηx, ξx ∈ TxM, (2.2.10)

which will be used to propose a new Riemannian conjugate gradient method in Chapter 3.

Another simple vector transport T P is defined by means of the orthogonal projection

P , if M is an embedded submanifold of the Euclidean space R
n with an inner product

(·, ·). That is, if a vector y ∈ R
n is decomposed into

y = yT + yN , yT ∈ TxM, yN ∈ NxM, (2.2.11)

then Px(y) = yT , where the normal space NxM at x is the orthogonal complement of TxM

in TxR
n � R

n, which is defined by NxM := {η ∈ R
n | (ξ, η) = 0, ∀ξ ∈ TxM}. The vector

transport T P is then defined by

T P
ηx

(ξx) := PRx(ηx)(ξx). (2.2.12)

All the three conditions of Definition 2.2.2 are easily verified for both T = T R and T =

T P by using the definitions of the retraction and the orthogonal projection, respectively.

We here have to note that though the parallel translation is an isometry, a vector

transport is not required to preserve the norm of vectors in general. It will be found

later that the convergence property of the conjugate gradient method depends crucially

on whether the vector transport increases the norm of vectors or not. In order to make a

given vector transport T not to increase the norm of the transported vector, we will define

the notion of a scaled vector transport in Subsection 3.2.1.

2.2.3 Steepest descent method

In the steepest descent method on a Riemannian manifold M , the search direction ηk ∈
Txk

M is determined as

ηk = − grad f(xk), (2.2.13)

where grad f is the gradient of f on M with respect to the endowed metric 〈·, ·〉, that is,

grad f(x) is a unique tangent vector to x ∈ M which satisfies

〈grad f(x), ξ〉x = Df(x)[ξ] (2.2.14)

for any ξ ∈ TxM . Since the ηk given by (2.2.13) is in the steepest descent direction,

the Armijo condition can be used. In this thesis, we treat the following steepest descent

method:
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Algorithm 2.2.2 Riemannian steepest descent method for Problem 2.2.1

1: Choose an initial point x0 ∈ M .
2: for k = 0, 1, 2, . . . do
3: Compute the search direction ηk = − grad f(xk) and the Armijo step size tk > 0.
4: Compute the next iterate by xk+1 := Rxk

(tkηk), where R is a retraction on M .
5: end for

According to [AMS08], a convergence property for the steepest descent method is stated

as follows:

Theorem 2.2.1. Let {xk} be a sequence of iterates generated by Algorithm 2.2.2. Then,

every accumulation point of {xk} is a critical point of the objective function f .

2.2.4 Newton’s method

In Newton’s method on the Riemannian manifold M , the search direction ηk is determined

as the solution of Newton’s equation

Hess f(xk)[ηk] = − grad f(xk), (2.2.15)

where the Hessian Hess f(x) of f at x is defined through the covariant derivative ∇η grad f

with respect to the Levi-Civita connection ∇ on M by

Hess f(x)[η] := ∇η grad f. (2.2.16)

In Newton’s method, search directions are not necessarily descent ones. Thus, we fix

tk := 1 for any k, without performing the line search. The resulting algorithm is as follows:

Algorithm 2.2.3 Riemannian Newton’s method for Problem 2.2.1

1: Choose an initial point x0 ∈ M .
2: for k = 0, 1, 2, . . . do
3: Compute the search direction ηk as a solution to Newton’s equation

Hess f(xk)[ηk] = − grad f(xk). (2.2.17)

4: Compute the next iterate by xk+1 := Rxk
(ηk), where R is a retraction on M .

5: end for

According to [ABM08], the convergence property of Newton’s method is stated as

follows:

Theorem 2.2.2. Let xc ∈ M be a critical point of f ; grad f(xc) = 0. Assume that

Hess f(xc) is non-degenerate at xc ∈ M . Then there exists a neighborhood U of xc in
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M such that for all x0 ∈ U the sequence {xk} generated by Algorithm 2.2.3 converges

quadratically to xc.

We note that Riemannian Newton’s method does not have a global convergence property.

2.2.5 Conjugate gradient method

In order to generalize the nonlinear conjugate gradient method on R
n to that on M , it is

not adequate to determine the search direction ηk ∈ Txk
M as

ηk = − grad f(xk) + βkηk−1, (2.2.18)

if the grad f is the gradient of f on M with respect to the endowed Riemannian metric,

and if βk is defined to be

βk =
‖grad f(xk)‖2

xk

‖grad f(xk−1)‖2
xk−1

(2.2.19)

in correspondence to Euclidean Fletcher Reeves βFR in (2.1.37), for example, where ‖·‖x

denotes the norm of a tangent vector to x with respect to the metric 〈·, ·〉. Actually, the

right-hand side of (2.2.18) makes no sense since grad f(xk) ∈ Txk
M and ηk−1 ∈ Txk−1

M

are in different tangent spaces.

In [Smi94], Smith proposed to use the parallel translation along a geodesic in order to

transport the second term in (2.2.18) from Txk−1
M into Txk

M . However, computing the

parallel translation is often difficult. Alternatively, in [AMS08], Absil et al. introduced the

notion of vector transport (see Subsection 2.2.2). The resulting algorithm is described as

follows:

Algorithm 2.2.4 Riemannian conjugate gradient method for Problem 2.2.1

1: Choose an initial point x0 ∈ M .
2: Set η0 = − grad f(x0).
3: for k = 0, 1, 2, . . . do
4: Compute the step size tk > 0. Set

xk+1 = Rxk
(tkηk) , (2.2.20)

where R is a retraction on M .
5: Compute the βk+1 and set

ηk+1 = − grad f(xk+1) + βk+1Ttkηk
(ηk), (2.2.21)

where T is a vector transport.
6: end for

In [RW12], Ring and Wirth assumed that the vector transport T R as the differentiated
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retraction does not increase the norm of search directions, that is,

‖T R
Rxk

(tkηk) (ηk)‖xk+1
≤ ‖ηk‖xk

(2.2.22)

for all k ∈ N. Under this assumption, they proved the convergence of the Fletcher-Reeves

type of the above algorithm with a vector transport T R and the strong Wolfe step condition,

f (Rxk
(tkηk)) ≤ f(xk) + c1tkDf(xk)[ηk], (2.2.23)

|Df (Rxk
(tkηk)) [T R

Rxk
(tkηk) (ηk)]| ≤ −c2Df(xk)[ηk]. (2.2.24)

Their theorem is stated as follows:

Theorem 2.2.3. Consider Algorithm 2.2.4 with the vector transport T R defined by (2.2.10)

and the strong Wolfe condition consisting of (2.2.23) and (2.2.24). The coefficient βk is

computed in the form (2.2.19) of the Fletcher-Reeves type. If the condition (2.2.22) holds

for all k ∈ N, then

lim inf
k→∞

‖grad f(xk)‖xk
= 0. (2.2.25)

However, the condition (2.2.22) does not always hold. Such an example will be shown

in Section 3.5. Hence, the algorithm in Thm. 2.2.3 does not generally have a global

convergence property. In order to resolve this difficulty, we will introduce the notion of a

scaled vector transport and propose a new, globally convergent algorithm in Chapter 3.

2.3 Riemannian geometry of the real Stiefel manifold

Let n and p be positive integers with n ≥ p. Let St(p, n) denote the set of all n × p

orthonormal matrices, that is,

St(p, n) =
{
Y ∈ R

n×p |Y T Y = Ip

}
. (2.3.1)

The set St(p, n) can be endowed with a natural manifold structure and then is called the

Stiefel manifold [AMS08,EAS98,HM94]. There are many practical optimization problems

defined on the Stiefel manifold such as Problems 1.1.5 and 1.1.8. In this thesis, the singular

value decomposition is formulated as an optimization problem on the product manifold

St(p,m) × St(p, n). The geometry of the product manifold St(p,m) × St(p, n) will be

treated in Chapter 4, where full use will be made of the geometry of a single Stiefel

manifold St(p, n). In this section, we make a review of several geometrical objects on

St(p, n) which are necessary for optimization methods.

Before reviewing the geometry of the Stiefel manifold, we introduce an important matrix

decomposition called the QR decomposition, in which the Stiefel manifold naturally comes

out. The standard QR decomposition of a full-rank n × p real matrix B is put in the
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form [GVL12,TBI97]

B = Q0R0 = Q0

⎛
⎜⎜⎜⎝

R1

0

⎞
⎟⎟⎟⎠ , Q ∈ O(n), R0 ∈ R

n×p, R1 ∈ S+
upp(p), (2.3.2)

where S+
upp(p) denotes the set of all p×p upper triangular matrices with strictly positive di-

agonal entries. Removing the zero block of R0 in (2.3.2), we can also put the decomposition

in the form

B = QR, Q ∈ St(p, n), R ∈ S+
upp(p). (2.3.3)

The decomposition of the form (2.3.3) is called the thin QR decomposition. In this the-

sis, we call the thin QR decomposition (2.3.3) simply the QR decomposition. The QR

decomposition (2.3.3) proves to be unique and the columns of Q can be explicitly written

out under the Gram-Schmidt orthonormalization procedure. Then, we can define the map

qf(B) of R
n×p
∗ to St(p, n) by qf(B) = Q. The qf is effectively used to define a retraction

on the Stiefel manifold, which is a key notion to an iterative Riemannian optimization

method.

We can verify the following useful property of qf about its derivative [AMS08]:

Proposition 2.3.1. Suppose that B is a full-rank n × p matrix with p ≤ n and is de-

composed into (2.3.3). Let Z be an arbitrary n × p matrix. Then, the action on Z of the

derivative of qf at B can be written using the Q and R factors in (2.3.3) as

D qf(B)[Z] = Bρskew(QT ZR−1) + (In − BBT )ZR−1, (2.3.4)

where ρskew(·) denotes the skew-symmetric part of the decomposition of the matrix in the

parentheses into the sum of a skew-symmetric matrix and an upper triangular matrix (such

a decomposition turns out to be unique).

2.3.1 Tangent spaces and the induced metric

Proposition 2.3.2. The tangent space TY St(p, n) at Y ∈ St(p, n) is given by

TY St(p, n) =
{
ξ ∈ R

n×p | ξT Y + Y T ξ = 0
}

. (2.3.5)

Proof. Let ξ be an element of TY St(p, n). By differentiation, it follows from Y T Y = Ip

that ξT Y + Y T ξ = 0. Therefore, one has

TY St(p, n) ⊂
{
ξ ∈ R

n×p | ξT Y + Y T ξ = 0
}

. (2.3.6)

It remains to show that for any n × p matrix ξ in the right-hand side of (2.3.6), there

is a curve Y (t) on St(p, n) emanating from Y in the direction of ξ. We can specifically
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construct such a curve Y (t) as

Y (t) = qf(Y + tξ), (2.3.7)

It is easy to see that Y (t) ∈ St(p, n) and Y (0) = qf(Y ) = Y . To complete the proof, we

have only to prove Ẏ (0) = ξ. Note that since Y ∈ St(p, n), the QR decomposition of Y is

Y = Y Ip. It follows from Prop. 2.3.1 with Q = Y and R = Ip that

Ẏ (0) = D qf(Y )[ξ] = Y ρskew(Y T ξ) + (In − Y Y T )ξ = Y Y T ξ + (I − Y Y T )ξ = ξ, (2.3.8)

where use has been made of ρskew(Y T ξ) = Y T ξ, which is obtained from the fact that Y T ξ

is skew-symmetric since ξT Y + Y T ξ = 0. This ends the proof.

Since the Stiefel manifold is a submanifold of the matrix Euclidean space R
n×p, it can

be endowed with the Riemannian metric through

〈ξ, η〉Y := tr
(
ξT η

)
, ξ, η ∈ TY St(p, n), (2.3.9)

which is induced from the natural metric on R
n×p,

〈B,C〉 := tr
(
BT C

)
, B, C ∈ R

n×p. (2.3.10)

The orthogonal projection onto the tangent space TY St(p, n) will be of great help in

optimization procedure.

Proposition 2.3.3. The orthogonal projection operator PY onto the tangent space

TY St(p, n) is given, for any matrix B ∈ R
n×p, by

PY (B) = (In − Y Y T )B + Y skew(Y T B). (2.3.11)

Proof. Let ξ denote the right-hand side of (2.3.11). Since

ξT Y + Y T ξ =
(
skew(Y T B)

)T
+ skew(Y T B) = 0, (2.3.12)

ξ is a tangent vector to St(p, n) at Y ∈ St(p, n). It remains to prove that B− ξ is a normal

vector at Y . To see this, for an arbitrary tangent vector η ∈ TY St(p, n), we calculate the

inner product of B − ξ and η to obtain

〈B − ξ, η〉Y = tr
(
B − ξ)T η

)
= tr

((
Y sym(Y T B)

)T
η
)

= tr
(
sym(Y T B)Y T η

)
= 0,

(2.3.13)

where we have used the fact that Y T η is skew-symmetric and the trace of the product of

symmetric and skew-symmetric matrices is zero. This completes the proof.
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2.3.2 Geodesics

We shall find explicitly the exponential map on the Stiefel manifold by solving the geodesic

equation.

Proposition 2.3.4. The geodesic equation on the Stiefel manifold St(p, n) is expressed as

Ÿ (t) + Y (t)Ẏ (t)T Ẏ (t) = 0. (2.3.14)

Several proofs are known for Prop. 2.3.4, among which we shall give a proof after [EAS98].

Proof. Let Y (t) be a geodesic on St(p, n). Differentiating Y (t)T Y (t) = Ip, we obtain

Ÿ (t)T Y (t) + 2Ẏ (t)T Ẏ (t) + Y (t)T Ÿ (t) = 0. (2.3.15)

Since for the geodesic Y (t), the second derivative Ÿ (t) with t arbitrarily fixed is in the

normal space to Y (t), we have

0 = PY (t)(Ÿ (t)) = Ÿ (t) − Y (t) sym(Y (t)T Ÿ (t)). (2.3.16)

Let S(t) = sym(Y (t)T Ÿ (t)), which is symmetric. In terms of S(t), Eq. (2.3.15) takes the

form

S(t) = −Ẏ (t)T Ẏ (t). (2.3.17)

Eqs. (2.3.17) and (2.3.16) are put together to result in (2.3.14). This completes the proof.

We can describe solutions to the geodesic equation (2.3.14) as follows.

Proposition 2.3.5. Let Y (t) be a geodesic on the Stiefel manifold emanating from Y in

the direction of ξ ∈ TY St(p, n). Then, Y (t) is expressed as

Y (t) =

(
Y ξ

)
exp

⎛
⎜⎜⎜⎝t

⎛
⎜⎜⎜⎝

Y T ξ −ξT ξ

Ip Y T ξ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ exp(−Y T ξt), (2.3.18)

where exp denotes the matrix exponential.

Proof. Let Y1(t) denote the right-hand side of (2.3.18). Differentiating Y1(t) with respect

to t, we obtain

Ẏ1(t) =

(
Y ξ

)
exp

⎛
⎜⎜⎜⎝t

⎛
⎜⎜⎜⎝

Y T ξ −ξT ξ

Ip Y T ξ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0

Ip

⎞
⎟⎟⎟⎠ exp(−Y T ξt) (2.3.19)
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and

Ÿ1(t) =

(
Y ξ

)
exp

⎛
⎜⎜⎜⎝t

⎛
⎜⎜⎜⎝

Y T ξ −ξT ξ

Ip Y T ξ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
−ξT ξ

0

⎞
⎟⎟⎟⎠ exp(−Y T ξt). (2.3.20)

Then, a straightforward calculation shows that Y1(t) satisfies the geodesic equation (2.3.14).

As for initial values of Y1(t) and Ẏ1(t), it is obvious that Y1(0) = Y and Ẏ1(0) = ξ. Thus,

the theorem on existence and uniqueness of solutions to ordinary differential equations

ensures that Y (t) = Y1(t). This completes the proof.

2.3.3 Retractions

As was discussed in Subsection 2.2.1, the notion of a retraction provides a way to determine

a next iterate with a given search direction. A typical example of a retraction is the

exponential map. From Prop. 2.3.5, we can put the exponential map on the Stiefel manifold

in the form

ExpY (ξ) =

(
Y ξ

)
exp

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

Y T ξ −ξT ξ

Ip Y T ξ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ exp(−Y T ξ), ξ ∈ TY St(p, n).

(2.3.21)

We call the map R : TSt(p, n) → St(p, n), determined by RY = ExpY , the exponential

retraction.

There is another retraction on the Stiefel manifold, which is based on the QR decom-

position. By means of the map qf, we give the retraction based on the QR decomposition

as follows:

Proposition 2.3.6. Let RY be the map of TY St(p, n) to St(p, n) defined by

RY (ξ) = qf(Y + ξ), ξ ∈ TY St(p, n), (2.3.22)

Then, the collection of RY for all Y ∈ St(p, n) forms a retraction R : TSt(p, n) → St(p, n).

Proof. It is clear that RY (ξ) ∈ St(p, n) from the definition of qf. The remaining task is

to show that the RY given by (2.3.22) satisfies the two conditions imposed in Definition

2.2.1. The first condition in Definition 2.2.1 is easy to verify; RY (0) = qf(Y ) = Y . In the

same manner as in (2.3.8), the second condition in Definition 2.2.1 is also confirmed. This

completes the proof.

We call the R defined through (2.3.22) the QR-based retraction.

33



2.3.4 Vector transport

There are several choices of vector transports on the Stiefel manifold St(p, n). We here

introduce two vector transports T R and T P defined by (2.2.10) and (2.2.12) with M =

St(p, n), respectively.

Proposition 2.3.7. Let R be the QR retraction defined through (2.3.22) on the Stiefel

manifold St(p, n). We denote RY (η) by Q for short. Then, the corresponding vector trans-

port T R as the differentiated retraction and the vector transport T P defined by (2.2.12) are

written out as

T R
η (ξ) = Qρskew

(
QT ξ

(
QT (Y + η)

)−1
)

+
(
In − QQT

)
ξ
(
QT (Y + η)

)−1
, (2.3.23)

and

T P
η (ξ) = (In − QQT )ξ + Q skew(QT ξ), (2.3.24)

respectively.

Proof. The proof is straightforward. Both (2.3.23) and (2.3.24) are verified immediately

by using the formulas (2.3.4) and (2.3.11), respectively.
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Chapter 3

A New, Globally Convergent

Riemannian Conjugate Gradient

Method

3.1 Introduction

The conjugate gradient method was first developed by Hestenes and Stiefel as a tool for

solving the linear equation Ax = b, where A is an n × n positive definite matrix [HS52].

The strategy of the linear conjugate gradient method is to minimize the quadratic function

xT Ax/2−bT x of x in the successive search directions which are generated in such a manner

that those directions are mutually conjugate with respect to A and eventually span the

whole R
n. As this method is generalized to be applicable to functions which are not

restricted to those quadratic in x, the conjugate gradient method in its original form is

particularly called the linear conjugate gradient method.

According to a nonlinear conjugate gradient method for minimizing a smooth function

f which is not necessarily quadratic, the search direction ηk is determined by

ηk = − grad f(xk) + βkηk−1, (3.1.1)

where βk is a parameter to be defined suitably. Fletcher and Reeves [FR64] proposed to

define βk by βk := ‖grad f(xk)‖2/‖grad f(xk−1)‖2 (see [NW06] for another way to determine

βk).

On the other hand, iterative optimization methods on R
n have been developed so as

to be applicable on Riemannian manifolds [AMS08, EAS98]. Riemannian optimization

methods provide procedures for minimizing objective functions defined on a Riemannian

manifold M . In a Riemannian optimization method, the usual line search should be re-

placed [AMS08], as the concept of a line is generalized on a Riemannian manifold. Absil,

Mahony, and Sepulchre proposed to use a retraction map to perform a search on a curve
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on M in place of the line search. As for the conjugate gradient method, Smith provided

in [Smi94] a conjugate gradient method on M along with other optimization algorithms

on M . The difficulty we encounter in generalizing the conjugate gradient method to that

on a manifold is that Eq. (3.1.1) makes no longer sense. This is because grad f(xk) and

ηk−1 belong to tangent spaces at different points on M in general, so that they cannot be

added. Smith proposed to use the parallel translation along the geodesic at each iteration

in order to make possible the addition of two tangent vectors and thereby to extend the

iteration procedure (3.1.1). However, using the parallel translation on M is not compu-

tationally effective in general. A way to perform the conjugate gradient method on M in

an efficient manner is to use a vector transport [AMS08]. The global convergence in the

conjugate gradient method with a vector transport on M has been recently discussed by

Ring and Wirth [RW12]. They proved the global convergence under the condition that the

vector transport in use does not increase the norm of the search direction vector. To the

contrary, the present chapter provides numerical evidence to show that if the assumption

is not satisfied, the conjugate gradient method with a general vector transport may fail

to generate a globally converging series. In order to relax the assumption in [RW12], the

notion of a “scaled” vector transport is introduced in this chapter and a new conjugate

gradient algorithm is proposed with only a mild computational overhead per iteration.

The organization of this chapter is as follows: The scaled vector transport is introduced

in Section 3.2 after a brief review of some useful existing concepts. How to compute the

step size is also discussed in this section. In Section 3.3, a brief review is made of the

conjugate gradient method on a Riemannian manifold M , and then a new algorithm is

proposed, in which the scaled vector transport is applied only if the vector transport

increases the norm of the previous search direction. In Section 3.4, the global convergence

for the proposed algorithm is proved in a manner similar to the usual one performed

on R
n, where the scaled vector transport used on a fitting occasion makes a generated

sequence into a globally convergent one. Section 3.5 provides numerical experiments on

simple problems which the existing algorithm cannot solve efficiently but the proposed

algorithm can do. The numerical experiments show why the present algorithm can generate

convergent sequences. Section 3.6 includes concluding remarks. It is shown in Appendix

3.7 that the Lipschitzian condition referred to in Subsection 3.4.1 is satisfied for some

practical Riemannian optimization problems.

3.2 Setup for Riemannian optimization

3.2.1 Vector transport and scaled vector transport

In a (nonlinear) conjugate gradient method on the Euclidean space R
n, the search directions

ηk are chosen to be

ηk = − grad f(xk) + βkηk−1, k ≥ 0, (3.2.1)
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where β0 = 0, and where βk with k ≥ 1 are determined in several possible manners. For

example, βk are determined by

βFR
k =

grad f(xk)
T grad f(xk)

grad f(xk−1)T grad f(xk−1)
, (3.2.2)

or

βPR
k =

grad f(xk)
T (grad f(xk) − grad f(xk−1))

grad f(xk−1)T grad f(xk−1)
, (3.2.3)

where FR and PR are abbreviations of Fletcher-Reeves and Polak-Ribière, respectively

[NW06].

However, if R
n is replaced by a Riemannian manifold M , grad f(xk) ∈ Txk

M and ηk−1 ∈
Txk−1

M belong to different tangent spaces, so that − grad f(xk) + βkηk−1 in Eq. (3.2.1)

does not make sense. The quantity grad f(xk) − grad f(xk−1) in Eq. (3.2.3) makes no

sense on M either. In order to modify the vector addition in Eqs. (3.2.1) and (3.2.3)

into a suitable operation on M , Smith proposed to use the parallel translation of tangent

vectors along a geodesic [Smi94]. However, no computationally efficient formula is known

for the parallel translation along a geodesic even for the Stiefel manifold except when it

reduces to the sphere or the orthogonal group. Absil et al. [AMS08] proposed the notion

of a vector transport as an alternative to the parallel translation. The vector transport

is a generalization of the parallel translation and can enhance computational efficiency of

algorithms, if defined suitably.

In this chapter, we focus on the differentiated retraction T R as a vector transport,

which is defined to be

T R
ηx

(ξx) := DRx(ηx)[ξx], ηx, ξx ∈ TxM, (3.2.4)

where R is a retraction on M . We here note that T R satisfies the conditions in the definition

of a vector transport, as is easily verified [AMS08].

In what follows, we assume that M is a Riemannian manifold and denote the Rie-

mannian metric evaluated at x ∈ M by 〈·, ·〉x. The norm of a tangent vector ξx ∈ TxM

evaluated at x ∈ M is defined to be ‖ξx‖x =
√
〈ξx, ξx〉. We here have to note that though

the parallel translation is an isometry, a vector transport is not required to preserve the

norm of vectors in general. The differentiated retraction T R is not always an isometry

either. In analyzing the convergence for the conjugate gradient method later, it will be

crucial whether the vector transport T R increases the norm of vectors or not. In order to

prevent the vector transport T R from increasing the norm of vectors, we define the scaled

vector transport T 0 : TM ⊕ TM → TM associated with T R as follows:

Definition 3.2.1. Let R be a retraction on a Riemannian manifold M . Let T R be a vector

transport defined by (3.2.4) with respect to R. The scaled vector transport T 0 associated
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with T R is defined as

T 0
ηx

(ξx) =
‖ξx‖x

‖T R
ηx

(ξx)‖Rx(ηx)

T R
ηx

(ξx), ηx, ξx ∈ TxM. (3.2.5)

The scaled vector transport T 0 thus defined is no longer a vector transport since it is

not linear. However, T 0 satisfies

‖T 0
ηx

(ξx)‖Rx(ηx) = ‖ξx‖x, ηx, ξx ∈ TxM, (3.2.6)

which is a key property for the global convergence of the algorithm we will propose.

