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Abstract 

This  study investigated  the function  of  Prdm12  by  examin ing  its  

histone methyltransferase activity by  an in  vitro  methylation  

assay. The result show ed that expressed Prdm12 iso lated  from  

the mammalian  cell  line methy lated  histone H3K9.  How ever,  

some members of  the Prdm family  hav e extr insic enzymatic  

activit ies and interact with k nown histone methyltransferases  

such as G9a, a strong H3 K9 methyltransferase.  Ther efore, th is  

possib i lity was  exp lored, and Prdm12 was  found to  a lso  interact  

with G9 a. The domain  requir ed for G9a binding was also  

examined,  and  p lasmids  expressing  deletion  or  point mutants of  

Prdm12 wer e constructed. Co-immunoprecipitation assay results  

ind icated that the s econd z inc  f inger (ZF)  domain  was required  for  

G9a interaction.  As expected, the histone methyltransferase  

activity  of  Prdm12  depended on the interaction  w ith G9a because  

the Prdm12  mutants  defective in  G9a b inding  d id  not methylate  

histone H3.  Next,  the b io logical  f unction  of  Prdm12  was  

investigated,  and the impor tance of  h istone methyltransferase  

activity in Prdm12 function was deter mined. Because Prdm12 is  

expressed in the dev eloping mouse centra l nervous system, P19  

embryonic carcinoma cells, an in vitro  model for neural  

differ entiation,  wer e used  to  investigate the function  of  Prdm12.  

Results show ed that during r etinoic  ac id ( RA) -induced neural  

differ entiation in  P19 cells, both mRNA and protein  expression of  
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Prdm12  increased.  To  elucidate the ro le of  Prdm12  in  this  process,  

short hairp in  RNA (shRNA) was used to stab ly knock  down  

Prdm12  in  P19  cell  l ines.  Thes e cel l  l ines w ere subjected to  

RA- induced neural differ entiation.  At the first aggr egation stage,  

the cel l number  of  Prdm12  knockdown cells was mor e than that  

of control cells.  After  d ifferentiation,  the cel ls w ere  

immunostained with  a  mature neuronal mar ker, class III β-tubulin  

(Tuj1). The percentage of Tuj1-positiv e cells was almost the same  

between Prdm12 k nockdown and control cells.  To  further  

evaluate the function of Prdm12 in cell proliferation, Prdm12 and  

mutants w ere ov erexpressed in  P19 cells.  Cells wer e counted  

every  2 days, and the grow th curv e was  ca lcu lated.  The resu lt  

ind icated that Prdm12 decreased the proliferation of P19 cel ls ,  

and both  the PR (PRDI-BF1-RIZ1 homologous) and ZF domains w ere  

required  for its  antiproliferativ e f unction.  How ever,  

overexpressing  Prdm12  in  NI H3T3 cells did not af fect cell growth.  

This r esult suggested that Prdm12 may be involved in a  pathway  

spec ific to  stem cells. Next, the mechanism of  the  

antipro lif erativ e eff ect of  Prdm12  was  inves tigated. Because cell  

death  was not observed in  Prdm12 -over expr ess ing  P19  cells,  

Prdm12 may r egulate the cel l cycle. F low  cytometric analysis  

showed that Prdm12  increased the G1 population. F urther,  

western  b lot analysis showed that the expression  of  the  

cyclin-dependent kinase inh ib itor  p27 increased in  

Prdm12-ov erexpr ess ing P19 cells. This resu lt was consistent w ith  
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a previous  report  showing that RA incr eased the number  of  

G1-phas e cel ls and the expression of p27 in  P19  cells. The results of 

the present study showed that RA induced Prdm12 in  P19 cells , and  

Prdm12 exerted  antiproliferative  effects in  par t through  

regulation  of  the G1  phase of the cell  cycle.  Fur ther more,  ectopic  

Prdm12 increased the expr ession of p27, with both the P R and ZF  

domains being  necessary for its  function.  
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Abbreviations 

 

PR domain                  PRDI-BF1-RIZ1 homologous domain 

ZF domains           kruppel type zinc finger domains 

HKMTase            histone lysine methyltransferases 

RA                 retinoic acid 
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Chapter 1: Introduction 

1-1. Histone lysine methyltransferases 

Different lysine (K) sites of various histones are mono-, di-, or 

tri-methylated by the SET [SU(VAR)3-9, E(Z), trithorax] domain protein  

methyltransferase superfamily. The SET domain is the catalytic domain  

conserved in this superfamily. Depending on the modification of different 

lysine sites, it could transcriptionally activate or repress gene expression. 

For example, methylation of K26 in histone H1; K9, K27, and K36 in histone 

H3; and K20 in histone H4 is associated with transcriptional silencing. In 

contrast, methylation of K4 in histone 3 is associated with transcriptional 

activation (Fig. 1-1; see Dillon et al., 2005 for a review). 