3.2.2 Strong Wolfe conditions

In computing the step size αk in the conjugate gradient method on R
n, the strong Wolfe

conditions are often used [NW06], which require αk to satisfy

f(xk + αkηk) ≤ f(xk) + c1αk grad f(xk)
T ηk, (3.2.7)

|grad f (xk + αkηk)
T ηk| ≤ c2|grad f(xk)

T ηk|, (3.2.8)

with 0 < c1 < c2 < 1. In particular, c1 and c2 are often taken so as to satisfy 0 < c1 < c2 <

1/2 in the conjugate gradient method. In order to extend the strong Wolfe conditions on

R
n to those on M , we start by reviewing the strong Wolfe conditions (3.2.7) and (3.2.8).

For a current point xk and a search direction ηk, one performs a line search for the function

defined by

φ(α) = f(xk + αηk), α > 0. (3.2.9)

Requiring αk to give a sufficient decrease in the value of f , one imposes the condition

φ(αk) ≤ φ(0) + c1αkφ
′(0), (3.2.10)

which yields (3.2.7). In order to prevent αk from being excessively short, the αk is required

to satisfy

|φ′(αk)| ≤ c2|φ′(0)|, (3.2.11)

which implies (3.2.8).

In order to generalize the strong Wolfe conditions to those on M , we define a function

φ on M , in an analogous manner to (3.2.9), to be

φ(α) = f (Rxk
(αηk)) , α > 0, (3.2.12)

where R is a retraction on M . The conditions (3.2.10) and (3.2.11) applied to (3.2.12) give
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rise to

f (Rxk
(αkηk)) ≤ f(xk) + c1αk〈grad f(xk), ηk〉xk

, (3.2.13)

|〈grad f (Rxk
(αkηk)) , DRxk

(αkηk) [ηk]〉Rxk
(αkηk)| ≤ c2|〈grad f(xk), ηk〉xk

|, (3.2.14)

respectively, where 0 < c1 < c2 < 1. We call the conditions (3.2.13) and (3.2.14) the

strong Wolfe conditions. The existence of a step size satisfying (3.2.13) and (3.2.14) can

be shown by an almost verbatim repetition of that for the strong Wolfe conditions on R
n

(see [NW06]).

Proposition 3.2.1. Let M be a Riemannian manifold with a retraction R. If a smooth

objective function f on M is bounded below on {Rxk
(αηk)|α > 0} for xk ∈ M and for a

descent direction ηk ∈ Txk
M , and if constants c1 and c2 satisfy 0 < c1 < c2 < 1, then there

exists a step size αk which satisfies the strong Wolfe conditions (3.2.13) and (3.2.14).

We note that the strong Wolfe conditions (3.2.13) and (3.2.14) together with the existence

of a step size satisfying them are also discussed in [RW12].

We now look into the second condition (3.2.14). If we introduce a vector transport T R

as the differentiated retraction given by (3.2.4), then Eq. (3.2.14) can be expressed as

|〈grad f (Rxk
(αkηk)) , T R

αkηk
(ηk)〉Rxk

(αkηk)| ≤ c2|〈grad f(xk), ηk〉xk
|. (3.2.15)

An idea for further generalization of this condition to that in an algorithm with a general

vector transport T is to replace (3.2.15) by

|〈grad f (Rxk
(αkηk)) , Tαkηk

(ηk)〉Rxk
(αkηk)| ≤ c2|〈grad f(xk), ηk〉xk

|. (3.2.16)

However, if T �= T R, the existence of a step size satisfying both (3.2.13) and (3.2.16) is

unclear in general. In view of this, the differentiated retraction T R is considered to be a

natural choice of a vector transport T , for which a step size satisfying (3.2.13) and (3.2.16)

is shown to exist. In what follows, we use the differentiated retraction T R and the scaled

one T 0.

3.3 A new conjugate gradient method on a Rieman-

nian manifold

If a Riemannian manifold M is given a retraction R and the corresponding vector transport

T R, a standard Fletcher-Reeves type conjugate gradient method on M is described as

follows [AMS08,RW12]:
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Algorithm 3.3.1 A standard Fletcher-Reeves type conjugate gradient method for Problem
2.2.1 on a Riemannian manifold M
1: Choose an initial point x0 ∈ M .
2: Set η0 = − grad f(x0).
3: for k = 0, 1, 2, . . . do
4: Compute the step size αk > 0 satisfying the strong Wolfe conditions (3.2.13) and

(3.2.14) with 0 < c1 < c2 < 1/2. Set

xk+1 = Rxk
(αkηk) , (3.3.1)

where R is a retraction on M .
5: Set

βk+1 =
‖grad f(xk+1)‖2

xk+1

‖grad f(xk)‖2
xk

, (3.3.2)

ηk+1 = − grad f(xk+1) + βk+1T R
αkηk

(ηk), (3.3.3)

where T R is the differentiated retraction defined by (3.2.4).
6: end for

In [RW12], the convergence property of Algorithm 3.3.1 is verified under the assumption

that the inequality

‖T R
αkηk

(ηk)‖xk+1
≤ ‖ηk‖xk

(3.3.4)

holds for all k ∈ N. However, the assumption does not always hold in general. For

example, the assumption does not hold on the sphere endowed with the orthographic

retraction [AM12]. In Section 3.5, we will numerically treat such a case.

We wish to relax the assumption (3.3.4) by using a scaled vector transport. An idea

for improving Algorithm 3.3.1 is to replace T R by the scaled vector transport T 0 defined

by (3.2.5). However, this causes difficulty in computing effectively a step size αk satisfying

(3.2.16) with T = T 0.

A simple but effective idea for improving Algorithm 3.3.1 is that each step size is always

computed so as to satisfy the strong Wolfe conditions (3.2.13) and (3.2.14), but the scaled

vector transport T 0 is adopted if it is necessary for the purpose of convergence. More

specifically, we use the scaled vector transport T 0 only if the vector transport T R increases

the norm of the previous search direction vector, that is, we introduce T (k) defined by

T (k)
αkηk

(ηk) =

{
T R

αkηk
(ηk), if ‖T R

αkηk
(ηk)‖xk+1

≤ ‖ηk‖xk
,

T 0
αkηk

(ηk), otherwise,
(3.3.5)

as a substitute for T R in Step 5 of Algorithm 3.3.1. This idea is realized in the following

algorithm.
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Algorithm 3.3.2 A scaled Fletcher-Reeves type conjugate gradient method for Problem
2.2.1 on a Riemannian manifold M
1: Choose an initial point x0 ∈ M .
2: Set η0 = − grad f(x0).
3: for k = 0, 1, 2, . . . do
4: Compute the step size αk > 0 satisfying the strong Wolfe conditions (3.2.13) and

(3.2.14) with 0 < c1 < c2 < 1/2. Set

xk+1 = Rxk
(αkηk) , (3.3.6)

where R is a retraction on M .
5: Set

βk+1 =
‖grad f(xk+1)‖2

xk+1

‖grad f(xk)‖2
xk

, (3.3.7)

ηk+1 = − grad f(xk+1) + βk+1T (k)
αkηk

(ηk), (3.3.8)

where T (k) is defined by (3.3.5), and where T R and T 0 are the differentiated re-
traction and the associated scaled vector transport defined by (3.2.4) and (3.2.5),
respectively.

6: end for

We will prove in Section 3.4 the global convergence property of the proposed algorithm,

and give in Section 3.5 numerical examples in which the inequality (3.3.4) does not hold

for all k ∈ N but our Algorithm 3.3.2 indeed has an advantage in generating convergent

sequences.

3.4 Convergence analysis of the new algorithm

In this section, we verify the convergence property of Algorithm 3.3.2.

3.4.1 Zoutendijk’s theorem

Zoutendijk’s theorem about a series associated with search directions on R
n is not only valid

for the conjugate gradient method but also valid for general descent algorithms [NW06].

This theorem can be generalized so as to be applicable to a general descent algorithm

(Algorithm 2.2.1) on a Riemannian manifold M . In the same manner as in R
n, we define on

a Riemannian manifold M the angle θk between the steepest descent direction − grad f(xk)

and the search direction ηk through

cos θk = − 〈grad f(xk), ηk〉xk

‖grad f(xk)‖xk
‖ηk‖xk

. (3.4.1)
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Then, Zoutendijk’s theorem on M is stated as follows:

Theorem 3.4.1. Suppose that in Algorithm 2.2.1 on a Riemannian manifold M , a descent

direction ηk and a step size αk satisfy the strong Wolfe conditions (3.2.13) and (3.2.14). If

the objective function f is bounded below and of C1-class, and if there exists a Lipschitzian

constant L > 0 such that

|D(f ◦ Rx)(tη)[η] − D(f ◦ Rx)(0)[η]| ≤ Lt, η ∈ TxM with ‖η‖x = 1, x ∈ M, t ≥ 0,

(3.4.2)

then the following series converges;

∞∑
k=0

cos2 θk‖grad f(xk)‖2
xk

< ∞. (3.4.3)

The proof of this theorem can be performed in the same manner as that for Zoutendijk’s

theorem on R
n. See [RW12] for more detail.

Remark 3.4.1. We remark that the inequality (3.4.2) is a weaker condition than the Lip-

schitz continuous differentiability of f ◦Rx. We will show in Appendix 3.7 that Eq. (3.4.2)

holds for objective functions in practical Riemannian optimization problems. A further

discussion on the relation with the standard Lipschitz continuous differentiability will be

also made in the same appendix.

3.4.2 Global convergence

We first extend a lemma in [AB85] so as to be applicable to Algorithm 3.3.2 as follows:

Lemma 3.4.1. The search direction ηk determined in Algorithm 3.3.2 is a descent direc-

tion satisfying

− 1

1 − c2

≤ 〈grad f(xk), ηk〉xk

‖grad f(xk)‖2
xk

≤ 2c2 − 1

1 − c2

. (3.4.4)

Proof. The proof runs by induction. For k = 0, the inequality (3.4.4) clearly holds on

account of
〈grad f(x0), η0〉x0

‖grad f(x0)‖2
x0

=
〈grad f(x0),− grad f(x0)〉x0

‖grad f(x0)‖2
x0

= −1. (3.4.5)

We here note that 0 < c1 < c2 < 1/2. Suppose that ηk is a descent direction satisfying

(3.4.4) for some k. Note that on account of Eq. (3.3.8) with Eq. (3.3.5), T R and T (k) are

related by ‖T (k)
αkηk(ηk)‖xk+1

≤ ‖T R
αkηk

(ηk)‖xk+1
in each case. Since T (k)

αkηk(ηk) and T R
αkηk

(ηk)

are in the same direction with the inequality ‖T (k)
αkηk(ηk)‖xk+1

≤ ‖T R
αkηk

(ηk)‖xk+1
in norm,

we have

|〈grad f(xk+1), T (k)
αkηk

(ηk)〉xk+1
| ≤ |〈grad f(xk+1), T R

αkηk
(ηk)〉xk+1

|. (3.4.6)
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We also note that the vector transport T R is defined to be T R
ηx

(ξx) = DRx(ηx)[ξx] in the

algorithm. It then follows from (3.2.14) and (3.4.6) that

c2〈grad f(xk), ηk〉xk
≤ 〈grad f(xk+1), T (k)

αkηk
(ηk)〉xk+1

≤ −c2〈grad f(xk), ηk〉xk
, (3.4.7)

where it is to be noted that ηk is in a descent direction. The middle term in (3.4.4) with

k + 1 for k is computed as

〈grad f(xk+1), ηk+1〉xk+1

‖grad f(xk+1)‖2
xk+1

=
〈grad f(xk+1),− grad f(xk+1) + βk+1T (k)

αkηk(ηk)〉xk+1

‖grad f(xk+1)‖2
xk+1

= − 1 +
〈grad f(xk+1), T (k)

αkηk(ηk)〉xk+1

‖grad f(xk)‖2
xk

, (3.4.8)

where the definition (3.3.7) of βk+1 has been used. Therefore, we obtain from (3.4.7) and

(3.4.8)

−1 + c2
〈grad f(xk), ηk〉xk

‖grad f(xk)‖2
xk

≤ 〈grad f(xk+1), ηk+1〉xk+1

‖grad f(xk+1)‖2
xk+1

≤ −1− c2
〈grad f(xk), ηk〉xk

‖grad f(xk)‖2
xk

. (3.4.9)

The inequality (3.4.4) for k + 1 immediately follows from the induction hypothesis.

We proceed to the global convergence property of Algorithm 3.3.2. The convergence

of the conjugate gradient method has been already proved on R
n by Al-Baali [AB85].

Exploiting the idea of the proof used in [AB85], we show that Algorithm 3.3.2 generates

converging sequences on a Riemannian manifold.

Theorem 3.4.2. Consider Algorithm 3.3.2. Suppose that f is bounded below and of C1-

class. If (3.4.2) and hence (3.4.3) hold, then

lim inf
k→∞

‖grad f(xk)‖xk
= 0. (3.4.10)

Proof. If grad f(xk) = 0 for some k, let k0 be the smallest integer among such k. Then, we

have βk0 = 0 and ηk0 = 0 from (3.3.7) and (3.3.8) with k0 = k + 1, so that xk0+1 =

Rxk0
(αk0ηk0) = Rxk0

(0) = xk0 . It then follows that grad f(xk) = 0 for all k ≥ k0.

Eq. (3.4.10) clearly holds in such a case.

We shall consider the case in which grad f(xk) �= 0 for all k and prove (3.4.10) by

contradiction. Assume that (3.4.10) does not hold, that is, there exists a constant γ > 0

such that

‖grad f(xk)‖xk
≥ γ > 0, ∀k ≥ 0. (3.4.11)

Now from (3.4.1) and (3.4.4), we obtain

cos θk ≥ 1 − 2c2

1 − c2

‖grad f(xk)‖xk

‖ηk‖xk

. (3.4.12)
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On account of Thm. 3.4.1, Eqs. (3.4.3) and (3.4.12) are put together to provide

∞∑
k=0

‖grad f(xk)‖4
xk

‖ηk‖2
xk

< ∞. (3.4.13)

On the other hand, Eqs. (3.4.6), (3.4.4), and the strong Wolfe condition (3.2.14) are put

together to give

|〈grad f(xk), T (k−1)
αk−1ηk−1

(ηk−1)〉xk
| ≤|〈grad f(xk), T R

αk−1ηk−1
(ηk−1)〉xk

|
≤ − c2〈grad f(xk−1), ηk−1〉xk−1

≤ c2

1 − c2

‖grad f(xk−1)‖2
xk−1

. (3.4.14)

Using this inequality and the definition of βk, we obtain the recurrence inequality for ‖ηk‖2
xk

as follows:

‖ηk‖2
xk

=‖− grad f(xk) + βkT (k−1)
αk−1ηk−1

(ηk−1)‖2
xk

≤‖grad f(xk)‖2
xk

+ 2βk|〈grad f(xk), T (k−1)
αk−1ηk−1

(ηk−1)〉xk
| + β2

k‖T (k−1)
αk−1ηk−1

(ηk−1)‖2
xk

≤‖grad f(xk)‖2
xk

+
2c2

1 − c2

βk‖grad f(xk−1)‖2
xk−1

+ β2
k‖ηk−1‖2

xk−1

=c‖grad f(xk)‖2
xk

+ β2
k‖ηk−1‖2

xk−1
, (3.4.15)

where we have used the fact that ‖T (k−1)
αk−1ηk−1(ηk−1)‖xk

≤ ‖ηk−1‖xk−1
and put

c := (1+ c2)/(1− c2) > 1. The successive use of this inequality together with the definition

of βk results in

‖ηk‖2
xk

≤c
(
‖grad f(xk)‖2

xk
+ β2

k‖grad f(xk−1)‖2
xk−1

+ · · · + β2
kβ

2
k−1 · · · β2

2‖grad f(x1)‖2
x1

)
+ β2

kβ
2
k−1 · · · β2

1‖η0‖2
x0

=c‖grad f(xk)‖4
xk

(
‖grad f(xk)‖−2

xk
+ ‖grad f(xk−1)‖−2

xk−1
+ · · · + ‖grad f(x1)‖−2

x1

)
+ ‖grad f(xk)‖4

xk
‖grad f(x0)‖−2

x0

<c‖grad f(xk)‖4
xk

k∑
j=0

‖grad f(xj)‖−2
xj

≤ c

γ2
‖grad f(xk)‖4

xk
(k + 1), (3.4.16)

where use has been made of (3.4.11) in the last inequality. The inequality (3.4.16) gives
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rise to ∞∑
k=0

‖grad f(xk)‖4
xk

‖ηk‖2
xk

≥
∞∑

k=0

γ2

c

1

k + 1
= ∞. (3.4.17)

This contradicts (3.4.13) and the proof is completed.

3.5 Numerical experiments

In this section, we compare Algorithm 3.3.2 with Algorithm 3.3.1 by numerical experiments.

As is shown in [RW12], if the vector transport T R as the differentiated retraction satisfies

the inequality (3.3.4), the convergence property of Algorithm 3.3.1 is proved. However,

if (3.3.4) does not hold, it is not always ensured that sequences generated by Algorithm

3.3.1 converge. In contrast with this, Algorithm 3.3.2 indeed works well even if (3.3.4) fails

to hold, as is verified in Thm. 3.4.2. In the following, we give two examples which show

that Algorithm 3.3.2 works better than Algorithm 3.3.1. One of the examples is somewhat

artificial but well illustrates the situation in which a sequence generated by Algorithm 3.3.1

is unlikely to converge. The other is a more natural example encountered in a practical

problem.

In both of two examples, we consider the following Rayleigh quotient minimization

problem on the sphere Sn−1 :=
{
x ∈ R

n |xT x = 1
}

[AMS08,HM94]:

Problem 3.5.1.

minimize f(x) = xT Ax, (3.5.1)

subject to x ∈ Sn−1, (3.5.2)

where A := diag(λ1, λ2, . . . , λn) with λ1 < λ2 < · · · < λn. The optimal solutions of this

problem are ±(1, 0, 0, . . . , 0)T , which are the unit eigenvectors of A associated with the

smallest eigenvalue λ1.

3.5.1 A sphere endowed with a peculiar metric

Consider Problem 3.5.1 with n = 20 and A = diag(1, 2, . . . , 20). A Riemannian metric

g(·, ·) on Sn−1 is here defined by

gx(ξx, ηx) := ξT
x Gxηx, ξx, ηx ∈ TxS

n−1, (3.5.3)

where Gx := diag(10000(x(1))2 + 1, 1, 1, . . . , 1), and where x(1) denotes the first component

of the column vector x. It is to be noted that this metric is not the standard one on Sn−1.

The norm ‖ξx‖x of ξx ∈ TxS
n−1 is then defined to be ‖ξx‖x =

√
gx(ξx, ξx). If x is close

to the optimal solutions ±(1, 0, 0, . . . , 0), then (x(1))2 is nearly 1. Since the first diagonal
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element of Gx is large because of the coefficient 10000, the closer x is to ±(1, 0, 0, . . . , 0),

the larger the norm ‖ξx‖x tends to be.

With respect to the metric (3.5.3), the gradient of f is described as

grad f(x) = 2

(
I − G−1

x xxT

xT G−1
x x

)
G−1

x Ax. (3.5.4)

Indeed, the right-hand side of (3.5.4) belongs to TxS
n−1 =

{
ξ ∈ R

n |xT ξ = 0
}

and it holds

that

gx

(
2

(
I − G−1

x xxT

xT G−1
x x

)
G−1

x Ax, ξ

)
= 2xT Aξ = Df(x)[ξ] (3.5.5)

for any ξ ∈ TxS
n−1. Let R be the retraction on Sn−1 defined by

Rx(ξ) =
x + ξ√

(x + ξ)T (x + ξ)
, ξ ∈ TxS

n−1, x ∈ Sn−1, (3.5.6)

which is the special case of the QR retraction (3.7.5) on the Stiefel manifold defined in

Appendix 3.7. For this R, the differentiated retraction T R defined by (3.2.4) is written out

as

T R
η (ξ) =

1√
(x + η)T (x + η)

(
I − (x + η)(x + η)T

(x + η)T (x + η)

)
ξ, η, ξ ∈ TxS

n−1, x ∈ Sn−1.

(3.5.7)

We note that though the metric endowed with is not the standard one, the Lips-

chitzian condition (3.4.2) holds, as is mentioned in Rem. 3.7.2 in Appendix 3.7. Hence

from Thm. 3.4.2, Algorithm 3.3.2 works well in theory.

Figs. 3.5.1, 3.5.2, and 3.5.3 show numerical results from applying Algorithm 3.3.1 to

Problem 3.5.1 with the initial point x0 = (1, 1, . . . , 1)T /2
√

5 ∈ Sn−1 with n = 20. The

vertical axes of Figs. 3.5.1, 3.5.2, and 3.5.3 carry values of f(xk) at xk, values of the first

components x
(1)
k of xk, and values of the ratios ‖T R

αkηk
(ηk)‖xk+1

/‖ηk‖xk
, respectively. Note

that for the optimal solution x∗ = (1, 0, 0, . . . , 0)T ∈ Sn−1 which the current generated se-

quence {xk} is expected to approach, the target value is f(x∗) = x
(1)
∗ = 1 in both Figs. 3.5.1

and 3.5.2. Though the {xk} seems to come close to x∗ bit by bit, the convergence is not

observed even after 105 iterations. At the iteration number 105, f(xk) is far from f(x∗) = 1,

as is seen from Fig. 3.5.1. Fig. 3.5.2 shows that the sequence is intermittently repelled from

the target point, when approaching it. If more iterations, say 107, are performed, the graph

of {x(1)
k } has almost the same shape, that is, sharp peaks repeatedly appear in Fig. 3.5.2

with extended iterations. If ‖T R
αkηk

(ηk)‖xk+1
/‖ηk‖xk

≤ 1 for all k ∈ N, the sequence {xk}
would converge. However, as is shown in Fig. 3.5.3, the ratio ‖T R

αkηk
(ηk)‖xk+1

/‖ηk‖xk
inter-

mittently exceeds the value 1. This fact seems to prevent the sequence from converging, as

long as numerical experiments suggest. To gain insight into the non-convergence problem,

we put Figs. 3.5.2 and 3.5.3 together into Fig. 3.5.4, which shows that the peaks of two
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Figure 3.5.1: The sequence of the values f(xk) of the objective function f evaluated on
the sequence {xk} generated by Algorithm 3.3.1.
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Figure 3.5.2: The sequence of the first components x
(1)
k from the sequence {xk} generated

by Algorithm 3.3.1.
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Figure 3.5.3: Ratios ‖T R
αkηk

(ηk)‖xk+1
/‖ηk‖xk

evaluated on the sequences {xk} and {ηk}
generated by Algorithm 3.3.1.

graphs synchronize. This suggests that the violation of the inequality (3.3.4) makes the

sequence fail to approach the optimal solution x∗. This phenomenon is caused by the large

first diagonal element of Gx in the neighborhood of x∗.
In contrast with this, in Algorithm 3.3.2, the vector transport T R is scaled if necessary,

and thereby generated sequences converge to solve Problem 3.5.1. In comparison with

Fig. 3.5.2, Fig. 3.5.5 shows that the present algorithm generates a converging sequence,

resolving the difficulty of being repelled from the optimal solution. We here note that the

inequality ‖T (k)
αkηk(ηk)‖xk+1

≤ ‖ηk‖xk
is never violated in this algorithm.

We now investigate the performance of Algorithm 3.3.2 in more detail with interest in

comparison with a restart strategy in the conjugate gradient method. As is well known, in a

nonlinear conjugate gradient method on the Euclidean space, the iteration is often restarted

at every N steps by taking a steepest descent search direction, where N is usually chosen to

be the dimension of the search space in the problem. To gain a sight of the performance of

the restart method on a Riemannian manifold, we introduce a similar restart strategy into

Algorithms 3.3.1 and 3.3.2, that is, we set βk+1 = 0 in Step 5 of each algorithm at every N

steps. A choice for N is 19, which is the dimension of Sn−1 with n = 20. For comparison,

the both algorithms with restarts are also performed for N = 50 and N = 100. The

results from Algorithm 3.3.2 with and without restart are shown in Fig. 3.5.6. The vertical

axis of Fig. 3.5.6 carries
√

(xk − x∗)T (xk − x∗), which is an approximation of the distance

between xk and x∗ on Sn−1. We can observe from the graphs in Fig. 3.5.6 that Algorithm

3.3.2 with and without restart has a superlinear convergence property. Fig. 3.5.6 shows

further that Algorithm 3.3.2 without restart exhibits better performance than Algorithm
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Figure 3.5.4: x
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by Algorithm 3.3.1.
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Figure 3.5.5: The sequence of the first components x
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k from the sequence {xk} generated

by Algorithm 3.3.2.
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Figure 3.5.6: The sequences of the distances between xk and x∗ with respect to the se-
quences {xk} generated by Algorithm 3.3.2 with several restarting strategies.

3.3.2 with a few variants of restarts, which means that the restart strategy fails to improve

the performance of Algorithm 3.3.2.

On the contrary, the restart strategy improves the performance of Algorithm 3.3.1, but

the resultant performance is not comparable to Algorithm 3.3.2 without restart yet. A

numerical evidence is shown in Fig. 3.5.7.

3.5.2 The sphere endowed with the orthographic retraction

We give a more natural example, in which the inequality (3.3.4) is never satisfied. Consider

Problem 3.5.1 with n = 100 and A = diag(1, 2, . . . , 100)/100. The difference from the

example in Subsection 3.5.1 is the choice of a Riemannian metric and a retraction. We in

turn endow the sphere Sn−1 with the induced metric 〈·, ·〉 from the natural inner product

on R
n:

〈ξx, ηx〉x := ξT
x ηx, ξx, ηx ∈ TxS

n−1. (3.5.8)

The norm of ξx ∈ TxS
n−1 is then defined to be ‖ξx‖x =

√
ξT
x ξx as usual. With the natural

metric 〈·, ·〉, the gradient of f is written out as

grad f(x) = 2(I − xxT )Ax. (3.5.9)

We consider the orthographic retraction R on Sn−1 [AM12], which is defined to be

Rx(ξ) =
√

1 − ξT ξ x + ξ, ξ ∈ TxS
n−1 with ‖ξ‖x < 1. (3.5.10)
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Figure 3.5.7: The sequences of the distances between xk and x∗ with respect to the se-
quences {xk} generated by Algorithm 3.3.2 and Algorithm 3.3.1 with several restarting
strategies.

Associated with this R, the vector transport T R is written out as

T R
η (ξ) = ξ − ηT ξ√

1 − ηT η
x, η, ξ ∈ TxS

n−1 with ‖η‖x, ‖ξ‖x < 1, x ∈ Sn−1. (3.5.11)

For this T R, the norm ‖T R
η (ξ)‖Rx(η) is evaluated as

‖T R
η (ξ)‖2

Rx(η) = ‖ξ‖2
x +

(ηT ξ)2

1 − ‖η‖2
x

≥ ‖ξ‖2
x, (3.5.12)

where use has been made of xT x = 1 and xT ξ = 0. Thus, the inequality (3.3.4), which

is the key condition for the proof of the global convergence property of Algorithm 3.3.1,

is violated unless ηk = 0. In spite of this fact, we may try to perform Algorithm 3.3.1

for this problem. If the generated sequence does not diverge, we can compare the result

with that obtained by Algorithm 3.3.2. We performed Algorithms 3.3.1 and 3.3.2 and

obtained Fig. 3.5.8, whose vertical axis carries
√

(xk − x∗)T (xk − x∗). The figure shows

the superiority of the proposed algorithm.
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Figure 3.5.8: The sequences of distances between xk and x∗ for the sequences {xk} gener-
ated by Algorithms 3.3.1 and 3.3.2 with the orthographic retraction.

3.6 Summary

We have dealt with the global convergence of the conjugate gradient method with the

Fletcher-Reeves β. Though the conjugate gradient method generates globally converg-

ing sequences in the Euclidean space, the conjugate gradient method on a Riemannian

manifold M has not been shown to have a convergence property in general, but under

the assumption that the vector transport T R as the differentiated retraction does not in-

crease the norm of the tangent vector, the convergence is proved in [RW12]. If the parallel

translation is adopted as a vector transport, the conjugate gradient method is shown to

generate converging sequences, as is given in [Smi94]. However, the parallel translation

is not convenient for computational effectiveness. For computational efficiency, we have

introduced a vector transport, in place of the parallel translation, with a modification

that the vector transport T R is replaced by the scaled vector transport T 0 only when

T R increases the norm of the search direction vector. The idea is simple but effective.

We have achieved a balance between computational efficiency and the global convergence

by proposing Algorithm 3.3.2. We have shown the convergence of the present algorithm

both in the theoretical and the numerical viewpoints. In particular, we have performed

numerical experiments to show that the present algorithm can solve problems for which

the existing algorithm cannot work well because of the violation of the assumption about

the vector transport.
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3.7 Appendix: Examples in which the condition (3.4.2)

holds

In Thm. 3.4.1, we assume that the condition (3.4.2) holds. We here compare (3.4.2) with

the condition that f ◦ Rx is Lipschitz continuously differentiable uniformly for x, that is,

there exists a Lipschitz constant L > 0 such that

‖D(f ◦ Rx)(ξ) − D(f ◦ Rx)(ζ)‖ ≤ L‖ξ − ζ‖x, ξ, ζ ∈ TxM,x ∈ M, (3.7.1)

where the ‖·‖ of the left-hand side means the operator norm (see [RW12] for detail). The

condition (3.7.1) is equivalent to

sup
‖η‖x=1

|(D(f ◦ Rx)(ξ) − D(f ◦ Rx)(ζ))[η]| ≤ L‖ξ − ζ‖x, ξ, ζ ∈ TxM,x ∈ M. (3.7.2)

In particular, setting ζ = 0 and ξ = tη in (3.7.2) yields (3.4.2). In this sense, the condition

(3.4.2) is a weaker form of (3.7.1). The assumption (3.4.2) is of practical use. For example,

the problem of minimizing the Brockett cost function on the Stiefel manifold St(p, n) with

the natural induced metric [AMS08] has this property, as is shown below.

Let n, p be positive integers with n ≥ p. The Stiefel manifold St(p, n) is defined to be

St(p, n) :=
{
X ∈ R

n×p |XT X = Ip

}
. We consider St(p, n) as a Riemannian submanifold

of R
n×p endowed with the natural induced metric

〈ξ, η〉X := tr(ξT η), ξ, η ∈ TXSt(p, n). (3.7.3)

Let A be an n × n symmetric matrix and N := diag(μ1, μ2, . . . , μp) with 0 < μ1 < μ2 <

· · · < μp. The Brockett cost function f is defined on St(p, n) to be

f(X) = tr
(
XT AXN

)
. (3.7.4)

Further, the QR decomposition-based retraction (which we call the QR retraction) R is

defined to be

RX(ξ) := qf(X + ξ), ξ ∈ TXSt(p, n), X ∈ St(p, n), (3.7.5)

where qf(B) denotes the Q-factor of the QR decomposition of a full rank matrix B ∈ R
n×p.

That is, if B is decomposed into B = QR, where Q ∈ St(p, n) and R is an upper triangular

p × p matrix with positive diagonal elements, then qf(B) = Q.

Proposition 3.7.1. The inequality (3.4.2) holds for the Brockett cost function (3.7.4) on

M = St(p, n), where St(p, n) is endowed with the natural induced metric (3.7.3), and where

the QR retraction (3.7.5) is adopted.
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Proof. Since the function (3.7.4) is smooth, we have only to show that∣∣∣∣ d2

dt2
(f ◦ RX) (tη)

∣∣∣∣ ≤ L, η ∈ TXSt(p, n) with ‖η‖X = 1, X ∈ St(p, n), t ≥ 0. (3.7.6)

In fact, Eq. (3.4.2) is a straightforward consequence of this inequality. Let Q(t) be a

curve defined by RX(tη) = qf(X + tη), and xk, ηk, qk(t) denote the k-th column vectors of

X, η,Q(t), respectively. Then, through the Gram-Schmidt orthonormalization process, we

obtain

qk(t) =
xk + tηk −

∑k−1
i=1 (qi(t), xk + tηk)qi(t)

‖xk + tηk −
∑k−1

i=1 (qi(t), xk + tηk)qi(t)‖
, (3.7.7)

where (a, b) := aT b and ‖a‖ :=
√

(a, a) for n-dimensional vectors a, b. By induction on k,

we can take vector-valued polynomials gk(t) in t satisfying

qk(t) =
gk(t)

‖gk(t)‖
, t ≥ 0. (3.7.8)

Indeed, for k = 1, (3.7.8) holds with g1(t) = x1 + tη1. Suppose that (3.7.8) holds for

1, . . . , k − 1. Then we can write out qk(t) as

qk(t) =

∏k−1
j=1‖gj(t)‖2(xk + tηk) −

∑k−1
i=1

∏
j �=i‖gj(t)‖2(gi(t), xk + tηk)gi(t)

‖∏k−1
j=1‖gj(t)‖2(xk + tηk) −

∑k−1
i=1

∏
j �=i‖gj(t)‖2(gi(t), xk + tηk)gi(t)‖

. (3.7.9)

Denoting by gk(t) the numerator of the right-hand side of (3.7.9), which is a polynomial

in t, we obtain (3.7.8).

Let

h(X, η, t) =
d2

dt2
(f ◦ RX)(tη). (3.7.10)

Then, the h(X, η, t) is written out as

h(X, η, t) =

p∑
k=1

μk
d2

dt2
(
qk(t)

T Aqk(t)
)
. (3.7.11)

Since qk(t)
T Aqk(t) = gk(t)

T Agk(t)/‖gk(t)‖2, and since the degree of the numerator polyno-

mial in t is not more than that of the denominator polynomial, the degree of the numerator

polynomial from the right-hand side of (3.7.11) is less than that of the denominator poly-

nomial, so that one has, as t → ∞,

lim
t→∞

h(X, η, t) = 0. (3.7.12)

This implies that h(X, η, t) is bounded with respect to t ≥ 0. Moreover, the h(X, η, t) is
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continuous with respect to X and η on the compact set {(X, η) ∈ T St(p, n) | ‖η‖X = 1}.
It then turns out that h(X, η, t) is bounded on the whole domain, which implies that there

exists L > 0 such that (3.7.6) holds. This completes the proof.

Remark 3.7.1. Reviewing the proof, we observe that since the QR retraction is irrespective

of the metric with which the St(p, n) is endowed, and since the set {(X, η) ∈ T St(p, n) | ‖η‖X = 1}
is compact with respect to any metric on St(p, n), the inequality (3.4.2) with R being the QR

retraction (3.7.5) holds for the Brockett cost function (3.7.4) independently of the choice of

a metric.

Remark 3.7.2. We also note that Prop. 3.7.1 and Rem. 3.7.1 cover both the Rayleigh

quotient on the sphere Sn−1 as p = 1 and the Brockett cost function on the orthogonal

group as p = n. In particular, the inequality (3.4.2) holds for the function (3.5.1), though

the sphere Sn−1 is endowed with the non-standard metric (3.5.3).

Another example for (3.4.2) comes from the problem of maximizing the function

F (U, V ) = tr(UT AV N) (3.7.13)

on St(p,m) × St(p, n), where A is an m × n matrix and N = diag(μ1, . . . , μp) with μ1 >

· · · > μp > 0 (see Chapter 4). An optimal solution to this problem gives the singular

value decomposition of A. Let m,n, p be positive integers with m ≥ n ≥ p. We consider

St(p,m)×St(p, n) as a Riemannian submanifold of R
m×p×R

n×p endowed with the natural

induced metric;

〈(ξ1, η1), (ξ2, η2)〉(U,V ) := tr(ξT
1 ξ2) + tr(ηT

1 η2),

(ξ1, η1), (ξ2, η2) ∈ T(U,V )(St(p,m) × St(p, n)) . (3.7.14)

As in the previous example on St(p, n), the QR retraction on St(p,m)× St(p, n) is defined

by

R(U,V )(ξ, η) := (qf(U + ξ), qf(V + η)) , (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)) (3.7.15)

for (U, V ) ∈ St(p,m) × St(p, n).

Proposition 3.7.2. The inequality (3.4.2) holds for the objective function (3.7.13) on M =

St(p,m)× St(p, n), where M is endowed with the natural induced metric (3.7.14) and with

the QR retraction (3.7.15).

Proof. We shall show that ∣∣∣∣ d2

dt2
(
F ◦ R(U,V )

)
(t(ξ, η))

∣∣∣∣ ≤ L (3.7.16)
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for (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)) with ‖(ξ, η)‖(U,V ) = 1, (U, V ) ∈ St(p,m)×St(p, n), t ≥
0. Put Q(t) = qf(U + tξ), S(t) = qf(V + tη). Let qk(t) and sk(t) denote the k-th column

vectors of Q(t) and S(t), respectively. From Prop. 3.7.1 and its course of the proof, there

exist vector-valued polynomials gk(t) and hk(t) such that

qk(t) =
gk(t)

‖gk(t)‖
, sk(t) =

hk(t)

‖hk(t)‖
. (3.7.17)

Let

H(U, V, ξ, η, t) =
d2

dt2
(
F ◦ R(U,V )

)
(t(ξ, η)) . (3.7.18)

Then we have

H(U, V, ξ, η, t) =

p∑
k=1

μk
d2

dt2
(
qk(t)

T Ask(t)
)
. (3.7.19)

Since qk(t)
T Ask(t) = gk(t)

T Ahk(t)/(‖gk(t)‖‖hk(t)‖), by the same reasoning as that for

h(X, ξ, t) in Prop. 3.7.1, we have

lim
t→∞

H(U, V, ξ, η, t) = 0, (3.7.20)

so that H(U, V, ξ, η, t) is bounded with respect to t ≥ 0. Further, H(U, V, ξ, η, t) is contin-

uous with respect to (U, V, ξ, η) on the compact set{
(U, V, ξ, η) ∈ T (St(p,m) × St(p, n)) | ‖(ξ, η)‖(U,V ) = 1

}
. Hence H(U, V, ξ, η, t) is bounded

on the whole domain. This completes the proof.

A remark similar to Rem. 3.7.1 can be made on the metric to be endowed with on

St(p,m) × St(p, n). The validity of (3.4.2) is independent of the choice of a metric.

We here note that Prop. 3.7.2 together with Thm. 3.4.2 ensures that Algorithm 3.3.2

for the problem of maximizing F (see Problems 4.2.1 and 4.2.2 in Chapter 4) has a global

convergence property.

Returning to the case of a general Riemannian manifold M , we make a further comment

on (3.4.2). We are interested in the range of t ≥ 0. Assume that M is compact and f

is smooth. A smooth function on a compact set is Lipschitz continuously differentiable.

However, the set {(x, η, t) ∈ TM × R | ‖η‖x = 1, t ≥ 0} is not compact even though M is

compact. Therefore, it is not so clear that the inequality (3.4.2) holds in general. We here

note that the inequality (3.4.2) is used in the form

D(f ◦ Rxk
)(αkηk)[ηk] − D(f ◦ Rxk

)(0)[ηk] ≤ αkL‖ηk‖2
xk

(3.7.21)

for the proof of Thm. 3.4.1. A question then arises as to under what condition the inequality

(3.7.21) holds. If it is ensured that there exists a constant m > 0 such that αk‖ηk‖xk
≤ m

for all k, then we can prove (3.7.21). Indeed, in order to prove (3.7.21) in such a case, the

range of t in (3.4.2) can be restricted to 0 ≤ t ≤ m, and the inequality we need to prove
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as a counterpart to (3.4.2) is written as

|D(f ◦ Rx)(tη)[η] − D(f ◦ Rx)(0)[η]| ≤ Lt, η ∈ TxM with ‖η‖x = 1, x ∈ M, 0 ≤ t ≤ m.

(3.7.22)

In order that (3.7.22) hold, it is sufficient that there exists a constant L > 0 satisfying∣∣∣∣ d2

dt2
(f ◦ Rx) (tη)

∣∣∣∣ ≤ L, η ∈ TxM with ‖η‖x = 1, x ∈ M, 0 ≤ t ≤ m. (3.7.23)

Since the left-hand side of the inequality (3.7.23) is continuous with respect to t on a

compact set {t ∈ R | 0 ≤ t ≤ m}, there exists Lx,η for each (x, η) ∈ M such that (3.7.23)

with L = Lx,η holds, where M = {(x, η) ∈ TM | ‖η‖x = 1}. The compactness of the set

M ensures the existence of L := sup(x,η)∈M Lx,η and the L thus defined satisfies (3.7.23).
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Chapter 4

A Riemannian Optimization

Approach to the Matrix Singular

Value Decomposition

4.1 Introduction

The truncated singular value decomposition, which is composed of the p (≤ min {m,n})
dominant singular values and the associated vectors, of an m × n matrix A can be put as

an optimization problem of maximizing the objective function tr
(
UT AV N

)
of U ∈ R

m×p

and V ∈ R
n×p subject to the condition that UT U = V T V = Ip, where N ∈ R

p×p is a

constant diagonal matrix. The orthogonal constraints lead to the concept of the Stiefel

manifold St(p, n) =
{
Y ∈ R

n×p |Y T Y = Ip

}
. Then, the constraints prove to be equivalent

to (U, V ) ∈ St(p,m) × St(p, n). Thus, the problem is set up on the Riemannian manifold

St(p,m) × St(p, n) without constraints.

Unconstrained optimization methods on the Euclidean space, such as the steepest de-

scent, the conjugate gradient, and Newton’s methods are generalized to those on a Rieman-

nian manifold. This chapter deals with optimization algorithms on the product manifold

St(p,m) × St(p, n) to solve the singular value decomposition problem from this point of

view. Though Newton’s method on this manifold generates quadratically convergent se-

quences, the convergence domain for an optimal solution is restricted to a neighborhood

of the target solution. If a good approximation of the singular value decomposition of a

matrix is obtained, then Newton’s method is performed to obtain more accurate singular

value decomposition quickly.

The organization of this chapter is as follows: In Section 4.2, the singular value

decomposition of a rectangular matrix A is formulated as an optimization problem on

St(p,m)×St(p, n). The fact that the optimization problem is indeed equivalent to the trun-

cated singular value decomposition problem is proved via the Lagrange multiplier method.

Section 4.3 is concerned with the geometry of the product manifold St(p,m)×St(p, n). Re-
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tractions and the gradient and the Hessian of the objective function for the singular value

decomposition problem are set up on St(p,m) × St(p, n), which will be used in describing

algorithms in later sections. The steepest descent, the conjugate gradient, and Newton’s

methods for the objective function on St(p,m) × St(p, n) are described in Section 4.4. As

is expected, the steepest descent method does not generate quickly convergent sequences.

The conjugate gradient method generates sequences converging much more quickly than

those generated by the steepest descent method. Newton’s method generates the most

quickly converging sequences among the three methods, but the sequences do not neces-

sarily converge to global optimal solutions. In addition, Newton’s equation for the present

problem is practically difficult to solve unless p = 1, but it is feasible in practice if p = 1.

In Section 4.5, Newton’s method with p = 1 and the conjugate gradient method are put

together at first to provide a new Riemannian optimization approach on St(p,m)×St(p, n)

to the singular value decomposition. The problem of solving Newton’s equation with p �= 1

can be divided into a set of the problems with p = 1, if suitable initial data are given.

In view of this, for the problem with p �= 1, the conjugate gradient method is combined

with the set of Newton’s methods with p = 1 to provide a new algorithm for the singular

value decomposition. Numerical experiments with these algorithms are performed for a

matrix with m = 500, n = 300, p = 10, which show that the last-stated method achieves

the highest efficiency. Aside from the present method, Newton’s method can be combined

with existing algorithms. For example, when the singular value decomposition obtained

by MATLAB’s svd function is set as an initial decomposition, Newton’s method serves to

generate a sequence converging to a global optimal solution. Put another way, the MAT-

LAB solution is improved by the present Newton’s method. Degenerate optimal solutions

are studied in Section 4.6 to show that those solutions form a submanifold diffeomorphic to

the product of orthogonal groups and Stiefel manifolds of smaller dimension. It then turns

out that according to whether the singular values are distinct or degenerate the optimal

solution set is a discrete finite set or a disconnected submanifold. Section 4.7 contains

some remarks on the present results.

4.2 The singular value decomposition and a Rieman-

nian optimization problem

For an m× n matrix A with m ≥ n, the singular value decomposition of A takes the form

A = U0Σ0V
T
0 , U0 ∈ O(m), V0 ∈ O(n), Σ0 =

⎛
⎜⎜⎜⎝

Σ1

0

⎞
⎟⎟⎟⎠ , (4.2.1)
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where Σ1 = diag (σ1, . . . , σn) with σ1 ≥ · · · ≥ σn ≥ 0, and where σi, i = 1, . . . , n are

called the singular values of A [GVL12,TBI97]. Let u1, . . . , um and v1, . . . , vn denote the

columns of U0 and V0 from the left, respectively; U0 = (u1, . . . , um), V0 = (v1, . . . , vn). The

corresponding columns ui and vi of U0 and V0 are called the left and right singular vectors

of A, respectively. The singular value decomposition of A is also expressed in terms of ui

and vi as

A =
n∑

i=1

σiuiv
T
i . (4.2.2)

In this equation, un+1, . . . , um do not appear. Thus, for U1 = (u1, . . . , un) and V1 = V0, we

rewrite Eq. (4.2.2) as

A = U1Σ1V
T
1 . (4.2.3)

The decomposition (4.2.3) is called the thin [GVL12] or the reduced [TBI97] singular value

decomposition.

Like the Rayleigh quotient associated with the eigenvalue problem for a symmetric

matrix [AMS08, EAS98, HM94], the following optimization problem is closely related to

the singular value decomposition of a rectangular matrix.

Problem 4.2.1.

maximize tr
(
UT AV N

)
, (4.2.4)

subject to U ∈ R
m×p, V ∈ R

n×p, UT U = V T V = Ip, (4.2.5)

where N = diag(μ1, . . . , μp) with μ1 > · · · > μp > 0 and 1 ≤ p ≤ n.

A global optimal solution to Problem 4.2.1 provides a collection of p dominant left and

right singular vectors of A.

Proposition 4.2.1. Let (U∗, V∗) be a global optimal solution to Problem 4.2.1 for an m×n

matrix A with m ≥ n. Then, the columns of U∗ and of V∗ are a collection of p dominant

left and right singular vectors of A, respectively.

To prove this proposition, we start with the following lemma.

Lemma 4.2.1. Let C and D be n × n mutually commuting matrices. Assume that D

takes the diagonal matrix form D = diag(d1, . . . , dn) with d1, . . . , dn being mutually distinct.

Then, the matrix C is also diagonal.

Proof. Denoting the (i, j) component of C by cij, we obtain (CD)ij = cijdj and (DC)ij =

cijdi. Then the commutativity condition CD = DC provides cij (di − dj) = 0. Since

d1, . . . , dn are all distinct, we have cij = 0 for i �= j. This completes the proof.

We proceed to the proof of Prop.4.2.1.
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Proof of Prop. 4.2.1. We take the Lagrange multiplier method for Problem 4.2.1. Let

L(U, V, Λ, Ω) be the function defined by

L(U, V, Λ, Ω) = tr
(
UT AV N

)
+ tr

(
Λ

(
UT U − Ip

))
+ tr

(
Ω

(
V T V − Ip

))
, (4.2.6)

where Λ and Ω are Lagrange multipliers, and where they should be symmetric matrices on

account of the fact that UT U − Ip and V T V − Ip are symmetric. Let LU and LV denote

the partial derivatives of L with respect to U and V , respectively. Put another way, LU is

the m × p matrix whose (i, j) component is ∂L(U, V, Λ, Ω)/∂Uij for example. Performing

the derivation with respect to U , we obtain

LU = AV N + 2UΛ. (4.2.7)

Similarly, we obtain the expressions of LV , LΛ, and LΩ as

LV = AT UN + 2V Ω, LΛ = UT U − Ip, LΩ = V T V − Ip. (4.2.8)

Let Λ∗ and Ω∗ be Lagrange multipliers corresponding to a global optimal solution (U∗, V∗).
It then follows from (4.2.7) and (4.2.8) that

AV∗N + 2U∗Λ∗ = 0, (4.2.9)

AT U∗N + 2V∗Ω∗ = 0, (4.2.10)

UT
∗ U∗ = V T

∗ V∗ = Ip. (4.2.11)

Multiplying Eq. (4.2.9) by UT
∗ from the left, we have

Λ∗ = −1

2
UT
∗ AV∗N. (4.2.12)

Similarly, we have from Eq. (4.2.10)

Ω∗ = −1

2
V T
∗ AT U∗N. (4.2.13)

Substituting Eqs. (4.2.12) and (4.2.13) into Eqs. (4.2.9) and (4.2.10), respectively, and

multiplying the resultant equations by N−1 from the right, we have

AV∗ = U∗UT
∗ AV∗, (4.2.14)

AT U∗ = V∗V T
∗ AT U∗. (4.2.15)

Since Λ and Ω are symmetric, we obtain from (4.2.12) and (4.2.13)

UT
∗ AV∗N = NV T

∗ AT U∗, (4.2.16)
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V T
∗ AT U∗N = NUT

∗ AV∗, (4.2.17)

respectively. These two equations are put together to provide

UT
∗ AV∗N2 = N2UT

∗ AV∗. (4.2.18)

Since N2 is a diagonal matrix with mutually distinct diagonal entries, Eq. (4.2.18) implies

that UT
∗ AV∗ is also diagonal on account of Lemma 4.2.1. Since UT

∗ AV∗ is diagonal, it is a

symmetric matrix, so that UT
∗ AV∗ = V T

∗ AT U∗. Let UT
∗ AV∗ = V T

∗ AT U∗ = diag (s1, . . . , sp)

and U∗ = (u1, . . . , up) , V∗ = (v1, . . . , vp). Then, Eqs. (4.2.14) and (4.2.15) take the form

Avi = siui, AT ui = sivi, i = 1, . . . , p, (4.2.19)

respectively. The objective function is then evaluated at (U∗, V∗) as

tr
(
UT
∗ AV∗N

)
=

p∑
i=1

siμi, (4.2.20)

where μ1 > · · · > μp > 0. Since (U, V ) = (U∗, V∗) is a maximizer, we can conclude that

s1 ≥ · · · ≥ sp ≥ 0. Further, Eq. (4.2.19) implies that

AT Avi = siA
T ui = s2

i vi. (4.2.21)

This means that s2
i and vi are an eigenvalue and the corresponding eigenvector of AT A,

respectively. Therefore, si and vi are the i-th dominant singular value and the correspond-

ing right singular vector for each i = 1, . . . , p. Similarly, ui proves to be the left singular

vector associated with si for each i = 1, . . . , p. This completes the proof.