 

1-2. Structural features and biological function of the Prdm family 

The Prdm family contains a PR (PRDI-BF1-RIZ1 homologous) domain in 

the N terminus, which has a 20–30% sequence identity to the conserved 

catalytic SET domains of the histone lysine methyltransferase (HKMTase) 

superfamily (Fig. 1-2; Völkel et al., 2007). This similarity suggests that the 

Prdm family may have HKMTase properties. In fact, some Prdms show 
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intrinsic HKMTase activity (Prdm2, Prdm3, Prdm8, Prdm9, and Prdm16). In 

addition, Prdm1, Prdm5, and Prdm6 lack intrinsic HKMTase activity, but 

instead recruit G9a/Ehmt2/KMT1C, a strong mammalian histone H3 lysine 

9 (H3K9) methyltransferase, to mediate HKMTase activity (see Fog  et al., 

2012 for a review). Another structural feature of the Prdm family is the 

presence of multiple Krüppel-type zinc finger (ZF) domains in the C  

terminus involved in sequence-specific DNA binding and protein-protein  

interactions (Völkel et al., 2007). 

It has been reported that the Prdm family is expressed dynamically in 

the nervous system during the development of mice and zebrafish 

(Hohenauer et al., 2012). The function of the Prdms in neurogenesis 

remains unclear, however. In zebrafish embryos, Prdm1 is important for 

the development of neural crest and sensory neurons (Hernandez-Lagunas 

et al., 2005). Our laboratory has previously described the expression  

pattern of Prdm8 in the mouse embryonic nervous system (Komai et al., 

2009). Another study using a knockout mouse model indicated that Prdm8 

is involved in neural development (Ross et al., 2012). 
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1-3. Expression of Prdm12 in the nervous system 

Prdm12 expression was observed in the spinal cord, caudal forebrain , 

and midbrain of mouse E9.5 embryos by whole-mount in situ  hybridization  

(Kinameri et al., 2008). In zebrafish, Prdm12 was expressed in the olfactory 

placode, tegmentum, cerebellum, and hindbrain at 48 hours 

post-fertilization (Sun et al., 2008). Although Prdm12 has been reported to  

be expressed in the mouse and zebrafish embryonic nervous system 

(Kinameri et al., 2008; Sun et al., 2008), the role of Prdm12 is still unclear. 

 

1-4. Retinoic acid-induced neural differentiation in P19 embryonic 

carcinoma cells  

Retinoic acid (RA) is a metabolite of vitamin A (retinol), which controls 

neural differentiation and patterning (Maden, 2007). To investigate the 

process of neural differentiation in vitro, P19 embryonic carcinoma cells 

were used as a model system. Treatment with RA under aggregating  

conditions induced P19 embryonic carcinoma cells to differentiate into  

neurons and glia (Jones-Villeneuve et al., 1982). Upregulation of p27, a  

cyclin-dependent kinase inhibitor (CKI), has been shown to be involved in  
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arresting cell cycle progression at the G1 phase in this in vitro model (Gill et 

al., 1998). Furthermore, overexpression of p27 could induce neural  

differentiation in mouse neuroblastoma cells (Kranenburg et al., 1995). 

 

1-5. Research purpose 

Since many Prdms have HKMTase properties, it is of interest whether 

Prdm12 also has HKMTase properties. This study first demonstrates that 

Prdm12 recruits G9a to methylate H3K9. Because the localization of 

Prdm12 in the embryonic nervous system implies a potential function in  

neurogenesis, this study investigates the role of Prdm12 in the RA-induced 

neural differentiation of P19 cells as a model system. 
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Fig. 1-1: Schematic diagram of Histone modifications. The modifications 

include methylation (Me), acetylation (Ac), phosphorylation (P) and 

ubiquitination (Ub). This picture is cited from Völkel et al., 2007. 

 

 

Fig. 1-2: Structural features of Prdm 

family. The Prdm gene family contains 16 

members in mice. Prdm family has a PR 

domain in the N-terminal and several 

zinc finger domains in the C-terminal 

except Prdm11. Prdm12 has three ZF 

domains. This picture is cited from Völkel 

et al., 2007. 
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Chapter 2: Results 

Section 1: The Prdm12 complex exhibits H3K9 methyltransferase activity 

through interaction of G9a with ZF domains 

 

2-1-1 Prdm12 methylates histone H3 as revealed by an in vitro methylation 

assay 

Prdm12 was hypothesized to have HKMTase properties. To investigate 

the potential HKMTase properties of Prdm12, enhanced green fluorescent 

protein (EGFP)-tagged Prdm12 (EGFP-Prdm12), EGFP-tagged Prdm4, and 

EGFP were expressed in and purified from HEK293T cells for in vitro  

methylation assays, using core histones as substrates. The glutathione 

S-transferase (GST)-fused catalytic SET domain of G9a (GST-G9aSET) was 

added as a positive control. EGFP-Prdm12 showed higher H3 methylation  

than EGFP or EGFP-Prdm4 (Fig. 2-1), suggesting that EGFP-Prdm12 can 

methylate histone H3. 