We make a remark on Eq. (4.2.20). In the course of deriving Eq. (4.2.20), we have only

required that the objective function takes a critical value. If we do not require that (U∗, V∗)
is a maximizer, we do not have to put the singular values in the order s1 ≥ s2 ≥ · · · ≥ sp.

In particular, for p = 1, the objective function takes the value tr
(
UT
∗ AV∗N

)
= μ1s1, which

is a multiple of one of the singular values. We will use this fact in Section 4.5. We also

note that global optimal solutions to Problem 4.2.1 form a finite or an infinite set, as will

be seen in Section 4.6.

A Stiefel manifold is defined to be St(p, n) =
{
Y ∈ R

n×p |Y T Y = Ip

}
. On account of

the constraint (4.2.5), the set of all feasible points of Problem 4.2.1 is the product manifold

St(p,m)×St(p, n). In the optimization theory, a maximization problem is often converted

into a minimization problem. We shall work with the following minimization problem

equivalent to Problem 4.2.1 in what follows.
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Problem 4.2.2.

minimize F (U, V ) = − tr
(
UT AV N

)
, (4.2.22)

subject to (U, V ) ∈ St(p,m) × St(p, n). (4.2.23)

This is a Riemannian optimization problem on St(p,m)×St(p, n). A review of optimization

techniques on a generic Riemannian manifold is given in Section 2.2.

4.3 The Riemannian geometry of St(p,m) × St(p, n)

We deal with the Riemannian geometry of St(p,m) × St(p, n) for the purpose of our

optimization problem. For the Riemannian geometry of St(p, n), see Section 2.3 and

[AMS08,EAS98].

4.3.1 Tangent spaces

Since the tangent space TY St(p, n) at Y ∈ St(p, n) is expressed as

TY St(p, n) =
{
ξ ∈ R

n×p | ξT Y + Y T ξ = 0
}

, (4.3.1)

the tangent space T(U,V )(St(p,m) × St(p, n)) at (U, V ) ∈ St(p,m) × St(p, n) is written as

T(U,V )(St(p,m) × St(p, n)) � TUSt(p, m) × TV St(p, n)

=
{
(ξ, η) ∈ R

m×p × R
n×p | ξT U + UT ξ = ηT V + V T η = 0

}
. (4.3.2)

Since the St(p, n) is a submanifold of the matrix Euclidean space R
n×p, it can be

endowed with the Riemannian metric

〈ξ1, ξ2〉Y := tr
(
ξT
1 ξ2

)
, ξ1, ξ2 ∈ TY St(p, n), (4.3.3)

which is induced from the natural metric (Frobenius inner product) on R
n×p,

〈B,C〉 := tr
(
BT C

)
, B, C ∈ R

n×p. (4.3.4)

We view the product manifold St(p,m)×St(p, n) as a Riemannian submanifold of R
m×p ×

R
n×p, which is endowed with the Riemannian metric

〈(ξ1, η1) , (ξ2, η2)〉(U,V ) := 〈ξ1, ξ2〉U + 〈η1, η2〉V = tr
(
ξT
1 ξ2

)
+ tr

(
ηT

1 η2

)
,

(ξ1, η1) , (ξ2, η2) ∈ T(U,V )(St(p,m) × St(p, n)) . (4.3.5)

Using the metric thus defined, we give the expression of the orthogonal projection onto

the tangent space T(U,V )(St(p,m) × St(p, n)). Since TUSt(p,m) × TV St(p, n) is isomorphic
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with T(U,V ) (St(p, m) × St(p, n)), the following proposition is easily verified.

Proposition 4.3.1. For any (B,C) ∈ R
m×p × R

n×p, the orthogonal projection operator

P(U,V ) onto the tangent space T(U,V )(St(p,m) × St(p, n)) at (U, V ) ∈ St(p, m) × St(p, n) is

given by

P(U,V )(B,C) = (PU(B), PV (C)) , (4.3.6)

where

PU(B) = B − U sym
(
UT B

)
, PV (C) = C − V sym

(
V T C

)
(4.3.7)

are orthogonal projections onto TUSt(p, m) and TV St(p, n), respectively, and where sym(B) :=

(B + BT )/2 denotes the symmetric part of B [EAS98].

4.3.2 Geodesics

Proposition 4.3.2. Let (U(t), V (t)) be the geodesic on the product manifold St(p,m) ×
St(p, n) emanating from (U, V ) ∈ St(p,m) × St(p, n) in the direction of

(ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)). Then, the component matrices of (U(t), V (t)) are ex-

pressed as

U(t) =

(
U ξ

)
exp

⎛
⎜⎜⎜⎝t

⎛
⎜⎜⎜⎝

UT ξ −ξT ξ

Ip UT ξ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ exp

(
−tUT ξ

)
, (4.3.8a)

V (t) =

(
V η

)
exp

⎛
⎜⎜⎜⎝t

⎛
⎜⎜⎜⎝

V T η −ηT η

Ip V T η

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ exp

(
−tV T η

)
, (4.3.8b)

respectively, where exp denotes the matrix exponential.

Proof. Since the Riemannian metric (4.3.5) is the direct product of the metrics of St(p,m)

and St(p, n), (U(t), V (t)) is a geodesic on St(p,m)×St(p, n) if and only if U(t) and V (t) are

geodesics on St(p,m) and on St(p, n), respectively. Since the right-hand sides of (4.3.8) are

geodesics on St(p,m) and St(p, n) which emanate from U and V in the direction of ξ and η,

respectively (Prop. 2.3.4), the pair (U(t), V (t)) provides the geodesic on St(p,m)×St(p, n).

This completes the proof.

We note here that a geodesic Y (t) on the Stiefel manifold St(p, n) is a solution to the

geodesic equation

Ÿ (t) + Y (t)Ẏ (t)T Ẏ (t) = 0. (4.3.9)
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The pair (U(t), V (t)) is a geodesic on St(p,m)×St(p, n), if and only if U(t) and V (t) satisfy

Ü(t) + U(t)U̇(t)T U̇(t) = 0, V̈ (t) + V (t)V̇ (t)T V̇ (t) = 0, (4.3.10)

respectively.

4.3.3 Retractions

The exponential map defined on a Riemannian manifold M through geodesics emanating

from each point in all directions determines a retraction on M . We call this map the

exponential retraction. From Prop. 4.3.2, we can put the exponential retraction R on

St(p,m) × St(p, n) in the form

R(U,V ) (ξ, η) = Exp(U,V ) (ξ, η)

=

⎛
⎜⎜⎜⎝

(
U ξ

)
exp

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

UT ξ −ξT ξ

Ip UT ξ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ exp

(
−UT ξ

)
,

(
V η

)
exp

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

V T η −ηT η

Ip V T η

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ exp

(
−V T η

)
⎞
⎟⎟⎟⎠ , (4.3.11)

where (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)).

After the QR-based retraction on the single Stiefel manifold discussed in Subsection

2.3.3, we give another retraction on St(p,m)× St(p, n) by means of the QR decomposition

as follows:

Proposition 4.3.3. Let R(U,V ) be a map of T(U,V )(St(p,m) × St(p, n)) to St(p,m)×St(p, n)

defined at (U, V ) ∈ St(p,m) × St(p, n) by

R(U,V )(ξ, η) = (qf(U + ξ), qf(V + η)) , (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)) , (4.3.12)

where the qf returns the Q factor of the QR decomposition of the matrix concerned (see the

first part of Section 2.3). Then, the collection of R(U,V ) for all (U, V ) ∈ St(p,m)× St(p, n)

forms a retraction R : T (St(p,m) × St(p, n)) → St(p, m) × St(p, n).

Proof. We first note that (qf(U + ξ), qf(V + η)) ∈ St(p,m) × St(p, n). We then check

two conditions in Definition 2.2.1. By the definition of the QR decomposition, the first

condition is easily verified as

R(U,V )(0, 0) = (qf(U), qf(V )) = (U, V ) . (4.3.13)
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Since D qf(Y )[Δ] = Δ for any Δ ∈ TY St(p, n) from Prop. 2.3.1, we obtain

DR(U,V )(0, 0)[(ξ, η)] = (D qf(U)[ξ], D qf(V )[η]) = (ξ, η). (4.3.14)

This completes the proof.

We call the R defined through (4.3.12) the QR-based retraction on St(p,m) × St(p, n).

4.3.4 The gradient and the Hessian of the objective function

The gradient and the Hessian of an objective function are basic concepts in optimization

methods. The gradient, grad F (U, V ), of an objective function F at (U, V ) ∈ St(p,m) ×
St(p, n) is defined to be a unique tangent vector which satisfies

〈grad F (U, V ), (ξ, η)〉(U,V ) = DF (U, V )[(ξ, η)], (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)) .

(4.3.15)

The Hessian, Hess F (U, V ), of F at (U, V ) is defined to be a linear transformation of

the tangent space T(U,V )(St(p,m) × St(p, n)) through the covariant derivative ∇(ξ,η) grad F

of grad F evaluated at (U, V ),

Hess F (U, V )[(ξ, η)] := ∇(ξ,η) grad F, (ξ, η) ∈ T(U,V )(St(p,m) × St(p, n)) , (4.3.16)

where the covariant derivative is defined through the Levi-Civita connection ∇ on St(p,m)×
St(p, n).

In what follows, we take up the objective function

F (U, V ) = − tr(UT AV N). (4.3.17)

Proposition 4.3.4. The gradient of (4.3.17) at (U, V ) ∈ St(p,m) × St(p, n) is expressed

as

grad F (U, V ) =
(
U sym

(
UT AV N

)
− AV N, V sym

(
V T AT UN

)
− AT UN

)
. (4.3.18)

Proof. Since St(p,m) × St(p, n) is a Riemannian submanifold of R
m×p × R

n×p endowed

with the induced metric, grad F (U, V ) is equal to the orthogonal projection of the Eu-

clidean gradient F(U,V ) of F at (U, V ) onto T(U,V )(St(p, m) × St(p, n)). Hence, by using the

projection P(U,V ) given in (4.3.6) and (4.3.7), we obtain

gradF (U, V ) = P(U,V )(F(U,V )) = P(U,V )

(
−AV N,−AT UN

)
=

(
−PU(AV N),−PV (AT UN)

)
=

(
U sym

(
UT AV N

)
− AV N, V sym

(
V T AT UN

)
− AT UN

)
. (4.3.19)

This completes the proof.
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Proposition 4.3.5. Let (ξ, η) be a tangent vector at (U, V ) ∈ St(p, m) × St(p, n). Let

S1 and S2 denote the matrices sym
(
UT AV N

)
and sym

(
V T AT UN

)
, respectively. The

Hessian of (4.3.17) at (U, V ) is expressed as a linear map on T(U,V )(St(p,m) × St(p, n))

and given by

Hess F (U, V )[(ξ, η)] =
(
ξS1 − AηN − U sym

(
UT (ξS1 − AηN)

)
,

ηS2 − AT ξN − V sym
(
V T

(
ηS2 − AT ξN

)))
. (4.3.20)

Proof. Let (U(t), V (t)) be the geodesic emanating from (U(0), V (0)) = (U, V ) in the di-

rection of (U̇(0), V̇ (0)) = (ξ, η). Note that U(t) and V (t) satisfy Eq. (4.3.10) and hence

Ü(0) = −UξT ξ, V̈ (0) = −V ηT η. (4.3.21)

Since 〈Hess F (U, V )[(ξ, η)], (ξ, η)〉(U,V ) is the covariant derivative of
d

dt
F (U, V ) at t = 0, as

is seen from (4.3.16), and since (U(t), V (t)) is a geodesic, the quantity is written out as

〈Hess F (U, V )[(ξ, η)], (ξ, η)〉(U,V ) =
d2

dt2
F (U(t), V (t))

∣∣∣∣
t=0

= − tr
(
Ü(0)T AV (0)N + U(0)T AV̈ (0)N + 2U̇(0)T AV̇ (0)N

)
= tr

(
ξT ξUT AV N + UT AV ηT ηN − 2ξT AηN

)
. (4.3.22)

Since the Hessian operator is symmetric and linear on T(U,V )(St(p,m) × St(p, n)), the Hes-

sian symmetric form in tangent vectors (ξ, η) and (ζ, χ) is expressed and written out as

〈Hess F (U, V )[(ξ, η)], (ζ, χ)〉(U,V )

=
1

2

(
〈Hess F (U, V )[(ξ, η) + (ζ, χ)], (ξ, η) + (ζ, χ)〉(U,V )

− 〈Hess F (U, V )[(ξ, η)], (ξ, η)〉(U,V ) − 〈Hess F (U, V )[(ζ, χ)], (ζ, χ)〉(U,V )

)
=

1

2
tr

((
ξT ζ + ζT ξ

)
UT AV N + UT AV

(
ηT χ + χT η

)
N − 2

(
ξT Aχ + ζT Aη

)
N

)
=

1

2
tr

(
ζT

(
ξNV T AT U + ξUT AV N − 2AηN

)
+ χT

(
ηNUT AV + ηV T AT UN − 2AT ξN

))
= tr

(
ζT (ξS1 − AηN) + χT

(
ηS2 − AT ξN

))
=

〈
P(U,V )

(
(ξS1 − AηN) ,

(
ηS2 − AT ξN

))
, (ζ, χ)

〉
(U,V )

. (4.3.23)

Since the orthogonal projection operator P(U,V ) is given by Eqs. (4.3.6) and (4.3.7), we

have

Hess F (U, V )[(ξ, η)] = P(U,V )

(
(ξS1 − AηN) ,

(
ηS2 − AT ξN

))
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=
(
ξS1 − AηN − U sym

(
UT (ξS1 − AηN)

)
, ηS2 − AT ξN − V sym

(
V T

(
ηS2 − AT ξN

)))
.

(4.3.24)

This completes the proof.

4.4 Optimization algorithms on St(p,m) × St(p, n)

So far we have obtained requisites for optimization algorithms. In this section, we develop

the steepest descent, the conjugate gradient, and Newton’s methods for Problem 4.2.2.

4.4.1 The steepest descent method on St(p,m) × St(p, n)

In the steepest descent method for a general Riemannian unconstrained optimization prob-

lem 2.2.1, the negative gradient of f at a current iterate xk ∈ M is chosen as a search

direction Δk ∈ Txk
M at xk, that is, Δk = − grad f(xk). Then, the updating formula is

expressed as

xk+1 = Rxk
(tkΔk), (4.4.1)

where R is a retraction and tk is an Armijo step size.

In what follows, we specialize in the steepest descent method on St(p,m)× St(p, n) for

the objective function F given in (4.3.17). From (4.3.18), the negative gradient of F at

(Uk, Vk) ∈ St(p,m) × St(p, n) is expressed as

− gradF (Uk, Vk) =
(
AVkN − Uk sym

(
UT

k AVkN
)
, AT UkN − Vk sym

(
V T

k AT UkN
))

.

(4.4.2)

With this expression taken into account, the algorithm for the steepest descent method for

Problem 4.2.2 is described as follows:

Algorithm 4.4.1 Steepest Descent Method for Problem 4.2.2

1: Choose an initial point (U0, V0) ∈ St(p,m) × St(p, n).
2: for k = 0, 1, 2, . . . do
3: Compute the search direction (ξk, ηk) ∈ T(U,V ) (St(p, m) × St(p, n)) by

ξk = AVkN − Uk sym
(
UT

k AVkN
)
, ηk = AT UkN − Vk sym

(
V T

k AT UkN
)
. (4.4.3)

4: Compute the Armijo step size tk > 0.
5: Compute the next iterate (Uk+1, Vk+1) = R(Uk,Vk) (tk (ξk, ηk)), where R is a retraction

on St(p,m) × St(p, n).
6: end for

In the above algorithm, as is seen already, a possible choice for the retraction R is the

exponential retraction (4.3.11) or the QR-based retraction (4.3.12).

68



If the manifold in question is compact, a convergence result for the steepest descent

method is stated in general as follows (see also Thm. 2.2.1):

Theorem 4.4.1. Consider the problem of minimizing an objective function f on a Rie-

mannian manifold M . Let {xk} be an infinite sequence of iterates generated by the steepest

descent method with the Armijo step size. If M is compact, then

lim
k→∞

‖ grad f(xk)‖xk
= 0. (4.4.4)

Since the manifold St(p,m)×St(p, n) is compact, the sequence generated by Algorithm

4.4.1 converges to a critical point of F .

A numerical experiment with Algorithm 4.4.1 is performed for F with a 500 × 300

matrix A and the result is shown in Fig. 4.4.1, where the initial point is randomly chosen.

The vertical axis of Fig. 4.4.1 carries the differences between the values F (Uk, Vk) and

the minimum value Fmin of F . Here, we notice that because of the choice of a matrix

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

10−1

100

101

102

103

104

Iteration
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k
,
V
k
)
−
F
m
in
|

Figure 4.4.1: m = 500, n = 300, p = 10, N = diag(10, . . . , 2, 1), and A =
Ur diag(300, . . . , 2, 1)V T

r , where Ur ∈ R
m×n and Vr ∈ R

n×n are orthonormal matrices with
randomly chosen elements.

A, we know the optimal solution of this problem. This figure shows that the sequence

{(Uk, Vk)} is linearly convergent, as is expected, but the convergence is very slow, so that

this algorithm is far from practical use for the present problem. We will treat a faster

algorithm, the conjugate gradient method, in the next subsection.
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4.4.2 The conjugate gradient method on St(p,m) × St(p, n)

As was mentioned in Chapter 2, the conjugate gradient method on R
N was originally

developed as a tool for solving linear systems of equations [HS52], and generalized to a

nonlinear conjugate gradient method, which can be applied for a generic objective function

[NW06], and further generalized to a similar method on a Riemannian manifold M [Smi94,

AMS08]. In [Smi94], the parallel translation along a geodesic on M is used in computing

the search direction. If we choose the exponential map as a retraction, the Tηx(ξx) is realized

as the parallel translation of ξx along the geodesic segment Expx(tηx) emanating from x

in the direction of ηx with 0 ≤ t ≤ 1 [Smi94]. In contrast with this, the vector transport,

which is a generalization of the parallel translation, is introduced in [AMS08], for the sake

of computational efficiency. For the definition of a vector transport, see Def. 2.2.2.

We can define vector transports T on St(p,m) × St(p, n) by choosing the QR-based

retraction:

Proposition 4.4.1. Let M = St(p,m) × St(p, n). Define maps T R, T P : TM ⊕ TM →
TM by

T R
(ξ,η)(ζ, χ) :=

(
Q1ρskew

(
QT

1 ζ
(
QT

1 (U + ξ)
)−1

)
+

(
Im − Q1Q

T
1

)
ζ

(
QT

1 (U + ξ)
)−1

,

Q2ρskew

(
QT

2 χ
(
QT

2 (V + η)
)−1

)
+

(
In − Q2Q

T
2

)
χ

(
QT

2 (V + η)
)−1

)
, (4.4.5)

and

T P
(ξ,η)(ζ, χ) :=

(
ζ − Q1 sym

(
QT

1 ζ
)
, χ − Q2 sym

(
QT

2 χ
))

, (4.4.6)

respectively, where (ξ, η), (ζ, χ) ∈ T(U,V ) (St(p,m) × St(p, n)), and where Q1 := qf(U +

ξ), Q2 := qf(V + η). Then, T R and T P are vector transports on St(p,m) × St(p, n).

Proof. For arbitrary vector transports T (1) on St(p,m) and T (2) on St(p, n), it is easily

seen that the T defined by

T(ξ,η)(ζ, χ) :=
(
T (1)

ξ (ζ), T (2)
η (χ)

)
, (ξ, η), (ζ, χ) ∈ T(U,V ) (St(p,m) × St(p, n)) , (4.4.7)

is a vector transport on St(p,m) × St(p, n). We can take the vector transports T (1) and

T (2) as those given in Prop. 2.3.7 with appropriate sizes, completing the proof.

In the nonlinear conjugate gradient method on the Euclidean space, the Wolfe step size

is often used [NW06]. For the conjugate gradient method on a manifold M , we define the

Wolfe point as follows:

Definition 4.4.1. Let f be an objective function on a Riemannian manifold M with a

retraction R. Given a point x ∈ M , a tangent vector Δ ∈ TxM , and scalars ᾱ > 0, β, σ ∈
(0, 1), the Wolfe point is determined to be ΔW := βmᾱΔ in such a way that m may be the

70



smallest nonnegative integer satisfying both

f(x) − f(Rx(β
mᾱΔ)) ≥ −σ〈grad f(x), βmᾱΔ〉x, (4.4.8)

and

〈grad f (Rx(β
mᾱΔ)) , TβmᾱΔ(Δ)〉Rx(βmᾱΔ) ≥ ρ〈grad f(x), Δ〉x, (4.4.9)

where 0 < σ < ρ < 1 and T is a vector transport on M .

For ΔW thus determined, we call tW := βmᾱ the Wolfe step size, that is, the Wolfe step size

is a step size which is obtained with a backtracking procedure to satisfy the Wolfe condition.

We consider that a natural choice of a vector transport T for the Wolfe condition is the

differentiated retraction T R, as is discussed in Chapter 3.

In contrast with the steepest descent method, the search direction in the standard

conjugate gradient method is determined by the negative gradient of the objective function

f at a current iterate together with the vector transport of the previous search direction;

ηk+1 = − grad f(xk+1) + βk+1Tαkηk
(ηk), (4.4.10)

where αk is a Wolfe step size with Rxk
(αkηk) = xk+1 and where several choices are possible

for βk+1. We proposed the scaled Fletcher-Reeves type conjugate gradient method in

Chapter 3, in which (4.4.10) is replaced with

ηk+1 = − grad f(xk+1) + min

(
1,

‖ηk‖xk

‖Tαkηk
(ηk)‖xk+1

)
βk+1Tαkηk

(ηk). (4.4.11)

It is to be noted that the present algorithm is shown to have a global convergence property.

With these matters in mind, we describe a conjugate gradient algorithm 4.4.2 for Prob-

lem 4.2.2 with a variety of choosing βk+1, T , independently of whether the scaling is

performed or not, on introducing the notation

(
ξ̄k, η̄k

)
:= grad F (Uk, Vk) (4.4.12)

for simplicity of expression. We note also that we have also choices of a retraction R,

though we use the QR retraction in Algorithm 4.4.2. For more details of other retractions,

see [AM12].
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Algorithm 4.4.2 Conjugate gradient method for Problem 4.2.2

1: Choose an initial point (U0, V0) ∈ St(p,m) × St(p, n).
2: Set

(ξ0, η0) = − gradF (U0, V0)

=
(
AV0N − U0 sym

(
UT

0 AV0N
)
, AT U0N − V0 sym

(
V T

0 AT U0N
))

(4.4.13)

and
(
ξ̄0, η̄0

)
= − (ξ0, η0).

3: for k = 0, 1, 2, . . . do
4: Compute the Wolfe step size αk and set

(Uk+1, Vk+1) =R(Uk,Vk) (αk (ξk, ηk))

= (qf (Uk + αkξk) , qf (Vk + αkηk)) . (4.4.14)

5: Compute (
ξ̄k+1, η̄k+1

)
= gradF (Uk+1, Vk+1)

=
(
Uk+1 sym

(
UT

k+1AVk+1N
)
− AVk+1N,

Vk+1 sym
(
V T

k+1A
T Uk+1N

)
− AT Uk+1N

)
. (4.4.15)

6: Compute Ck+1 and βk+1.
7: Set

(ξk+1, ηk+1) = − gradF (Uk+1, Vk+1) + Ck+1βk+1Tαk(ξk,ηk) (ξk, ηk) (4.4.16)

8: end for

In Algorithm 4.4.2, possible choices of a vector transport T are T R and T P given in

Prop. 4.4.1. In Step 6 of the algorithm, a real number Ck is fixed to Ck := 1 for all k in

the standard conjugate gradient method, whereas Ck is taken as a scaling factor defined

by

Ck := min

(
1,

‖(ξk, ηk)‖(Uk,Vk)

‖Tαk(ξk,ηk) (ξk, ηk)‖(Uk+1,Vk+1)

)
(4.4.17)

in the scaled conjugate gradient method, which we proposed in Chapter 3. In the same

step of the algorithm, we can choose the β of Fletcher-Reeves or Polak-Ribière, which are

given as

βFR
k+1 =

〈gradF (Uk+1, Vk+1) , gradF (Uk+1, Vk+1)〉(Uk+1,Vk+1)

〈grad F (Uk, Vk) , grad F (Uk, Vk)〉(Uk,Vk)

=
tr

(
ξ̄T
k+1ξ̄k+1

)
+ tr

(
η̄T

k+1η̄k+1

)
tr

(
ξ̄T
k ξ̄k

)
+ tr (η̄T

k η̄k)
, (4.4.18)
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and

βPR
k+1 =

〈gradF (Uk+1, Vk+1) , gradF (Uk+1, Vk+1) − Tαk(ξk,ηk)(gradF (Uk, Vk))〉(Uk+1,Vk+1)

〈grad F (Uk, Vk) , grad F (Uk, Vk)〉(Uk,Vk)

=
tr

(
ξ̄T
k+1

(
ξ̄k+1 − ζk+1

))
+ tr

(
η̄T

k+1 (η̄k+1 − χk+1)
)

tr
(
ξ̄T
k ξ̄k

)
+ tr (η̄T

k η̄k)
, (4.4.19)

respectively, where we have introduced the notation

(ζk+1, χk+1) = Tαk(ξk,ηk) (gradF (Uk, Vk)) . (4.4.20)

We perform numerical experiments with various types of Algorithm 4.4.2 for Problem

4.2.2, where the variation of the algorithms depends on the choices of Ck, βk, and T .

For a 500 × 300 matrix A, we obtain Fig. 4.4.2, whose vertical axis carries the differences

between the values F (Uk, Vk) and the minimum value Fmin of F . In Fig. 4.4.2, the abbre-
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Figure 4.4.2: Comparison among the performances of several conjugate gradient algorithms
with respect to the difference between the optimal and the current values of the objective
function.

viations FR, sFR, PR in the legend mean the standard Fletcher-Reeves type (with βFR

in Eq. (4.4.18) and Ck = 1), the scaled Fletcher-Reeves type (with βFR in Eq. (4.4.18)

and Ck in Eq. (4.4.17)), the standard Polak-Ribière type (with βPR in Eq. (4.4.19) and

Ck = 1), respectively. Further, the abbreviations P and D mean the vector transports by

the orthogonal projection T P and by the differentiated retraction T R, respectively. We

note that sFR-D type is what we proposed in Chapter 3 and its global convergence prop-

erty is guaranteed (see also Prop. 3.7.2 in the appendix of Chapter 3). We can observe
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that the scaling procedure indeed improves the performance of FR-D type algorithm. We

also note that the graph of sFR-P type, which does not appear in Fig. 4.4.2, coincide with

that of FR-P type. However, as is in the case for Euclidean conjugate gradient method,

algorithms with the β of Polak-Ribière show better performances than those with the β

of Fletcher-Reeves, though a global convergence is not guaranteed for the algorithm with

βPR. While PR-D type algorithm shows a faster convergence than PR-P type, the compu-

tational time for computing T R in PR-D type may be longer than that for computing T P

in PR-P type.

From these observations, in what follows in this chapter, we describe the PR-P type

algorithm in detail, that is, we use the vector transport (4.4.6) together with the β of

Polak-Ribière (4.4.19).
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Algorithm 4.4.3 Polak-Ribière type conjugate gradient method with the vector transport
by the orthogonal projection for Problem 4.2.2

1: Choose an initial point (U0, V0) ∈ St(p,m) × St(p, n).
2: Set

(ξ0, η0) =
(
AV0N − U0 sym

(
UT

0 AV0N
)
, AT U0N − V0 sym

(
V T

0 AT U0N
))

(4.4.21)

and
(
ξ̄0, η̄0

)
= − (ξ0, η0).

3: for k = 0, 1, 2, . . . do
4: Compute the Wolfe step size αk and set

(Uk+1, Vk+1) = (qf (Uk + αkξk) , qf (Vk + αkηk)) . (4.4.22)

5: Compute

(ζk+1, χk+1) =
(
ξ̄k − qf (Uk + αkξk) sym

(
qf (Uk + αkξk)

T ξ̄k

)
,

η̄k − qf (Vk + αkηk) sym
(
qf (Vk + αkηk)

T η̄k

))
(4.4.23)

and (
ξ̄k+1, η̄k+1

)
=

(
Uk+1 sym

(
UT

k+1AVk+1N
)
− AVk+1N,

Vk+1 sym
(
V T

k+1A
T Uk+1N

)
− AT Uk+1N

)
. (4.4.24)

6: Compute βk+1 by

βk+1 =
tr

(
ξ̄T
k+1

(
ξ̄k+1 − ζk+1

))
+ tr

(
η̄T

k+1 (η̄k+1 − χk+1)
)

tr
(
ξ̄T
k ξ̄k

)
+ tr (η̄T

k η̄k)
. (4.4.25)

7: Set

(ξk+1, ηk+1) =
(
−ξ̄k+1 + βk+1

(
ξk − qf (Uk + αkξk) sym

(
qf (Uk + αkξk)

T ξk

))
,

− η̄k+1 + βk+1

(
ηk − qf (Vk + αkηk) sym

(
qf (Vk + αkηk)

T ηk

)))
.

(4.4.26)

8: end for

4.4.3 Newton’s method on St(p,m) × St(p, n)

We now set up Newton’s method for Problem 4.2.2. The only difference between Newton’s

method and the steepest descent method lies in the choice of the search direction. In New-

ton’s method for Problem 2.2.1, the search direction Δk ∈ Txk
M at xk ∈ M is determined
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to be the solution to Newton’s equation

Hess f(xk)[Δk] = − grad f(xk), (4.4.27)

and we set the step size to be tk = 1 for simplicity.

Since we have already computed in Prop. 4.3.5 the Hessian of our objective function

F , we can describe Newton’s method for Problem 4.2.2 as follows:

Algorithm 4.4.4 Newton’s method for Problem 4.2.2

1: Choose an initial point (U0, V0) ∈ St(p,m) × St(p, n).
2: for k = 0, 1, 2, . . . do
3: Solve Newton’s equation{

ξkS1,k − AηkN − Uk sym
(
UT

k (ξkS1,k − AηkN)
)

= AVkN − UkS1,k,

ηkS2,k − AT ξkN − Vk sym
(
V T

k

(
ηkS2,k − AT ξkN

))
= AT UkN − VkS2,k

(4.4.28)

for the unknown (ξk, ηk) ∈ T(Uk,Vk) (St(p,m) × St(p, n)), where S1,k =
sym

(
UT

k AVkN
)

and S2,k = sym
(
V T

k AT UkN
)
.

4: Compute the next iterate (Uk+1, Vk+1) = R(Uk,Vk) ((ξk, ηk)), where R is a retraction
on St(p,m) × St(p, n).

5: end for

The Newton’s equation system (4.4.28) is difficult to solve, because two unknown ma-

trices ξk and ηk are coupled together. However, in the case of p = 1, Eqs. (4.4.28) are

tractable. Here, the diagonal matrix N becomes a scalar and can be put as N = 1 without

loss of generality. Since St(1,m) × St(1, n) = Sm−1 × Sn−1, the condition for ξk (resp. ηk)

to be a tangent vector to Sm−1 (resp. Sn−1) reduces to UT
k ξk = 0 (resp. V T

k ηk = 0), and

thereby Eqs. (4.4.28) reduce to

Skξk −
(
Im − UkU

T
k

)
Aηk =

(
Im − UkU

T
k

)
AVk, (4.4.29)

Skηk −
(
In − VkV

T
k

)
AT ξk =

(
In − VkV

T
k

)
AT Uk, (4.4.30)

where S1,k = S2,k =: Sk. Further, Sk are scalars.

If Sk �= 0, it follows from Eq. (4.4.29) that

ξk = S−1
k

(
Im − UkU

T
k

)
A (Vk + ηk) . (4.4.31)

Substituting Eq. (4.4.31) into Eq. (4.4.30), we obtain

Skηk − S−1
k

(
In − VkV

T
k

)
AT

(
Im − UkU

T
k

)
A (Vk + ηk) =

(
In − VkV

T
k

)
AT Uk. (4.4.32)
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If S2
kIn −

(
In − VkV

T
k

)
AT

(
Im − UkU

T
k

)
A is invertible, Eq. (4.4.32) results in

ηk =
(
S2

kIn −
(
In − VkV

T
k

)
AT

(
Im − UkU

T
k

)
A

)−1 (
In − VkV

T
k

)
AT AVk. (4.4.33)

Once ηk is computed, ξk is also computed by (4.4.31). Alternatively, if Sk �= 0 and if

S2
kIm −

(
Im − UkU

T
k

)
A

(
In − VkV

T
k

)
AT is invertible, then

ξk =
(
S2

kIm −
(
Im − UkU

T
k

)
A

(
In − VkV

T
k

)
AT

)−1 (
Im − UkU

T
k

)
AAT Uk, (4.4.34)

and hence

ηk = S−1
k

(
In − VkV

T
k

)
AT (Uk + ξk) . (4.4.35)

In view of our assumption that m ≥ n, we are inclined to use Eqs. (4.4.33) and (4.4.31)

on account of the size of the matrix for which the inverse is to be calculated.

We obtain the following algorithm of Newton’s method for Problem 4.2.2 with p = 1

and N = 1, where the uppercase letters U , S, and V are replaced by the lowercase ones u,

s, and v, respectively, because u and v are vectors and s is a scalar in the case of p = 1,

and where the QR-based retraction takes a simple form.

Algorithm 4.4.5 Newton’s method for Problem 4.2.2 with p = 1 and N = 1

1: Choose an initial point (u0, v0) ∈ St(1,m) × St(1, n) = Sm−1 × Sn−1.
2: for k = 0, 1, 2, . . . do
3: Compute ηk and ξk by

ηk =
(
s2

kIn −
(
In − vkv

T
k

)
AT

(
Im − uku

T
k

)
A

)−1 (
In − vkv

T
k

)
AT Avk, (4.4.36)

ξk = s−1
k

(
Im − uku

T
k

)
A (vk + ηk) , (4.4.37)

where sk = uT
k Avk.

4: Set (uk+1, vk+1) = R(uk,vk) ((ξk, ηk)) =

(
uk + ξk

‖uk + ξk‖
,

vk + ηk

‖vk + ηk‖

)
.

5: end for

If we know a good approximate solution of the problem in advance, Newton’s method

works effectively. This is because Newton’s method generates locally but quadratically

convergent sequences in general, as is shown in Thm. 2.2.2. However, if the initial point

is not chosen in the neighborhood of a global optimal solution, the target of the sequence

may not be the global optimal solution but another critical point in general. We propose

a method to settle this issue in the next section.

Another question arises as to what will happen if the Hessian of f is degenerate at a

critical point. We will investigate this question in Section 4.6 for our objective function

together with numerical experiments.
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4.5 New algorithms for the singular value decomposi-

tion based on optimization methods on St(p,m) ×
St(p, n)

In this section, we first develop an algorithm for computing the largest singular value

and associated singular vectors of a matrix with p = 1. Then, we propose an improved

algorithm for the singular value decomposition without the restriction of p = 1.

4.5.1 An algorithm for computing the largest singular value and

associated left and right singular vectors

We consider Problem 4.2.2 with p = 1 and N = 1. Since p = 1, Newton’s equation

(4.4.28) can be solved as in (4.4.33) and (4.4.31), so that Algorithm 4.4.5 can be applied.

However, the sequence generated by Newton’s method does not necessarily converge to

a global optimal solution, but often to a local one. Taking this into account, we start

with the conjugate gradient method for Problem 4.2.2, and then switch the method to

Newton’s method, if the current iterate is sufficiently close to an optimal solution. The

new algorithm is stated as follows:

Algorithm 4.5.1 Hybrid method for Problem 4.2.2 with p = 1 and N = 1

1: Choose an initial point (U0, V0) ∈ Sm−1 × Sn−1 and a parameter ε > 0. Set k := 0.
2: Set

(ξ0, η0) = − gradF (U0, V0)

=
(
AV0N − U0 sym

(
UT

0 AV0N
)
, AT U0N − V0 sym

(
V T

0 AT U0N
))

=
(
AV0 − U0U

T
0 AV0, A

T U0 − V0V
T
0 AT U0

)
(4.5.1)

and
(
ξ̄0, η̄0

)
= − (ξ0, η0).

3: while ‖ gradF (Uk, Vk) ‖(Uk,Vk) > ε do
4: Perform Steps 4–7 in Algorithm 4.4.3.
5: k := k + 1.
6: end while
7: Set (u0, v0) := (Uk, Vk) and k := 0.
8: Perform Steps 2–5 in Algorithm 4.4.5.

4.5.2 An algorithm for computing the p largest singular values

and associated left and right singular vectors

For Problem 4.2.2 with a generic number p, we first apply the conjugate gradient method

(Algorithm 4.4.3) to obtain a point
(
Ũ, Ṽ

)
on St(p,m) × St(p, n) close to a global op-
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timal solution. Let u1, . . . , up and v1, . . . , vp denote columns of Ũ and Ṽ from the left,

respectively; Ũ = (u1, . . . , up), Ṽ = (v1, . . . , vp). Then, ui and vi are close to singular

vectors u∗
i and v∗

i associated with the i-th largest singular value, respectively. If ui and

vi are sufficiently close to u∗
i and v∗

i , then the function tr
(
uT

i Avi

)
takes values near to

the singular value σi, as was seen in the paragraph after the proof of Prop. 4.2.1, so that

Newton’s method with p = 1 and with i fixed (Algorithm 4.4.5) generates a sequence on

Sm−1×Sn−1 which quadratically converges to (u∗
i , v

∗
i ). If we obtain singular vectors u∗

i and

v∗
i by Newton’s method for i = 1, . . . , p, we put them together to form U∗ =

(
u∗

1, . . . , u
∗
p

)
and V∗ =

(
v∗

1, . . . , v
∗
p

)
. As the singular vectors are mutually orthogonal if singular values

are distinct, we see that U∗ ∈ St(p,m) and V∗ ∈ St(p, n). Thus we divide our problem into

p subproblems. We now propose the following Algorithm 4.5.2.

Algorithm 4.5.2 Hybrid method for Problem 4.2.2

1: Choose an initial point (U0, V0) ∈ St(p,m) × St(p, n) and a parameter ε > 0. Set
k := 0.

2: Set

(ξ0, η0) = − gradF (U0, V0)

=
(
AV0N − U0 sym

(
UT

0 AV0N
)
, AT U0N − V0 sym

(
V T

0 AT U0N
))

(4.5.2)

and
(
ξ̄0, η̄0

)
= − (ξ0, η0).

3: while ‖ gradF (Uk, Vk) ‖(Uk,Vk) > ε do
4: Perform Steps 4–7 in Algorithm 4.4.3.
5: k := k + 1.
6: end while
7: Set

(
Ũ, Ṽ

)
:= (Uk, Vk).

8: for i = 1, 2, . . . , p do

9: Set (u0, v0) :=
(
Ũi, Ṽi

)
and k := 0, where Ũi and Ṽi are the i-th column vectors of

Ũ and Ṽ , respectively.
10: Perform Steps 2–5 in Algorithm 4.4.5.
11: end for

We here again note that we can use the scaled Fletcher-Reeves type conjugate gradient

method with the differentiated retraction vector transport (Algorithm 4.4.2 with β = βFR,

Ck = 1, T = T R) instead of Algorithm 4.4.3, in order to theoretically ensure the global

convergence of the algorithm.

We perform numerical experiments with the proposed three algorithms for Problem

4.2.2 with m = 500, n = 300, p = 10, N = diag(10, . . . , 2, 1). Here, matrices in question

are generated so as to take the form

A = Ur diag(σ1, . . . , σn)V T
r , (4.5.3)
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where Ur ∈ R
m×n and Vr ∈ R

n×n are orthonormal matrices with randomly chosen elements,

and where σ1 ≥ · · · ≥ σn are also randomly chosen out of the interval [0, 300]. Figs. 4.5.1

and 4.5.2 show the comparison among the performances of Algorithms 4.4.1, 4.4.3, and

4.5.2, where we set ε = 0.5 in Algorithm 4.5.2, and where the vertical axes of these

figures carry different measures. For a given A, an initial point is also chosen randomly on

St(p,m) × St(p, n).
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Figure 4.5.1: Comparison among the performances of the three algorithms with reference
to the difference between the optimal and the current values of the objective function.

The dotted curves in Figs. 4.5.1 and 4.5.2, which are generated by Algorithm 4.4.1,

show that the convergence of the steepest descent method is very slow. The middle-located

dashed curves (from the upper left to the lower right), which are generated by Algorithm

4.4.3, show that the convergence in the conjugate gradient method is much faster than that

in the steepest descent method. If a point close to a global optimal solution is obtained

by the conjugate gradient method, switching to Newton’s method makes the convergence

drastically faster, as is seen in the vertical segments at the iteration number 498. Put

another way, Algorithm 4.5.2 generates a curve composed of three pieces, one of which is

an initial part of the curve generated by the conjugate gradient method, the second piece

is the vertical line segment, and the last piece is the jagged line segment sitting in the

bottom of Figs. 4.5.1 and 4.5.2. The jagged line segment means that our optimal solution

is the best within accuracy subject to machine epsilon.

The computational time for 2000 iterations in Algorithm 4.4.1 and 4.4.3 are 209.4431

seconds and 410.8532 seconds, respectively. For Algorithm 4.5.2, it takes 101.2578 seconds

for 498 iterations in the conjugate gradient method, which is the required time before

switching to Newton’s method, and 2.7388 seconds for 1 iteration in Newton’s method,
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Figure 4.5.2: Comparison among the performances of the three algorithms with reference
to the norm of the gradient of the objective function.

which corresponds to the vertical line segments in Figs. 4.5.1 and 4.5.2. Even though

Newton’s method takes the longest time per iteration among the three, the convergence is

very quick as a whole.

We here note that though Algorithm 4.5.2 consists of two stages, the conjugate gradient

and Newton’s parts, the algorithm is by no means complicated. Though the usual approach

to the singular value decomposition needs preconditioning, the present algorithm does not.

The conjugate gradient part of Algorithm 4.5.2 seems to be like preconditioning.

4.5.3 Accuracy of numerical solutions

If a good approximation to the singular value decomposition ŨΣ̃Ṽ T of a matrix A is known

in advance by using another method, then we have only to perform Newton’s method, that

is, Steps 8–11 of Algorithm 4.5.2, in order to obtain solutions of higher accuracy.

Suppose we are given matrices A of the form (4.5.3) together with N = diag(5, . . . , 2, 1),

where m = 300, n = 100, p = 5, and where Ur ∈ R
m×n and Vr ∈ R

n×n are orthonormal

matrices with randomly chosen elements. Singular values σ1 ≥ · · · ≥ σn are also chosen

randomly from the interval [0, 100] under the condition that A has distinct singular values

among the largest p singular values of each A. In this setting, optimal solutions are given

by Uopt := UrIn,p and Vopt := VrIn,p, where In,p =

⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ ∈ R

n×p. Suppose we obtain
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Ũ , Σ̃, and Ṽ factors of the truncated singular value decomposition of A by applying

MATLAB’s svd function. We can perform Steps 8–11 of Algorithm 4.5.2 with these Ũ

and Ṽ as initial data in order to obtain more accurate decomposition UNewΣNewV T
New. To

see the degree of accuracy, we compare the Frobenius norms ‖ŨT AṼ − UT
optAVopt‖ and

‖UT
NewAVNew − UT

optAVopt‖. If Newton’s method gives a more accurate decomposition, the

following inequality is expected to hold,

‖UT
NewAVNew − UT

optAVopt‖ < ‖ŨT AṼ − UT
optAVopt‖. (4.5.4)

Let UNew and VNew be matrices obtained by performing Steps 8–11 of Algorithm 4.5.2

only once. Our as many as 1000 experiments with randomly chosen matrices A show that

Eq. (4.5.4) holds 962 of the time out of 1000. This means that our Newton’s method

mostly enhances the accuracy of the decomposition obtained by MATLAB’s svd function.

We may perform 10 iterations of Steps 8–11 to obtain a sequence (U1, V1), . . . , (U10, V10).

If we are allowed to define (UNew, VNew) by

(UNew, VNew) := (Ui, Vi), i = arg min
j=1,...,10

‖UT
j AVj − UT

optAVopt‖, (4.5.5)

then Eq. (4.5.4) holds for all 1000 matrices of A. We conclude that if the singular values of

A are not degenerate, our Newton’s method always generates singular value decompositions

of higher accuracy in the end. If A has degenerate singular values, however, unit column

vectors generated by Newton’s methods with p = 1 are not necessarily mutually orthogonal.

We see what will happen if A has degenerate singular values in detail in the next section.

4.6 Degenerate optimal solutions

If singular values are degenerate, the global optimal solutions form a continuum. To see

this, we study the degeneracy of global optimal solutions, using the Hessian of the objective

function F . In the proofs of the following propositions, we use the lemma [EAS98]:

Lemma 4.6.1. The tangent space to St(p, n) at Y ∈ St(p, n) is given by

TY St(p, n) =
{
ξ = Y B + Y⊥C |B ∈ Skew(p), C ∈ R

(n−p)×p
}

, (4.6.1)

where Skew(p) denotes the set of all p × p skew-symmetric matrices, and where Y⊥ is an

arbitrary n × (n − p) orthonormal matrix such that Y Y T + Y⊥Y T
⊥ = In.

We first analyze the case where the p-th singular value is non-vanishing, σp �= 0.

Proposition 4.6.1. Assume that A has k + 1 distinct singular values among the largest p

singular values with multiplicity counted. In other words, the singular values of A ∈ R
m×n

are put in the form σ1 = · · · = σn1 > · · · > σn1+···+nk−1+1 = · · · = σn1+···+nk
> σn1+···+nk+1 =
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· · · = σp = · · · = σn1+···+nk+1
> · · · ≥ σn, where n1, . . . , nk, nk+1 are multiplicities. If

σp �= 0, then global optimal solutions (U∗, V∗) ∈ St(p,m) × St(p, n) to Problem 4.2.2 form

a submanifold diffeomorphic to M := O(n1) × · · · × O(nk) × St(p − q, nk+1), where q :=

n1 + · · · + nk. Further, the Hessian Hess F (U, V ) is degenerate at (U∗, V∗) for the tangent

space to this submanifold, which is viewed as a subspace of T(U∗,V∗)(St(p,m) × St(p, n)).

Proof. From Prop. 4.2.1 and from the course of its proof, it turns out that (U, V ) is a

global optimal solution to Problem 4.2.2 if and only if

AV = US, AT U = V S, (4.6.2)

where S = diag(σ1, . . . , σp). Let (U, V ) be put in the form (U, V ) = ((u1, . . . , up), (v1, . . . , vp)).

From (4.6.2), one has AT AV = V S2, which means that vi is an eigenvector of AT A asso-

ciated with the eigenvalue σ2
i . Let

{
vq+1, . . . , vp, . . . , vq+nk+1

}
be a basis of the eigenspace

associated with the eigenvalues σ2
p of AT A. Since eigenvalues of AT A are degenerate, the

associated orthonormal eigenvectors admit orthogonal transformations in each eigenspace.

Then, for any global optimal solution (U∗, V∗) to Problem 4.2.2, V∗ =
(
v∗

1, . . . , v
∗
p

)
is related

with V = (v1, . . . , vp) and vp+1, . . . , vq+nk+1
by

V∗ =
(
v1, . . . , vn1 , . . . , vn1+···+nk−1+1, . . . , vq, vq+1, . . . , vp, . . . , vq+nk+1

)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1

. . .

Qk

Qk+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.6.3)

where Qi ∈ O(ni), i = 1, . . . , k, and Qk+1 ∈ St(p − q, nk+1), and where we note that(
vq+1, . . . , vq+nk+1

)
Qk+1 gives a system of p−q orthonormal eigenvectors from the eigenspace

associated with σ2
p. Denoting by V̂ ∈ St(q + nk+1, n) and by Q ∈ M the first and second

factor matrices in the right-hand side of (4.6.3), respectively, we put (4.6.3) in the form

V∗ = V̂ Q. (4.6.4)

Further, once V∗ is expressed as above, U∗ is determined from (4.6.2) to be

U∗ = AV∗S−1. (4.6.5)

This means that the optimal solution (U∗, V∗) is determined by the second component
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V∗ only. Eqs.(4.6.4) and (4.6.5) then mean that any optimal solution (U∗, V∗) is related

to (U, V ) by the transformation defined by Q. In other words, Eqs. (4.6.4) and (4.6.5)

with (U, V ) fixed defines a diffeomorphism of M to the degeneracy submanifold formed by

(U∗, V∗)’s.
We proceed to the degeneracy of the Hessian at a global optimal solution (U∗, V∗). In

association with (U∗, V∗), A has a singular value decomposition such that

A = (U∗, U⊥)

⎛
⎜⎜⎜⎝

diag(σ1, . . . , σn)

0

⎞
⎟⎟⎟⎠ (V∗, V⊥)T , (4.6.6)

where U⊥ ∈ St(m−p,m) and V⊥ ∈ St(n−p, n). Since (U∗, U⊥) and (V∗, V⊥) are orthogonal

matrices, we have U∗UT
∗ +U⊥UT

⊥ = Im, V∗V T
∗ +V⊥V T

⊥ = In, and further UT
∗ U⊥ = 0, V T

∗ V⊥ =

0. Let (ξ, η) be a tangent vector to St(p,m)×St(p, n) at (U∗, V∗). Then, Eq. (4.6.1) shows

that ξ and η can be written as

ξ = U∗B + U⊥C, η = V∗D + V⊥E, B,D ∈ Skew(p), C ∈ R
(m−p)×p, E ∈ R

(n−p)×p.

(4.6.7)

Note that UT
∗ AV∗ = S = diag(σ1, . . . , σp), as is seen from Eq. (4.6.2). Denoting

diag(σp+1, . . . , σn) by S⊥, we express diag (σ1, . . . , σn) as

⎛
⎜⎜⎜⎝

S

S⊥

⎞
⎟⎟⎟⎠. Then, we obtain from

Eq. (4.6.6)

UT
∗ AV⊥ = UT

∗ (U∗, U⊥)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S

S⊥

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(V∗, V⊥)T V⊥ = 0, (4.6.8)

where we have used the fact that UT
∗ U⊥ = 0 and V T

∗ V⊥ = 0. Similarly, we also have

UT
⊥AV∗ = 0 and UT

⊥AV⊥ =

⎛
⎜⎜⎜⎝

S⊥

0

⎞
⎟⎟⎟⎠. We are now in a position to write out the quadratic

form 〈Hess F (U∗, V∗)[(ξ, η)], (ξ, η)〉(U∗,V∗) by using Eq. (4.3.22). A calculation is performed
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to provide

〈Hess F (U∗, V∗)[(ξ, η)], (ξ, η)〉(U∗,V∗)

= tr
(
ξT ξUT

∗ AV∗N + UT
∗ AV∗ηT ηN − 2ξT AηN

)

= tr

⎛
⎜⎜⎜⎝(

BT B + CT C
)
SN + S

(
DT D + ET E

)
N − 2

⎛
⎜⎜⎜⎝BT SD + CT

⎛
⎜⎜⎜⎝

S⊥

0

⎞
⎟⎟⎟⎠ E

⎞
⎟⎟⎟⎠N

⎞
⎟⎟⎟⎠

=

p∑
i,j=1

(
σjμj

(
b2
ij + d2

ij

)
− 2σiμjbijdij

)
+

m−p∑
i=1

p∑
j=1

σjμjc
2
ij +

n−p∑
i=1

p∑
j=1

(
σjμje

2
ij − 2σp+iμjcijeij

)

=

p∑
i,j=1

i<j

(
(σiμi + σjμj)

(
b2
ij + d2

ij

)
− 2 (σiμj + σjμi) bijdij

)

+

n−p∑
i=1

p∑
j=1

μj

(
σj

(
c2
ij + e2

ij

)
− 2σp+icijeij

)
+

m−p∑
i=n−p+1

p∑
j=1

σjμjc
2
ij

=

p∑
i,j=1

i<j

(σiμi + σjμj)
−1 (

((σiμj + σjμi) bij − (σiμi + σjμj) dij)
2 +

(
σ2

i − σ2
j

) (
μ2

i − μ2
j

)
b2
ij

)

+

n−p∑
i=1

p∑
j=1

μjσ
−1
j

(
(σp+icij − σjeij)

2 +
(
σ2

j − σ2
p+i

)
c2
ij

)
+

m−p∑
i=n−p+1

p∑
j=1

σjμjc
2
ij. (4.6.9)

We observe from (4.6.9) that the Hessian quadratic form is positive semi-definite and

further that bij with i, j ∈ {1, . . . , n1} , {n1 + 1, . . . , n1 + n2} , . . . , {q + 1, . . . , p} and cij

with i = 1, . . . , q + nk+1 − p, j = q + 1, . . . , p, make no contribution to the positivity

of the Hessian quadratic form because of the degeneracy of singular values. Hence, the

〈Hess F (U∗, V∗)[(ξ, η)], (ξ, η)〉(U∗,V∗) vanishes if and only if bij with i, j ∈ {1, . . . , n1} ,

{n1 + 1, . . . , n1 + n2} , . . . , {q + 1, . . . , p} and cij with i = 1, . . . , q+nk+1−p, j = q+1, . . . , p

are arbitrary but subject to the condition that bij = −bji, and the other bij and cij are 0,

and further dij and eij satisfy

dij = (σiμi + σjμj)
−1 (σiμj + σjμi) bij, eij = σ−1

j σp+icij, (4.6.10)
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respectively. The above-mentioned conditions for B and C are put in the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

. . .

Bk

Bk+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎝

Ck+1

0

⎞
⎟⎟⎟⎠ , (4.6.11)

respectively, where Bi ∈ Skew(ni), i = 1, . . . , k, Bk+1 ∈ Skew(p − q), and

Ck+1 ∈ R
(q+nk+1−p)×(p−q). It then turns out that the Hessian is degenerate for the subspace

of T(U∗,V∗)(St(p, m) × St(p, n)) which is isomorphic to

Skew(n1) × · · · × Skew(nk) × Skew(p − q) × R
(q+nk+1−p)×(p−q)

�TQ1O(n1) × · · · × TQk
O(nk) × TQk+1

St(p − q, nk+1) � TQM. (4.6.12)

This completes the proof.

A similar reasoning applies to the case of σp = 0 as follows:

Proposition 4.6.2. Assume that the singular values of A ∈ R
m×n are given in descending

order by σ1 = · · · = σn1 > · · · > σn1+···+nk−1+1 = · · · = σn1+···+nk
> σn1+···+nk+1 = · · · =

σp = · · · = σn = 0. Let q := n1 + · · · + nk and nk+1 := n − q, so that n1 + · · · + nk+1 =

n. Then, global optimal solutions (U∗, V∗) ∈ St(p,m) × St(p, n) to Problem 4.2.2 form a

submanifold diffeomorphic to M0 := O(n1)×· · ·×O(nk)×St(p−q, nk+1)×St(p−q,m−q).

Further, the Hessian Hess F (U∗, V∗) at (U∗, V∗) is degenerate for the tangent subspace of

T(U∗,V∗)(St(p,m) × St(p, n)) which is isomorphic, as a vector space, to a tangent space to

M0.

Proof. Let (U, V ) ∈ St(p,m)× St(p, n) be a fixed global optimal solution to Problem 4.2.2

and (U∗, V∗) ∈ St(p,m) × St(p, n) be any global optimal solution. The same discussion as

in the proof of Prop. 4.6.1 is carried out to provide Eq. (4.6.4) with V̂ = (V, vp+1, . . . , vn).

However, since S is not invertible, we do not obtain an equation like (4.6.5). Nevertheless,

Sq := diag (s1, . . . , sq) is invertible. Then, we can obtain, in place of (4.6.5),

U∗ = (U1, U2), U1 = AV∗

⎛
⎜⎜⎜⎝

Iq

0

⎞
⎟⎟⎟⎠ S−1

q , AT U2 = 0. (4.6.13)
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This implies that if V∗ is expressed as V∗ = V̂ Q, a part of U∗ or U1-part is determined but

the other part or U2-part is never determined, where the columns of U2 are arbitrary p− q

orthonormal vectors in KerAT . Since dim Ker AT = m − rank A = m − q, we can take

{ũq+1, . . . , ũm} as an orthonormal basis of KerAT . Then, a system of p − q orthonormal

vectors from Ker AT is given by

U2 = (ũq+1, . . . , ũm) Q0, Q0 ∈ St(p − q,m − q). (4.6.14)

Thus, any optimal solution (U∗, V∗) is related to (U, V ) by the transformation determined

by Q := (Q1, . . . , Qk, Qk+1) and Q0. Put another way, if (U, V ) is fixed, the set of optimal

solutions forms a submanifold diffeomorphic to M0.

A similar computation to (4.6.9) results in

〈Hess F (U∗, V∗)[(ξ, η)], (ξ, η)〉(U∗,V∗)

=

q∑
i=1

∑
j>i

(σiμi + σjμj)
−1 (

((σiμj + σjμi) bij − (σiμi + σjμj) dij)
2 +

(
σ2

i − σ2
j

) (
μ2

i − μ2
j

)
b2
ij

)

+

m−p∑
i=1

q∑
j=1

σjμjc
2
ij +

n−p∑
i=1

q∑
j=1

σjμje
2
ij, (4.6.15)

where B, C, D, and E come from Eq. (4.6.7). The condition for

〈Hess F (U∗, V∗)[(ξ, η)], (ξ, η)〉(U∗,V∗) to vanish is that bij with i, j ∈ {1, . . . , n1} ,

{n1 + 1, . . . , n1 + n2} , . . . , {n1 + · · · + nk−1 + 1, . . . , q} , {q + 1, . . . , p} are arbitrary (under

bij = −bji) and the other bij equal to 0, and cij with i = 1, . . . ,m− p, j = 1, . . . , q and eij

with i = 1, . . . , n − p, j = 1, . . . , q are 0 and the other cij and eij arbitrary, and dij with

i, j ∈ {q + 1, . . . , p} are arbitrary (under dij = −dji) and the other dij are given by

dij = (σiμi + σjμj)
−1 (σiμj + σjμi) bij. (4.6.16)

In matrix notation, these constants are put in the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

. . .

Bk

Bk+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C =

(
0 Ck+1

)
, D =

⎛
⎜⎜⎜⎝

DB

Dk+1

⎞
⎟⎟⎟⎠ , E =

(
0 Ek+1

)
,

(4.6.17)

where Bi ∈ Skew(ni), i = 1, . . . , k, Bk+1 ∈ Skew(p − q), Ck+1 ∈ R
(m−p)×(p−q), Dk+1 ∈
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Skew(p− q), Ek+1 ∈ R
(n−p)×(p−q), and where DB is determined by (4.6.16). Therefore, the

subspace on which the Hessian is degenerate is isomorphic with

Skew(n1) × · · · × Skew(nk) × Skew(p − q) × R
(n−p)×(p−q) × Skew(p − q) × R

(m−p)×(p−q)

�TQ1O(n1) × · · · × TQk
O(nk) × TQk+1

St(p − q, nk+1) × TQ0St(p − q,m − q) � T(Q,Q0)M0.

(4.6.18)

This ends the proof.

Though we have so far discussed the degeneracy submanifold of global optimal solutions,

these propositions hold true even if there is no degeneracy in singular values. If σ1 > · · · >

σp > 0, then the transformation matrix Q given in (4.6.3) takes values in O(1)×· · ·×O(1),

the product of p copies of O(1). Since O(1) = {±1}, we have the following corollary.

Corollary 4.6.1. Assume that the largest p singular values σ1, . . . , σp of A ∈ R
m×n are

positive and all distinct, that is, σ1 > · · · > σp > 0. Then, there are 2p global optimal

solutions (U∗, V∗) ∈ St(p,m)× St(p, n) to Problem 4.2.2 and the Hessian Hess F (U∗, V∗) is

positive definite on each T(U∗,V∗)(St(p,m) × St(p, n)).

In order to see that sequences generated by Newton’s method indeed converge to a set

of global optimal solution given by M of Prop. 4.6.1, we perform Algorithm 4.5.2 for the

case of m = n = 3, p = 2, A = diag(1, 1, 0) with various randomly chosen initial points.

In this case, Prop. 4.6.1 means that the set of global optimal solutions is diffeomorphic to

M = O(2). One of the global optimal solutions is (U, V ) =

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

I2

0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

I2

0

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠. For any

global optimal solution (U∗, V∗), there exists Q ∈ O(2) such that U∗ = UQ, V∗ = V Q. The

Q is equal to V T V∗ and in one-to-one corresponds to (U∗, V∗).
For Q ∈ O(2) with det Q = 1, there exists a unique θ ∈ [0, 2π) such that Q =⎛

⎜⎜⎜⎝
cos θ − sin θ

sin θ cos θ

⎞
⎟⎟⎟⎠. If det Q = −1 then Q =

⎛
⎜⎜⎜⎝

cos θ sin θ

sin θ − cos θ

⎞
⎟⎟⎟⎠. We perform the algo-

rithm with 2000 randomly chosen initial points to observe that the resultant Q’s lie all

over O(2). Since the target manifold is disconnected, we first compute det Q and then

calculate θ. In our experiment, the 891 of 2000 resultant Q’s have the determinant 1 and

the others −1. Plotting the values of θ for Q with det Q = 1 results in the left figure (a)

of Fig. 4.6.1. The right figure 4.1(b) is a histogram obtained by counting dots in 4.1(a) in

each subinterval of θ. Fig. 4.6.2 is for Q with det Q = −1. It turns out that sequences gen-

erated by the present algorithm can converge to any point of the set M of global optimal

solutions given in Prop. 4.6.1.
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Figure 4.6.1: Values of θ corresponding to Q with det Q = 1.
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Figure 4.6.2: Values of θ corresponding to Q with det Q = −1.
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4.7 Summary

We have dealt with the problem of the singular value decomposition as an optimization

problem on the product manifold St(p,m)×St(p, n) (see Problem 4.2.2). In order to develop

optimization algorithms for this problem, we have set up materials such as retractions and

the gradient and the Hessian of the objective function F on St(p,m) × St(p, n).

The steepest descent method needs the gradient of F , but not the Hessian. Though this

algorithm is simple, the convergence is slow. Alternatively, we have set up the conjugate

gradient method for the problem, which converges faster. However, the convergence is still

slower than that of Newton’s method. Newton’s method, however, has the drawback that

it is likely to converge to a solution not globally but locally. Moreover, Newton’s equation

(4.4.28) with p �= 1 is difficult to solve.

We have resolved these difficulties as in Algorithm 4.5.2. For speeding up the conver-

gence, we combine Newton’s method with the conjugate gradient method, and for dimin-

ishing the difficulty in solving (4.4.28), we divide the problem into subproblems in which

we use Newton’s method with p = 1 (Algorithm 4.4.5).

Furthermore, if we know a good approximation of a global optimal solution of Problem

4.2.2 in advance, we need not perform the conjugate gradient method, but only Newton’s

method. We have compared the singular value decomposition obtained by MATLAB’s svd

function with that obtained by Newton’s method to show that Newton’s method generates

a better solution.

Our present algorithm deals with the singular value decomposition of a real matrix.

For a complex matrix A ∈ C
m×n, an expected objective function is − tr(UHAV N), which

is no longer real-valued, where the superscript H means the Hermitian conjugation. A way

to generalize the proposed algorithm to a complex case is to define the objective function

F by F (U, V ) = −|tr (U∗AV N)|2, but the computation of the gradient and the Hessian of

F is not so straightforward. More effective way is to use the objective function of the form

−Re
(
UHAV N

)
. We will further discuss the problem in Chapter 5.

The use of our algorithm depends on the compactness of St(p,m) × St(p, n). Because

of compactness, the steepest descent, the conjugate gradient, and Newton’s methods can

generate converging sequences for an arbitrarily given initial point, though a target point

is not necessarily a global optimal point if Newton’s method is adopted. To the contrary,

if the manifold in question is not compact, we have to guess a domain in which we put an

initial point to get a converging sequence.
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Chapter 5

A Complex Singular Value

Decomposition Algorithm

Based on the Riemannian Newton

Method

5.1 Introduction

In Chapter 4, an algorithm for the singular value decomposition of a real matrix has been

proposed on the basis of Riemannian optimization methods on the product of two real

Stiefel manifolds. The singular value decomposition of a complex matrix, which is also

used frequently [AFG91, HC92], has not been formulated as a Riemannian optimization

problem. In this chapter, a complex singular value decomposition algorithm based on

the Riemannian Newton method is proposed as a generalization of the real singular value

decomposition algorithm discussed in Chapter 4.

As is expected, the complex singular value decomposition problem is described as a

Riemannian optimization problem on the product of two complex Stiefel manifolds. How-

ever, optimization problems with complex variables are somewhat difficult to solve directly.

Methods to solve such problems have been still developing. See [SBL12] for a recent re-

search for Euclidean unconstrained optimization of general real-valued objective functions

with complex variables. An example of approaches to problems on the complex Stiefel

manifold is found in [Man02]. In this chapter, the complex matrix variables are decom-

posed into the real and imaginary parts in order to reformulate the problem into a real one,

so that standard Riemannian Newton’s method can be applied. For a general optimization

problem with complex variables, such an approach may sometimes disguise the inherent

structure of the problem in its original complex form. However, for the problem which

is dealt with in this chapter, rewriting into a real one still keeps the problem having the

structure of the (real) Stiefel manifold. Newton’s method for the resulting real problem is
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obtained in a similar manner to the approach in Chapter 4. Further, the proposed algo-

rithm is in turn put into an algorithm on the complex problem. Numerical experiments

show that a sequence generated by the final algorithm, if it converges, exhibits a quadratic

convergence.

The organization of the chapter is as follows: For feasibility purpose, the problem is

equivalently rewritten as a problem on the product of two real manifolds, each of which

is an intersection of the real Stiefel manifold and the “quasi-symplectic set” to be defined

in Section 5.2. The Riemannian geometry of the real product manifold in question is

investigated after Chapter 4 in Section 5.3. In particular, the gradient and the Hessian of

the objective function are given together with a retraction map. In this setting, Newton’s

method on the real product manifold is developed in Section 5.4, which is in turn converted

to that on the complex product manifold, and followed by a new complex singular value

decomposition algorithm. A numerical experiment is also performed to show that the

present algorithm may improve the accuracy of a complex singular value decomposition

obtained by an existing method. Moreover, like the algorithm given in Chapter 4, the

proposed algorithm divides the problem into easier subproblems, which can be solved in

parallel. This chapter concludes with some remarks in Section 5.5.

5.2 Complex singular value decomposition and the

corresponding Riemannian optimization problem

5.2.1 Setting up

Let m and n be positive integers with m ≥ n. As is discussed in Chapter 4, the singular

value decomposition of an m × n real matrix A is wholly or partly realized by solving

an optimization (minimization) problem on St(p, m, R) × St(p, n, R), where p is an arbi-

trary positive integer not greater than n, St(p, n, R) is the real Stiefel manifold defined by

St(p, n, R) =
{
Y ∈ R

n×p |Y T Y = Ip

}
. The objective function FR of the problem is

FR(U, V ) = − tr(UT AV N), (U, V ) ∈ St(p,m, R) × St(p, n, R), (5.2.1)

where N = diag(μ1, . . . , μp), μ1 > · · · > μp > 0. The solution to the present optimization

problem is a pair of matrices whose columns are left and right singular vectors associated

with the p largest singular values of A, respectively.

We turn to the singular value decomposition of an m × n complex matrix A, which is

expressed as

A = UΣV H , U ∈ U(m), V ∈ U(n), Σ =

⎛
⎜⎜⎜⎝

Σ1

0

⎞
⎟⎟⎟⎠ , (5.2.2)
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where Σ1 = diag(σ1, . . . , σn), σ1 ≥ · · · ≥ σn ≥ 0, and where the superscript H denotes

the Hermitian conjugation of a matrix. The non-negative real numbers σ1, . . . , σn are

called the singular values of A and the j-th columns of U and V are the left and right

singular vectors associated with σj, respectively. In a similar manner to the real case

discussed in [AMS08,SI13] (see Chapter 4), we consider a truncated complex singular value

decomposition of A. The problem is to find the left and right singular vectors associated

with p largest singular values of A, where p is an arbitrarily fixed integer not greater than

n.

The truncated complex singular value decomposition is naturally formulated to be

an optimization problem on St(p,m, C) × St(p, n, C), where St(p, n, C) is the complex

Stiefel manifold defined by St(p, n, C) =
{
Y ∈ C

n×p |Y HY = Ip

}
. With the same matrix

N as described above, the objective function (5.2.1) would be replaced by − tr(UHAV N)

with (U, V ) ∈ St(p,m, C) × St(p, n, C). However, this function is no longer real-valued in

general, and not appropriate as an objective function. An alternative objective function is

f(U, V ) = −|tr(UHAV N)|. However, as will be shown in Thm. 5.2.1, another real-valued

function F (U, V ) = −Re(tr(UHAV N)) is an appropriate objective function, where Re(·)
denotes the real part of the quantity in the parentheses. Further, the function F is better

than f from both theoretical and numerical viewpoints. Indeed, if we try to use f as an

objective function, we end up with choosing the square of f in computing the gradient and

the Hessian with respect to U and V . In contrast with this, if F is chosen as an objective

function, its gradient and Hessian can be calculated without squaring F , and further F

consists only of the real part of tr(UHAV N) while f includes both the real and imaginary

parts. For this reason, F is a better choice for computing requisites. See also the remark

to be made below Problem 5.2.3.

Now, we deal with the following optimization problem on St(p,m, C) × St(p, n, C).

Problem 5.2.1.

minimize F (U, V ) = −Re(tr(UHAV N)), (5.2.3)

subject to (U, V ) ∈ St(p,m, C) × St(p, n, C), (5.2.4)

where N = diag(μ1, . . . , μp), μ1 > · · · > μp > 0.

Although the objective function F consists of the real part of tr(UHAV N), it works well

for finding the truncated singular value decomposition of A, as is shown in the following

theorem.

Theorem 5.2.1. Let (U∗, V∗) be an optimal solution to Problem 5.2.1. Then, the j-th

columns of U∗ and V∗ are the left and right singular vectors of A associated with the j-th

dominant singular value, respectively. In addition, the p largest singular values σ1 ≥ · · · ≥
σp can be calculated through the formula UH

∗ AV = diag(σ1, . . . , σp), i.e., Eq. (5.2.22) with

sj = σj.
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To prove the theorem, we put Problem 5.2.1 into the form of a real problem. We

denote A = B + iC, U = X + iY , and V = Z + iW , where B, C ∈ R
m×n are the real and

imaginary parts of A ∈ C
m×n, respectively, and where X, Y ∈ R

m×p and Z, W ∈ R
n×p

are those of U ∈ C
m×p and V ∈ C

n×p, respectively. The conditions UHU = V HV = Ip for

(U, V ) ∈ St(p,m, C)× St(p, n, C) are written out in terms of X,Y, Z,W , and the objective

function −Re(tr(UHAV N)) are expressed in terms of B,C,X, Y, Z,W as well. Hence,

Problem 5.2.1 can be put equivalently in the real form as follows:

Problem 5.2.2.

maximize G(X,Y, Z,W ) = tr((XT BZ − XT CW + Y T BW + Y T CZ)N), (5.2.5)

subject to XT X + Y T Y = ZT Z + W T W = Ip,

XT Y − Y T X = ZT W − W T Z = 0. (5.2.6)

We here introduce the Lagrangian of Problem 5.2.2 by

L(X,Y, Z,W, Λ, Ω, Γ, Δ)

=G(X,Y, Z,W ) + tr(Λ(XT X + Y T Y − Ip))

+ tr(Ω(ZT Z + W T W − Ip)) + tr(Γ(XT Y − Y T X)) + tr(Δ(ZT W − W T Z)), (5.2.7)

where Λ, Ω ∈ Sym(p) and Γ, Δ ∈ Skew(p) are the Lagrange multiplier matrices, and

where Sym(p) and Skew(p) are the sets of all p × p real symmetric and skew-symmetric

matrices, respectively. Note here that XT X + Y T Y − Ip, Z
T Z + W T W − Ip ∈ Sym(p) and

XT Y − Y T X,ZT W − W T Z ∈ Skew(p).

Let LX denote the partial derivative of L with respect to X, and so on. Since LX =

LY = 0, LZ = LW = 0, and LΛ = LΩ = LΓ = LΔ = 0 at an optimal solution

(X∗, Y∗, Z∗,W∗, Λ∗, Ω∗, Γ∗, Δ∗), we have

(BZ∗ − CW∗)N + 2X∗Λ∗ + 2Y∗Γ∗ = 0, (5.2.8)

(BW∗ + CZ∗)N + 2Y∗Λ∗ − 2X∗Γ∗ = 0, (5.2.9)

(BT X∗ + CT Y∗)N + 2Z∗Ω∗ + 2W∗Δ∗ = 0, (5.2.10)

(BT Y∗ − CT X∗)N + 2W∗Ω∗ − 2Z∗Ω∗ = 0, (5.2.11)

XT
∗ X∗ + Y T

∗ Y∗ = ZT
∗ Z∗ + W T

∗ W∗ = Ip, (5.2.12)

XT
∗ Y∗ − Y T

∗ X∗ = ZT
∗ W∗ − W T

∗ Z∗ = 0. (5.2.13)

We return to the proof of the theorem in the complex form. Let U∗ = X∗ + iY∗ and

V∗ = Z∗ + iW∗. Note that rewriting Eqs. (5.2.12) and (5.2.13) into the complex forms

results in UH
∗ U∗ = V H

∗ V∗ = Ip. Adding (5.2.8) to (5.2.9) multiplied by i, we obtain

AV∗N + 2U∗(Λ∗ − iΓ∗) = 0. (5.2.14)
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Since UH
∗ U∗ = Ip, it follows from (5.2.14) that

Λ∗ − iΓ∗ = −1

2
UH
∗ AV∗N. (5.2.15)

Substituting (5.2.15) into (5.2.14) yields

AV∗ = U∗UH
∗ AV∗. (5.2.16)

Also, since Λ∗ ∈ Sym(p) and Γ∗ ∈ Skew(p), we obtain

(Λ∗ − iΓ∗)H = ΛT
∗ + iΓT

∗ = Λ∗ − iΓ∗, (5.2.17)

which implies that Λ∗−iΓ∗ is a Hermitian matrix. Therefore, the right-hand side of (5.2.15)

is also Hermitian, so that we have

UH
∗ AV∗N = NV H

∗ AHU∗. (5.2.18)

In a similar manner, Eqs. (5.2.10) and (5.2.11) are put together to eventually give rise to

AHU∗ = V∗V H
∗ AHU∗, (5.2.19)

V H
∗ AHU∗N = NUH

∗ AV∗. (5.2.20)

From (5.2.18) and (5.2.20), it follows that

UH
∗ AV∗N2 = N2UH

∗ AV∗. (5.2.21)

Since N2 is a diagonal matrix, Eq. (5.2.21) implies that UH
∗ AV∗ is a diagonal matrix as

well, which we express as

UH
∗ AV∗ = diag(s1, . . . , sp). (5.2.22)

From (5.2.22) and its Hermitian conjugate, Eq. (5.2.18) is found to take the form

diag(s1μ1, . . . , spμp) = diag(s̄1μ1, . . . s̄pμp), (5.2.23)

which implies that sj’s are real numbers. In addition, Eqs. (5.2.16) and (5.2.19) are put

together to imply that

AHAV∗ =(AHU∗)(UH
∗ AV∗)

=V∗(V H
∗ AHU∗)(UH

∗ AV∗)

=V∗ diag(s1, . . . , sp)
2

=V∗ diag(s2
1, . . . , s

2
p), (5.2.24)
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which means that s2
j are eigenvalues of AHA and that the j-th column of V∗ is the

corresponding eigenvector. Then, the objective function G regarded as the function of

(U, V ) ∈ St(p,m, C) × St(p, n, C) is evaluated at an optimal solution (U∗, V∗) as

G(U∗, V∗) = tr(UH
∗ AV∗N) =

p∑
j=1

sjμj. (5.2.25)

Since μ1 > · · · > μp > 0 and since (U, V ) = (U∗, V∗) are supposed to maximize G(U, V ),

sj’s should be the p largest singular values among all the singular values of A and be

ordered as s1 ≥ · · · ≥ sp ≥ 0. Therefore, sj is the j-th largest singular value of A and the

j-th column of V∗ is the corresponding right singular vector. Similarly, the j-th column of

U∗ is the left singular vector associated with sj. This completes the proof.

5.2.2 Realization of St(p, n, C) as the intersection of the real Stiefel

manifold and the quasi-symplectic set

An n×n complex matrix D = E + iF ∈ C
n×n, E,F ∈ R

n×n, can be expressed as a 2n×2n

real matrix

D̃ =

⎛
⎜⎜⎜⎝

E F

−F E

⎞
⎟⎟⎟⎠ , (5.2.26)

and vice versa. A 2n × 2n matrix D̂ has the form (5.2.26) if and only if

JnD̂ = D̂Jn, Jn :=

⎛
⎜⎜⎜⎝

0 In

−In 0

⎞
⎟⎟⎟⎠ . (5.2.27)

Further, if D = E + iF is unitary, then the corresponding real matrix D̃ given in (5.2.26)

becomes orthogonal, and the condition JnD̃ = D̃Jn is equivalently written as D̃T JnD̃ = Jn,

which implies that D̃ is a symplectic matrix. Let Sp(n, R) denote the real symplectic group

defined by

Sp(n, R) =
{

D̃ ∈ R
2n×2n | D̃T JnD̃ = Jn

}
. (5.2.28)

Then, the map

ψ(n) : U(n) → O(2n) ∩ Sp(n, R); (5.2.29)
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ψ(n)(E + iF ) =

⎛
⎜⎜⎜⎝

E F

−F E

⎞
⎟⎟⎟⎠ , (5.2.30)

gives an isomorphism between U(n) and O(2n) ∩ Sp(n, R).

We generalize the mapping ψ(n) into the rectangular matrix case. We first define

SP(p, q) for integers p, q as

SP(p, q) =
{

D̃ ∈ R
2q×2p | D̃Jp = JqD̃

}
, (5.2.31)

which we call the quasi-symplectic set. Note that if p = q = n, then U(n) � O(2n) ∩
Sp(n, R) = O(2n) ∩ SP(n, n), though SP(n, n) itself is not identical to Sp(n, R). The set

C
n×p of all n × p complex matrices is isomorphic to SP(p, n) with the isomorphism

φ(p,n) : C
n×p → SP(p, n); φ(p,n)(E + iF ) =

⎛
⎜⎜⎜⎝

E F

−F E

⎞
⎟⎟⎟⎠ , (5.2.32)

where E,F ∈ R
n×p. Then, the map φ(p,n)|St(p,n,C), which is the restriction of φ(p,n) to the

complex Stiefel manifold St(p, n, C), gives a real expression of St(p, n, C), which we denote

by

Stp(p, n) := St(2p, 2n, R) ∩ SP(p, n). (5.2.33)

We introduce the set SP(n) as the collection of SP(p, q) over all positive integers

p, q ≤ n:

SP(n) = ∪ 0<p≤n
0<q≤n

SP(p, q). (5.2.34)

Also, we define the map φ as the collection of φ(p,q):

φ(B) = φ(p,q)(B), B ∈ C
q×p. (5.2.35)

In what follows, for a square or rectangular complex matrix B, we denote the matrix

φ(B) ∈ SP(n) by B̃ = φ(B). Then, matrix operations on matrices without and with tilde

are related as follows:

B + C ←→ B̃ + C̃, BD ←→ B̃D̃, BH ←→ B̃T , (5.2.36)

and the traces of matrices with and without tilde are related by

2 Re(tr(E)) = tr(Ẽ), (5.2.37)
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where B,C,D are complex matrices of appropriate size for addition and multiplication,

and where E is a square complex matrix. Note that the set SP(n) is closed under the

operations in the right-hand sides of (5.2.36).

We are now in a position to deal with the complex Stiefel manifold St(p, n, C) in the

real form Stp(p, n) given in (5.2.33). On account of Eq. (5.2.37), the objective function

F (U, V ) = −Re(tr(UHAV N)) in Problem 5.2.1 is now rewritten as

−Re(tr(UHAV N)) = −1

2
tr(ŨT ÃṼ Ñ). (5.2.38)

We remain to use the same symbol F to denote the function of (Ũ, Ṽ ) ∈ Stp(p,m) ×
Stp(p, n) in the right-hand side of (5.2.38). Thus, we are led to the following optimization

problem on Stp(p,m) × Stp(p, n).

Problem 5.2.3.

minimize F (Ũ, Ṽ ) = −1

2
tr(ŨT ÃṼ Ñ), (5.2.39)

subject to (Ũ, Ṽ ) ∈ Stp(p,m) × Stp(p, n), (5.2.40)

where Ñ =

⎛
⎜⎜⎜⎝

N 0

0 N

⎞
⎟⎟⎟⎠.

We note that the fact that Problem 1 is naturally put into Problem 3 as a real expression

shows another merit in choosing F (U, V ) = −Re(tr(UHAV N)) as an objective function

rather than f(U, V ) = −|tr(UHAV N)|.

5.3 Riemannian geometry of Stp(p,m) × Stp(p, n)

In order to apply Newton’s method to Problem 5.2.3, we need the gradient and the Hessian

of the objective function F together with a retraction [AMS08] on the product manifold

Stp(p,m)×Stp(p, n). In this section, we deal with the Riemannian geometry of Stp(p, m)×
Stp(p, n) by employing the results in Chapter 4.

5.3.1 Tangent spaces and the orthogonal projection

The tangent space to Stp(p,m) × Stp(p, n) at (Ũ, Ṽ ) is given by

T(Ũ,Ṽ ) (Stp(p,m) × Stp(p, n))

=
{

(ξ̃, η̃) ∈ SP(p,m) × SP(p, n) | ξ̃T Ũ + ŨT ξ̃ = η̃T Ṽ + Ṽ T η̃ = 0
}

. (5.3.1)
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We proceed to endow Stp(p,m) × Stp(p, n) with a Riemannian metric. The Euclidean

space R
2n×2p is endowed with the standard inner product

(M1,M2) = tr(MT
1 M2), M1,M2 ∈ R

2n×2p. (5.3.2)

When restricted to the subspace SP(p, n) of R
2n×2p, the inner product takes the form

(B̃, C̃) = tr(B̃T C̃) = 2 tr(BT
1 C1 + BT

2 C2), (5.3.3)

for B̃ =

⎛
⎜⎜⎜⎝

B1 B2

−B2 B1

⎞
⎟⎟⎟⎠ , C̃ =

⎛
⎜⎜⎜⎝

C1 C2

−C2 C1

⎞
⎟⎟⎟⎠ ∈ SP(p, n). Getting rid of the factor 2 in the

right-hand side of (5.3.3), we define the inner product on SP(p, n) to be

〈B̃, C̃〉 =
1

2
tr(B̃T C̃), B̃, C̃ ∈ SP(p, n). (5.3.4)

Then, the manifold Stp(p, n) as a submanifold of SP(p, n) is endowed with the induced

metric. Further, the product manifold Stp(p,m) × Stp(p, n) is endowed with the product

metric, which is expressed as

〈(ξ̃1, η̃1), (ξ̃2, η̃2)〉(Ũ,Ṽ ) =
1

2

(
tr(ξ̃T

1 ξ̃2) + tr(η̃T
1 η̃2)

)
, (5.3.5)

for (ξ̃1, η̃1), (ξ̃2, η̃2) ∈ T(Ũ,Ṽ ) (Stp(p,m) × Stp(p, n)).

If we regard Stp(p,m)×Stp(p, n) as a Riemannian submanifold of SP(p, m)×SP(p, n),

we can exploit a previous result in Chapter 4 to obtain the following proposition.

Proposition 5.3.1. For any (B̃, C̃) ∈ SP(p,m) × SP(p, n), the orthogonal projection

operator P(Ũ,Ṽ ) onto the tangent space T(Ũ,Ṽ )(Stp(p, m) × Stp(p, n)) at (Ũ, Ṽ ) is given by

P(Ũ,Ṽ )(B̃, C̃) =
(
PŨ(B̃), PṼ (C̃)

)
, (5.3.6)

where

PŨ(B̃) = B̃ − Ũ sym
(
ŨT B̃

)
, (5.3.7)

PṼ (C̃) = C̃ − Ṽ sym
(
Ṽ T C̃

)
, (5.3.8)

and where sym(B̃) := (B̃ + B̃T )/2 denotes the symmetric part of B̃.

Proof. On account of the right-hand sides of (5.3.7) and (5.3.8), it is easy to verify that
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P(Ũ,Ṽ )(B̃, C̃) ∈ SP(p,m) × SP(p, n). The remaining task is to show that

PŨ(B̃)T Ũ + ŨT PŨ(B̃) = PṼ (C̃)T Ṽ + Ṽ T PṼ (C̃) = 0 (5.3.9)

and

〈(B̃, C̃) − P(Ũ,Ṽ )(B̃, C̃), (ξ̃, η̃)〉(Ũ,Ṽ ) = 0 (5.3.10)

for any (ξ̃, η̃) ∈ T(Ũ,Ṽ )(Stp(p,m) × Stp(p, n)). Eq. (5.3.9) is an easy consequence of ŨT Ũ =

Ṽ T Ṽ = I2p, and Eq. (5.3.10) results from the fact that the trace of the product of symmetric

and skew-symmetric matrices is zero.

5.3.2 Retraction

In each iteration of a Riemannian optimization method on a manifold M , for a given search

direction η ∈ TxM at a current point x ∈ M , a search should be performed on a curve

emanating from x in the direction of η. For this purpose, it is necessary to find a retraction

on the manifold M in question, which is a map from TM to M (see Subsection 2.2.1).

On the real Stiefel manifold St(p, n, R), there exists a retraction based on the QR

decomposition, which is denoted by RR and defined to be

RR

Y (ξ) = qf(Y + ξ), Y ∈ St(p, n, R), ξ ∈ TY St(p, n, R), (5.3.11)

where RR

Y is the restriction of RR to TY St(p, n, R), and where qf(·) denotes the Q-factor

of the QR decomposition of the matrix in the parentheses (see Section 2.3). However, this

RR cannot apply for the case of Stp(p, n). This is because even if B̃ ∈ SP(p, n), qf(B̃) no

longer belongs to SP(p, n) in general. An alternative approach is to start with the QR-

based retraction RC on St(p, n, C), and then to return to SP(p, n). Here, RC is defined

by

RC

U(ξ) = qf(U + ξ), U ∈ St(p, n, C), ξ ∈ TUSt(p, n, C), (5.3.12)

where the qf in (5.3.12) denotes the Q-factor of the complex QR decomposition. That is,

if a full-rank n × p complex matrix M is decomposed into

M = QR, Q ∈ St(p, n, C), R ∈ S+
upp(p), (5.3.13)

then qf(M) = Q, where S+
upp(p) denotes the set of all p× p upper triangular matrices with

strictly positive diagonal entries. We then define the QR-based retraction RStp on Stp(p, n)

as follows:

RStp

Ũ
(ξ̃) = φ

(
RC

φ−1(Ũ)
(φ−1(ξ̃))

)
= φ

(
RC

U(ξ)
)
, Ũ ∈ Stp(p, n), ξ̃ ∈ TŨStp(p, n),

(5.3.14)

where φ is defined in (5.2.32).
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A retraction R̃ on Stp(p,m) × Stp(p, n) is immediately defined as

R̃(Ũ,Ṽ )(ξ̃, η̃) =
(
RStp

Ũ
(ξ̃), RStp

Ṽ
(η̃)

)
, (5.3.15)

(Ũ, Ṽ ) ∈ Stp(p,m) × Stp(p, n), (ξ̃, η̃) ∈ T(Ũ,Ṽ )(Stp(p,m) × Stp(p, n)).

5.3.3 The gradient and the Hessian

The objective function (5.2.39) in Problem 5.2.3 is quite similar to the function (5.2.1)

which is investigated in Chapter 4. The only difference is the factor 1/2 in (5.2.39).

However, because of the factor 1/2 in the metric (5.3.5) on Stp(p,m) × Stp(p, n), the

gradient and the Hessian of the current objective function F on Stp(p,m)×Stp(p, n) have

the same forms as those given in Chapter 4.

Proposition 5.3.2. For (Ũ, Ṽ ) ∈ Stp(p, m) × Stp(p, n), let S̃1 and S̃2 be defined to be

S̃1 = sym
(
ŨT ÃṼ Ñ

)
and S̃2 = sym

(
Ṽ T ÃT ŨÑ

)
, respectively. Then, the gradient of

(5.2.39) at (Ũ, Ṽ ) ∈ Stp(p,m) × Stp(p, n) is expressed as

grad F (Ũ, Ṽ ) =
(
Ũ S̃1 − ÃṼ Ñ, Ṽ S̃2 − ÃT ŨÑ

)
. (5.3.16)

Further, let (ξ̃, η̃) be a tangent vector at (Ũ, Ṽ ) ∈ Stp(p,m) × Stp(p, n). The Hessian of

(5.2.39) at (Ũ, Ṽ ) is viewed as a linear transformation of the tangent space and given by

Hess F (Ũ, Ṽ )[(ξ̃, η̃)]

=
(
ξ̃S̃1 − Ãη̃Ñ − Ũ sym

(
ŨT (ξ̃S̃1 − Ãη̃Ñ)

)
, η̃S̃2 − ÃT ξ̃Ñ − Ṽ sym

(
Ṽ T

(
η̃S̃2 − ÃT ξ̃Ñ

)))
.

(5.3.17)

5.4 Newton’s method and a new complex singular

value decomposition algorithm

In this section, we develop a new complex singular value decomposition algorithm based

on the Riemannian Newton method.

5.4.1 Newton’s method for Problem 5.2.3

We apply the Riemannian Newton method [AMS08] to Problem 5.2.3. For a tangent vector

(ξ̃, η̃) to Stp(p,m)× Stp(p, n) at (Ũk, Ṽk) ∈ Stp(p, m)× Stp(p, n), Newton’s equation takes

the form

Hess F (Ũk, Ṽk)[(ξ̃, η̃)] = − grad F (Ũk, Ṽk). (5.4.1)
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On substituting (5.3.16) and (5.3.17) into (5.4.1), Newton’s equation for (5.2.39) can be

easily written out. Further, the QR-based retraction R̃ on Stp(p,m) × Stp(p, n) has been

given in (5.3.15). On the basis of these arrangements, Newton’s method for Problem 5.2.3

is described as Algorithm 5.4.1.

Algorithm 5.4.1 Newton’s method for Problem 5.2.3

1: Choose an initial point (Ũ0, Ṽ0) ∈ Stp(p,m) × Stp(p, n).
2: for k = 0, 1, 2, . . . do
3: Compute the search direction (ξ̃k, η̃k) ∈ T(Ũk,Ṽk) (Stp(p,m) × Stp(p, n)) by solving

Newton’s equations⎧⎨
⎩

ξ̃kS̃1,k − Ãη̃kÑ − Ũk sym
(
ŨT

k (ξ̃kS̃1,k − Ãη̃kÑ)
)

= ÃṼkÑ − ŨkS̃1,k,

η̃kS̃2,k − ÃT ξ̃kÑ − Ṽk sym
(
Ṽ T

k

(
η̃kS̃2,k − ÃT ξ̃kÑ

))
= ÃT ŨkÑ − ṼkS̃2,k,

(5.4.2)

where S̃1,k = sym(ŨT
k ÃṼkÑ) and S̃2,k = sym(Ṽ T

k ÃT ŨkÑ).
4: Compute the next iterate

(Ũk+1, Ṽk+1) := R̃(Ũk,Ṽk)(ξ̃k, η̃k), (5.4.3)

where R̃ is the QR-based retraction on Stp(p,m) × Stp(p, n) defined in (5.3.15).
5: end for

Algorithm 5.4.1 is quite similar to Algorithm 4.4.4 in Chapter 4. In Chapter 4, Newton’s

equation are divided into a collection of sub-equations by putting p = 1 and treating the

equation on St(1,m, R) × St(1, n, R) = Sm−1 × Sn−1. This makes Newton’s equation into

a vector equation which is easy to solve. However, this division method does not result in

an easy-to-perform algorithm for the present Newton’s equation. This is because even for

p = 1, Newton’s equations in Algorithm 2.2.1 are still matrix equations for 2m × 2 and

2n×2 matrices, ξ̃k and η̃k, which are still difficult to solve. Furthermore, as we can observe

from (5.2.30), treating matrices on Stp(p, n) needs twice as much computer memory as

those on St(p, n, C). Also, addition and multiplication of matrices on Stp(p, n) need about

twice as much computation time as those on St(p, n, C). To avoid these difficulties, we

shall put Algorithm 2.2.1 in the complex form in the next subsection.

5.4.2 Newton’s method for Problem 5.2.1

Through the map φ−1, Newton’s method for Problem 5.2.3 can be translated into Newton’s

method for Problem 5.2.1 on St(p,m, C) × St(p, n, C). In the process of translation, the

relations (5.2.36) are used together with the relation for B ∈ C
p×p and B̃ = φ(B) ∈
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SP(p, p),

sym(B̃) =
B̃ + B̃T

2
←→ B + BH

2
= her(B), (5.4.4)

where her(·) denotes the Hermitian part of the matrix in the parentheses. Further, the

retraction R̃ given in (5.3.15) on Stp(p,m) × Stp(p, n) corresponds to the retraction R on

St(p,m, C) × St(p, n, C) defined by

R(U,V )(ξ, η) =
(
RC

U(ξ), RC

V (η)
)

= (qf(U + ξ), qf(V + η)), (5.4.5)

(U, V ) ∈ St(p,m, C) × St(p, n, C), (ξ, η) ∈ T(U,V )(St(p,m, C) × St(p, n, C)). (5.4.6)

Thus, Algorithm 2.2.1 is translated to Algorithm 5.4.2 for Problem 5.2.1, which provides

Newton’s method for Problem 1.

Algorithm 5.4.2 Newton’s method for Problem 5.2.1

1: Choose an initial point (U0, V0) ∈ St(p,m, C) × St(p, n, C).
2: for k = 0, 1, 2, . . . do
3: Compute the search direction (ξk, ηk) ∈ T(Uk,Vk) (St(p,m, C) × St(p, n, C)) by solving

Newton’s equations{
ξkS1,k − AηkN − Uk her

(
UH

k (ξkS1,k − AηkN)
)

= AVkN − UkS1,k,

ηkS2,k − AHξkN − Vk her
(
V H

k

(
ηkS2,k − AHξkN

))
= AHUkN − VkS2,k,

(5.4.7)

where S1,k = her(UH
k AVkN) and S2,k = her(V H

k AHUkN).
4: Compute the next iterate

(Uk+1, Vk+1) := R(Uk,Vk)(ξk, ηk), (5.4.8)

where R is the QR-based retraction on St(p,m, C) × St(p, n, C) defined in (5.4.6).
5: end for

Though Newton’s equations in Algorithm 5.4.2 are not easy to solve, the problem can

be divided into p subproblems which are easy to solve, as is done in Chapter 4. To this

end, we treat Newton’s equations with p = 1 at first. If p = 1, then N is a positive real

number, and hence we may put N = 1 without loss of generality. Furthermore, one has

UH
k ξk = V H

k ηk = 0, and S1,k = S2,k = Re(UH
k AVkN) = Re(UH

k AVk), where Uk, Vk, ξk, ηk

are column vectors and Sk is a scalar. In what follows, we replace Uk, Vk, Sk with the lower

case symbols uk, vk, sk, respectively, since they are no longer matrices. Then, Newton’s

equations with p = 1 are written out as

skξk − Aηk + uk Re(uH
k Aηk) = Avk − skuk, (5.4.9)

skηk − AHξk + vk Re(vH
k AHξk) = AHuk − skvk. (5.4.10)
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If sk �= 0, (5.4.9) yields

ξk = s−1
k

(
A(ηk + vk) − uk Re(uH

k Aηk)
)
− uk. (5.4.11)

Substituting (5.4.11) into (5.4.10) and simplifying the resulting equation, we obtain the

equation for ηk without ξk:

(s2
kIn − AHA)ηk + (AHuk − skvk) Re(uH

k Aηk) + vk Re(vH
k AHAηk)

=AHAvk − vk Re(vH
k AHAvk). (5.4.12)

Let Bk := s2
kIn − AHA ∈ C

n×n and ak := AHuk − skvk, bk := AHuk, ck := AHAvk, dk :=

AHAvk − vk Re(vH
k AHAvk) ∈ C

n. In terms of these matrices and vectors, (5.4.12) is

rewritten as

Bkηk + ak Re(bH
k ηk) + vk Re(cH

k ηk) = dk. (5.4.13)

We decompose (5.4.13) into its real and imaginary parts by introducing real vectors such

as ηk = η1
k + iη2

k, η1
k, η

2
k ∈ R

n. The resultant equation is expressed as

B1
kη

1
k − B2

kη
2
k + a1

k(b
1
k)

T η1
k + a1

k(b
2
k)

T η2
k + v1

k(c
1
k)

T η1
k + v1

k(c
2
k)

T η2
k

+i
(
B1

kη
2
k + B2

kη
1
k + a2

k(b
1
k)

T η1
k + a2

k(b
2
k)

T η2
k + v2

k(c
1
k)

T η1
k + v2

k(c
2
k)

T η2
k

)
= d1

k + id2
k. (5.4.14)

We can write out equations for the real and imaginary parts as

(
B1

k + a1
k(b

1
k)

T + v1
k(c

1
k)

T
)
η1

k +
(
−B2

k + a1
k(b

2
k)

T + v1
k(c

2
k)

T
)
η2

k = d1
k, (5.4.15)

(
B2

k + a2
k(b

1
k)

T + v2
k(c

1
k)

T
)
η1

k +
(
B1

k + a2
k(b

2
k)

T + v2
k(c

2
k)

T
)
η2

k = d2
k, (5.4.16)

respectively. These equations are put in the form

Akηk = dk, (5.4.17)

where the bold symbols are

ηk =

⎛
⎜⎜⎜⎝

η1
k

η2
k

⎞
⎟⎟⎟⎠ , dk =

⎛
⎜⎜⎜⎝

d1
k

d2
k

⎞
⎟⎟⎟⎠ , Ak =

⎛
⎜⎜⎜⎝

B1
k + a1

k(b
1
k)

T + v1
k(c

1
k)

T −B2
k + a1

k(b
2
k)

T + v1
k(c

2
k)

T

B2
k + a2

k(b
1
k)

T + v2
k(c

1
k)

T B1
k + a2

k(b
2
k)

T + v2
k(c

2
k)

T

⎞
⎟⎟⎟⎠ .

(5.4.18)

If Ak is invertible, one has ⎛
⎜⎜⎜⎝

η1
k

η2
k

⎞
⎟⎟⎟⎠ = ηk = A−1

k dk, (5.4.19)
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so that ηk = η1
k + iη2

k is found as well. Once ηk is computed, ξk is given by (5.4.11). By

introducing ak =

⎛
⎜⎜⎜⎝

a1
k

a2
k

⎞
⎟⎟⎟⎠, bk =

⎛
⎜⎜⎜⎝

b1
k

b2
k

⎞
⎟⎟⎟⎠, ck =

⎛
⎜⎜⎜⎝

c1
k

c2
k

⎞
⎟⎟⎟⎠, vk =

⎛
⎜⎜⎜⎝

v1
k

v2
k

⎞
⎟⎟⎟⎠, these equations take a

simpler form. Now we are led to Algorithm 5.4.3.

Algorithm 5.4.3 Newton’s method for Problem 5.2.1 with p = 1

1: Choose an initial point (u0, v0) ∈ St(1,m, C) × St(1, n, C).
2: for k = 0, 1, 2, . . . do
3: Compute the search direction (ξk, ηk) ∈ T(uk,vk) (St(1,m, C) × St(1, n, C)) by

ηk =

(
In iIn

) (
Bk +

(
ak vk

)(
bk ck

)T
)−1

dk, (5.4.20)

ξk = s−1
k

(
A(ηk + vk) − uk Re(uH

k Aηk)
)
− uk, (5.4.21)

where sk = Re(uH
k Avk), bk =

⎛
⎜⎜⎜⎝

Re(AHuk)

Im(AHuk)

⎞
⎟⎟⎟⎠, ak = bk − sk

⎛
⎜⎜⎜⎝

Re(vk)

Im(vk)

⎞
⎟⎟⎟⎠,

ck =

⎛
⎜⎜⎜⎝

Re(AHAvk)

Im(AHAvk)

⎞
⎟⎟⎟⎠, dk = ck − Re(vH

k AHAvk)

⎛
⎜⎜⎜⎝

Re(vk)

Im(vk)

⎞
⎟⎟⎟⎠, Bk = s2

kI2n −

⎛
⎜⎜⎜⎝

Re(AHA) − Im(AHA)

Im(AHA) Re(AHA)

⎞
⎟⎟⎟⎠, and where Im(·) denotes the imaginary part of the quan-

tity in the parentheses.
4: Compute the next iterate

(uk+1, vk+1) := R(uk,vk)(ξk, ηk) =

(
uk + ξk

‖uk + ξk‖
,

vk + ηk

‖vk + ηk‖

)
, (5.4.22)

where ‖·‖ denotes the standard norm on C
m and C

n.
5: end for
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5.4.3 Complex singular value decomposition algorithm based on

the Riemannian Newton method

Let (Uapp, Vapp) be a sufficiently accurate approximate solution to Problem 5.2.1 with a

general p. We denote by (·)j the j-th column of the matrix in the parentheses. Then, for

each j ∈ {1, . . . , p}, the pair ((Uapp)j, (Vapp)j) can be considered to be in the convergence

region of ((U∗)j, (V∗)j) for Algorithm 5.4.3, where (U∗, V∗) is an optimal solution to Problem

5.2.1. Then, we can solve each of these p subproblems by applying Algorithm 5.4.3, and

eventually solve Problem 5.2.1 after collecting the solutions to the subproblems. We now

propose a new complex singular value decomposition algorithm as Algorithm 5.4.4.

Algorithm 5.4.4 Complex singular value decomposition algorithm based on Newton’s
method for Problem 5.2.1
Require: A sufficiently accurate approximate solution (Uapp, Vapp) ∈ St(p,m, C) ×

St(p, n, C) for Problem 5.2.1.
1: for j = 1, 2, . . . , p do
2: Set (u0, v0) := ((Uapp)j, (Vapp)j),
3: Perform Steps 2–5 in Algorithm 5.4.3.
4: end for
5: Stack the vectors u1, . . . , up and v1, . . . , vp to form U and V , respectively:

U = (u1, . . . , up), V = (v1, . . . , vp), (5.4.23)

where each (uj, vj) is obtained by Step 3.

Since the problem is divided into p subproblems, Algorithm 5.4.4 can be performed by

parallel p iterations of Algorithm 5.4.3.

A way to obtain an initial approximate solution is to use the MATLAB’s svd function.

Another method to obtain an approximate solution is to apply the conjugate gradient

method for Problem 5.2.1 as in Chapter 4, which we omit to discuss in this chapter. Our

method for obtaining initial approximate solutions is as follows: We first make up several

test matrices A of which the exact singular value decompositions, hence an optimal solution

(U∗, V∗), are available in advance. Then, approximate initial solutions (Uapp, Vapp) are made

by adding a pair of matrices with small random elements to the exact solution (U∗, V∗).
We set m = 300, n = 10, and p = 5, and then form unitary matrices USVD ∈ U(m) and

VSVD ∈ U(n) with randomly chosen elements and fix them in what follows. We proceed to

compute Aj = USVDΣjV
H
SVD, Σj =

⎛
⎜⎜⎜⎝

Dj

0

⎞
⎟⎟⎟⎠, for the n×n diagonal matrices Dj given below:

D1 = diag(10, 9, . . . , 1), (5.4.24)
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D2 = diag(100, 99, . . . , 92, 1), (5.4.25)

D3 = diag(100, 99, . . . , 96, 5, 4, . . . , 1), (5.4.26)

D4 = diag(1000, 999, . . . , 992, 1), (5.4.27)

D5 = diag(9.64, 8.97, 8.19, 7.77, 5.55, 5.02, 4.23, 4.10, 3.60, 0.29), (5.4.28)

where the singular values of A5 (or the diagonal elements of D5) are randomly chosen

out of the interval [0, 10]. The condition numbers of the matrices Aj are cond(A1) =

10, cond(A2) = cond(A3) = 100, cond(A4) = 1000, cond(A5) = 32.92, respectively. From

the very definition of Aj, the columns of USVD and VSVD are exactly the left and right

singular vectors of Aj, j = 1, . . . , 5. Therefore, the (Uopt, Vopt) defined by

Uopt = USVDIm,p, Vopt = VSVDIn,p (5.4.29)

is an optimal solution to Problem 5.2.1 with A = Aj, where In,p is defined to be In,p =⎛
⎜⎜⎜⎝

Ip

0

⎞
⎟⎟⎟⎠ ∈ R

n×p. An approximate initial solution (Uapp, Vapp) ∈ St(p,m, C) × St(p, n, C) is

then formed by

Uapp = qf(Uopt + Urand), Vapp = qf(Vopt + Vrand), (5.4.30)

where Urand ∈ C
m×p and Vrand ∈ C

n×p are randomly chosen matrices with elements less than

0.05 in absolute values. For example, the difference in the values of the objective function

is F (Uapp, Vapp)− F (Uopt, Vopt) = 12.30 for the matrix A1. We apply Algorithm 5.4.4 with

(Uapp, Vapp) as initial data to obtain Fig. 5.4.1, which shows that the differences between

the values F (Uk, Vk) and the minimum values F (Uopt, Vopt) of F decrease rapidly against

the iteration number k for any test matrices Aj. For A = A1, the computer decides that

F (U6, V6) − F (Uopt, Vopt) = 0 within a machine epsilon at k = 6. For A = A2, A3, A4, A5,

the computer decides that the current iterate at k = 4, 3, 5, 4 is an optimal solution within a

machine epsilon, respectively. We here note that the fact that each graph in Fig. 5.4.1 ends

at some iteration number means that the difference reaches 0 within computer accuracy

at the next iterate.

5.5 Summary

We have formulated the complex singular value decomposition problem as an optimiza-

tion problem on St(p,m, C) × St(p, n, C). After defining the quasi-symplectic set and the

manifold Stp(p, n) as a real realization of the complex Stiefel manifold St(p, n, C), we have

reformulated the optimization problem on St(p,m, C)×St(p, n, C) as that on the real form

Stp(p,m) × Stp(p, n) of St(p,m, C) × St(p, n, C). In developing Newton’s method for the
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Figure 5.4.1: The differences between the optimal and the current values of the objective
functions with A = A1, A2, . . . , A5.

problem on Stp(p,m) × Stp(p, n), the results obtained in Chapter 4 for the real singu-

lar value decomposition case have been extensively used. Pulling Newton’s method on

Stp(p,m)× Stp(p, n) back to that on St(p,m, C)× St(p, n, C), we have obtained Newton’s

method for the problem on St(p,m, C) × St(p, n, C). Though Newton’s equation in the

algorithm is difficult to solve, the division of the problem into p subproblems and the de-

composition of the resultant p equations into the real and imaginary parts make Newton’s

equations easy to solve.

We have performed numerical experiments with the presented algorithm for several test

matrices A. The results show that the proposed algorithm can improve a given approximate

singular value decomposition within computer accuracy, independently of the condition

numbers of the test matrices A.
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Chapter 6

Concluding Remarks

In this chapter, we make some concluding remarks on the topics treated in the thesis

together with a further discussion on Riemannian optimization.

After reviewing Euclidean and Riemannian optimization methods in Chapter 2, we

have studied Riemannian optimization from both theoretical and application points of

view. From the theoretical point of view, the Riemannian conjugate gradient method is

studied in Chapter 3, and the matrix singular value decomposition problem is addressed

in Chapters 4 and 5 from the application point of view.

In Chapter 3, we have proposed a new Riemannian conjugate gradient method to-

gether with the notion of a scaled vector transport. Though the research in Riemannian

optimization has been currently developing, a global convergence property of the stan-

dard Fletcher-Reeves type Riemannian conjugate gradient method had not been discussed

before [RW12]. In view of the fact that in order for the method in [RW12] to have the

global convergence property, the vector transport in question needs to be assumed not to

increase the norm of the previous search direction vector, we have introduced the notion of

scaled vector transport and proposed a scaled Fletcher-Reeves type Riemannian conjugate

gradient method (Algorithm 3.3.2) which possesses a global convergence property. The

assumption made in [RW12] becomes unnecessary, since the scaling of the tangent vector

is performed only when the differentiated-retraction vector transport increases the norm

of the search direction. The scaled vector transport is no longer a vector transport in its

original sense because of the lack of the linearity property. Our algorithm is nevertheless

well defined and needs only a very mild computational overhead per iteration, since we

have only to compute the norm of a tangent vector at each iterate in addition to the pro-

cedure of the standard algorithm. We have shown the global convergence property of the

algorithm by the use of the property that the scaled vector transport no longer increases

the norm of the transported tangent vector. Further, we have performed some numerical

experiments to verify the practical utility of the present algorithm.

In Chapter 4, we have developed a new real singular value decomposition algorithm on

the basis of Riemannian optimization. We have proved that performing the (truncated)
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singular value decomposition of a real matrix is equivalent to minimizing a certain function

on the product of two Stiefel manifolds. Then, we have calculated several requisites for

Riemannian optimization, such as a retraction, and the gradient and the Hessian of the

objective function. Using these materials, we have developed the steepest descent, the

conjugate gradient, and Newton’s methods for the optimization problem in question. If

a sequence generated by Newton’s method converges, the speed of convergence is very

fast. However, Newton’s method does not have a global convergence property. If an

algorithm with a global convergence property is combined with Newton’s method, the

combination will exhibit a global convergence property with fast convergence speed. As

is well known, the speed of convergence of sequences generated by the steepest descent

method is too slow especially in a vicinity of a target point, though the method has a

global convergence property. A substitute for the steepest descent method is the conjugate

gradient method, which is expected to have a global convergence property better than the

steepest descent method. We have proposed a hybrid algorithm composed of Newton’s and

the conjugate gradient methods. In particular, the scaled Fletcher-Reeves type conjugate

gradient method and Newton’s method have been put together, which we have proposed in

Chapter 3, to show that the hybrid algorithm has a global convergence property with fast

convergence speed. The difficulty in the computation of the search direction in Newton’s

part of the algorithm consists in solving the too complicated Newton’s equation. Instead of

solving Newton’s equation directly, we have proposed an approach in which the complicated

Newton’s equations are divided into equations to be easily solved iteratively. Further, we

have discussed the case where the target matrix has degenerate singular values among

the p smallest ones. Though optimal solutions are not isolated in such a case, we have

intensively studied the solution set and verified that the proposed algorithm works well as

far as numerical experiments suggest.

In Chapter 5, we have generalized both the real optimization problem and the Newton’s

method proposed in Chapter 4 to those in the complex case. We have formulated the com-

plex singular value decomposition problem as a Riemannian optimization problem on the

product of two complex Stiefel manifolds. We have shown that the optimization problem is

indeed equivalent to the complex singular value decomposition problem. However, such a

problem cannot be solved by using standard optimization algorithms, including Newton’s

method, since they have been developed on real manifolds. In order to perform the algo-

rithm, we have put the problem into an equivalent problem posed on a corresponding real

product manifold. This enables us to get around the difficulty and to propose Newton’s

method for the problem on the real product manifold. Pulling back the proposed Newton’s

method onto the initial complex product manifold, we have also presented the algorithm

based on Newton’s method, which is directly applicable to the problem on the complex

product manifold. As is expected, the difficulty with performing the algorithm consists

in solving Newton’s equation. In a similar manner to that in Chapter 4, we have divided

the problem into subproblems, in which corresponding Newton’s equation is easy to solve.
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We point out that both Newton’s methods in Chapters 4 and 5 can be parallel computed.

Numerical experiments for several target matrices with different condition numbers have

shown that the proposed algorithm can refine a given approximate optimal solution to be

a more accurate solution.

In concluding the last section, it is worth pointing out that geometric concepts make

the proposed algorithms accurate. In particular, we want to bring attention back to the

definition of Hessian.

Accordingly, we note that Riemannian Newton’s equation is not an equation obtained

by just projecting Euclidean Newton’s equation to the tangent space at the current iterate

to the search manifold in question. For the sake of simplicity, we turn back to the Rayleigh

quotient minimization problem on the sphere (see Problems 1.1.3 and 1.1.4). We first

derive the correct Riemannian Newton’s equation for the objective function f(x) := xT Ax

on Sn−1. The Sn−1 is endowed with the induced metric 〈·, ·〉 from the natural inner product

on R
n as in (3.5.8). Since the sphere Sn−1 is a special case of the Stiefel manifold St(p, n)

with p = 1, it follows from Prop. 2.3.3 that the orthogonal projection operator Px is given,

for any vector y ∈ R
n, by

Px(y) = (In − xxT )y. (6.0.1)

We can regard the operator Px as the matrix In−xxT . Since Sn−1 is viewed as a submanifold

of R
n with the standard induced metric, the gradient grad f(x) of f at x is simply the

projected Euclidean gradient fx(x) onto the tangent space TxS
n−1, that is,

grad f(x) = Px(fx(x)) = 2(In − xxT )Ax. (6.0.2)

In contrast with this, for any tangent vector ξ ∈ TxS
n−1, the tangent vector Hess f(x)[ξ],

which is obtained by operating ξ with the Hessian Hess f(x), is not equal to the projection

Px(fxx(x)ξ) of the vector fxx(x)ξ obtained by operating ξ with the Euclidean Hessian. In

a similar manner to that in the course of the proof of Prop. 4.3.5, the Hessian Hess f(x)

proves to act on ξ ∈ TxS
n−1 as

Hess f(x)[ξ] = 2
(
In − xxT

) (
A − (xT Ax)In

)
ξ. (6.0.3)

To see the difference between Hess f(x)[ξ] and Px(fxx(x)ξ), we take fxx(x) = 2A into

account and rewrite Eq. (6.0.3) as

Hess f(x) = Px (fxx(x)ξ) − 2(xT Ax)
(
In − xxT

)
ξ. (6.0.4)

The correction term −2(xT Ax)
(
In − xxT

)
to Px (fxx(x)ξ) is necessary for the quadratic

convergence property of Newton’s method. The proper Newton’s equation is expressed as

2
(
In − xxT

) (
A − (xT Ax)In

)
ξ = −2

(
In − xxT

)
Ax, (6.0.5)

111



which is put in the form

Px

((
A − (xT Ax)In

)
(ξ + x)

)
= 0. (6.0.6)

This means that the vector
(
A − (xT Ax)In

)
(ξ + x) is in the normal space NxS

n−1 =

span {x}
R
, so that there exists a real number α such that

(
A − (xT Ax)In

)
(ξ + x) = αx. (6.0.7)

If A − (xT Ax)In is invertible, α turns out to be α =
(
xT

(
A − (xT Ax)In

)−1
x
)−1

. Thus,

Newton’s equation has the unique solution

ξ = −x +
1(

xT (A − (xT Ax)In)−1 x
) (

A − (xT Ax)In

)−1
x, (6.0.8)

if and only if the matrix A − (xT Ax)In is invertible. Therefore, in terms of the retraction

Rx(ξ) =
x + ξ

‖x + ξ‖ , (6.0.9)

the updating formula in Newton’s method is given by

xk+1 = Rxk
(ξk) =

xk + ξk

‖xk + ξk‖
=

(
A − (xT

k Axk)In

)−1
xk

‖(A − (xT
k Axk)In)

−1
xk‖

. (6.0.10)

We perform a numerical experiment with an example matrix of the form

A = P diag(1, 2, . . . , 10)P T , where P is a 10× 10 orthogonal matrix with randomly chosen

elements. Let x+ and x− denote the first column of P and its negative, respectively. We

note that they are the optimal solutions to the optimization problem. An initial point x0 is

chosen by x0 = x++xrand with ‖x++xrand‖ = 1, where xrand is a small vector with randomly

chosen elements. For the sequence {xk} generated by (6.0.10), we have ‖x0 −x+‖ = 0.025,

‖x1−x−‖ = 3.1×10−8, ‖x2−x+‖ = 5.0×10−16, which show that the sequence {xk} quickly

approaches the optimal solutions, though the target points are alternating between x+ and

x− (see Fig. 6.0.1). This alternation is explained from the following observation: We put

A in the form A = P diag(λ1, . . . , λn)P T with λ1 ≤ · · · ≤ λn, where P ∈ O(n). Suppose

that the current iterate xk is close to x+. Then, the Rayleigh quotient xT
k Axk is just a

little larger than the minimum λ1 of the objective function f , so that it can be expressed

as xT
k Axk = λ1 + ε with a small number ε > 0. If λ2 − λ1 � ε, then the numerator of the

right-hand side of (6.0.10) is estimated as

(
A − (xT

k Axk)In

)−1
xk ≈

(
P diag(−ε, λ2 − λ1, . . . , λn − λ1)P

T
)−1

xk

=P diag(−ε−1, (λ2 − λ1)
−1, . . . , (λn − λ1)

−1)P T xk
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Figure 6.0.1: The sequences of the distances between optimal solutions and the sequence
{xk} generated by Riemannian Newton’s iteration (6.0.10). One graph shows the sequence
{‖xk − x+‖}, which shows that the sequence {xk} approaches x+ and x− alternately. The
other graph describing the sequence

{
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}
shows that if k ranges over even

numbers, the subsequence {xk} converges to x+, and if k ranges over odd numbers, the
subsequence {xk} converges to x−.
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≈P diag(−ε−1, (λ2 − λ1)
−1, . . . , (λn − λ1)

−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= − ε−1x+, (6.0.11)

and the next point is given by and approximated as

xk+1 =

(
A − (xT Ax)In

)−1
xk

‖(A − (xT Ax)In)−1 xk‖
≈ −ε−1x+

ε−1
= −x+ = x−. (6.0.12)

Beside the correct Riemannian Newton’s method, we in turn try to use Px(fxx(ξ))

instead of Hess f(x)[ξ], where ξ ∈ TxS
n−1. The improper Newton’s equation in place of

(6.0.5) is described as

2(In − xxT )Aξ = −2(In − xxT )Ax. (6.0.13)

Suppose that A is invertible. Then, Eq. (6.0.13) can be solved to give

ξ = −x +
A−1x

xT A−1x
. (6.0.14)

The updating formula with Px(fxx(ξ)) is then given by

xk+1 =
xk + ξk

xk + ξk

=
A−1xk

‖A−1xk‖
. (6.0.15)

We perform a numerical experiment with the same matrix A as before and obtain Fig. 6.0.2,

which shows that the sequence {xk} generated by (6.0.15) converges to an optimal solution

x+, but the speed of convergence is much slower than that of (6.0.10).

It is worth pointing out that the updating formulas (6.0.10) and (6.0.15) are already

known as the Rayleigh quotient iteration for A and the power method for A−1, respectively.

We here note that the power method is a method for finding the largest eigenvalue in ab-

solute value of the target matrix. Among eigenvalue decomposition methods in numerical

linear algebra, the Rayleigh quotient iteration is known to have a better convergence prop-

erty than the power method. The quadratic convergence property of the Rayleigh quotient

iteration is shown in [Ost57].

We further examine another method for the eigenvalue problem. In [Ber99], a Newton-

like method is introduced for a constrained Euclidean optimization problem. In this
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Figure 6.0.2: The sequence of the distances between xk and x+ with respect to the sequence
{xk} generated by (6.0.15).

method, Euclidean Newton’s iteration is performed for a Lagrangian function with the

constraint taken into account. For the sake of comparison, we apply that method to Prob-

lem 1.1.3, in which the Rayleigh quotient objective function f is to be minimized under

the constraint xT x = 1. The Lagrangian L is defined to be

L(x, λ) := xT Ax + λ(xT x − 1), (6.0.16)

where λ is the Lagrange multiplier. Let y denote y =

⎛
⎜⎜⎜⎝

x

λ

⎞
⎟⎟⎟⎠. The Euclidean gradient Ly

and the Hessian matrix Lyy of L are calculated as

Ly(y) =

⎛
⎜⎜⎜⎝

2(A + λIn)x

xT x − 1

⎞
⎟⎟⎟⎠ , Lyy(y) =

⎛
⎜⎜⎜⎝

2(A + λIn) 2x

2xT 0

⎞
⎟⎟⎟⎠ , (6.0.17)
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respectively. Newton’s equation Lyy(y)

⎛
⎜⎜⎜⎝

ξ

μ

⎞
⎟⎟⎟⎠ = −Ly(y) then takes the form

⎛
⎜⎜⎜⎝

(A + λIn) x

xT 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ξ

μ

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

(A + λIn)x

1
2
(xT x − 1)

⎞
⎟⎟⎟⎠ , (6.0.18)

where

⎛
⎜⎜⎜⎝

ξ

μ

⎞
⎟⎟⎟⎠ ∈ R

n ×R is a Newton vector at y =

⎛
⎜⎜⎜⎝

x

λ

⎞
⎟⎟⎟⎠ ∈ R

n ×R. If the coefficient matrix

⎛
⎜⎜⎜⎝

(A + λIn) x

xT 0

⎞
⎟⎟⎟⎠ is invertible, then Eq. (6.0.18) is solved to give rise to the updating

formula⎛
⎜⎜⎜⎝

xk+1

λk+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

xk + ξk

λk + μk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

xk

λk

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

(A + λkIn) xk

xT
k 0

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎝

(A + λkIn)xk

1
2
(xT

k xk − 1)

⎞
⎟⎟⎟⎠ . (6.0.19)

A numerical experiment with the same matrix as before is performed with this updating

formula to obtain Fig. 6.0.3.

The Figs. 6.0.1, 6.0.2, and 6.0.3 are put together into Fig. 6.0.4 for the sake of com-

parison among the performances of the three methods. We can observe that Riemannian

Newton’s method generates the fastest sequence of the three sequences.

What we have discussed so far tells us that Riemannian optimization has a great po-

tential to solve various problems effectively, and the theory of the differential geometry

plays a core role in it. It turns out that geometric methods are intrinsic to constrained

problems, and provide accurate algorithms in comparison with those methods devised ex-

trinsically for incorporating constraints. The studies in this thesis are contributions to

geometric methods. The field of Riemannian optimization will be still developing from

both theoretical and application sides.
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Figure 6.0.3: The sequence of the distances between xk and x+ with respect to the sequence
{xk} generated by (6.0.19).
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Figure 6.0.4: The sequences of the distances between xk and x+ with respect to the se-
quences {xk} generated by (6.0.10), (6.0.15), and (6.0.19).
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