 

2-1-2 Prdm12 methylates the K9 site of histone H3 

Next, the H3 site methylated by Prdm12 was determined. To this end, 
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GST-fused histone H3 amino-terminus (residues 1–57, GST-H3N) and 

mutants in which single K substitutions were introduced to lysine 4, 9, or 

27 (GST-H3NK4R, GST-H3NK9R, and GST-H3NK27R) were purified from 

Escherichia coli as substrates for the in vitro methylation assay (Fig. 2-2A). 

GST-H3N, GST-H3NK4R, and GST-H3NK27R, but not GST-H3NK9R, were 

methylated by EGFP-Prdm12 (Fig. 2-2B). To further examine the 

methylation type of H3K9, anti-H3K9me1, anti-H3K9me2 and 

anti-H3K9me3 antibody were used for western blot analysis. Recombinant 

H3 incubated with EGFP-Prdm12 was di-methylated on H3K9 (Fig. 2-2C). 

These results indicate that EGFP-Prdm12 specifically di-methylates lysine 9 

of histone 3 (H3K9). 

 

2-1-3 Prdm12 alone cannot methylate histone H3 

Whether the HKMTase activity of Prdm12 was intrinsic or extrinsic was 

further investigated; GST-fused Prdm12 (GST-Prdm12) was expressed in  

and purified from E. coli and examined by an in vitro methylation assay. 

HKMTase activity was not observed in GST-Prdm12 (Fig. 2-3). These results 

imply that Prdm12 may lack intrinsic HKMTase activity, but instead forms 
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complexes with other enzymes that have H3K9 methyltransferase 

properties. 

 

2-1-4 Prdm12 binds with G9a but not with GLP or ESET 

Prdm1, Prdm5, and Prdm6 were reported to mediate HKMTase activity 

by recruiting G9a. To examine whether Prdm12 interacts with G9a in a  

similar manner, co-immunoprecipitation (Co-IP) assays were performed. 

EGFP-Prdm12 and FLAG-tagged G9a (FLAG-G9a) were transiently 

expressed in HEK293T cells. The IP complex was isolated with either 

anti-FLAG or anti-EGFP antibody from cell extracts. Immunoprecipitation  

of EGFP-Prdm12 co-isolated the FLAG-G9a complex and vice versa (Fig. 

2-4A). Next, whether Prdm12 could bind to other H3K9 HKMTases (here 

GLP/Ehmt1/KMT1D and ESET/Setdb1/KMT1E were used) was examined, 

but no interactions between EGFP-Prdm12 and FLAG-GLP or FLAG-ESET 

were detected by Co-IP analysis (Fig. 2-4B). These results indicate that 

Prdm12 specifically forms a complex with G9a. The interaction between 

Prdm12 and G9a in intact cells  was further confirmed by 

immunocytochemistry by transiently expressing EGFP-Prdm12 and 
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FLAG-G9a in HEK293T cells. EGFP-Prdm12 and FLAG-G9a colocalized 

primarily to the nuclear periphery (Fig. 2-4C). These results suggest that  

Prdm12 and G9a form a complex in intact cells. 

 

2-1-5 Interaction with G9a through ZF domains is necessary for the 

HKMTase activity of Prdm12 

The study next determined which Prdm12 domain interacts with G9a, 

using FLAG-Prdm12 to make PR or ZF domain deletion mutants 

(FLAG-Prdm12ΔPR, FLAG-Prdm12ΔZF) and a series of point mutants  (Fig. 

2-5A). In the point mutants, G115 or F117 (two conserved sites in PR 

domain) was replaced with alanine (FLAG-Prdm12G115A, 

FLAG-Prdm12F117A), and the structure of the first or second ZF domains 

was disrupted by replacing the two cysteines in C2H2 with arginine 

(FLAG-Prdm12Z1-, FLAG-Prdm12Z2-). These mutants and G9a were used in  

the Co-IP assays. Except for FLAG-Prdm12ΔZF and FLAG-Prdm12Z2-, 

FLAG-Prdm12 and the other mutants bound to G9a (Fig. 2-5B, C). These 

results showed that the second ZF domain was necessary for Prdm12 to  

associate with G9a. 
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It was then determined whether the HKMTase activity of Prdm12 was 

correlated with its association with G9a. To this end, FLAG-Prdm12 and 

mutants were isolated from HEK293T cells for an in vitro  methylation assay. 

The FLAG-Prdm12ΔZF and FLAG-Prdm12Z2- complexes lacking G9a binding  

capacity did not methylate histone H3 (Fig. 2-5D). This result suggests that 

the HKMTase activity of Prdm12 depends on the association between 

Prdm12’s second ZF domain and G9a. 
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Fig. 2-1: In vitro methylation assay. EGFP-Prdm12, EGFP-Prdm4, or GFP  

plasmids were transiently transfected into HEK293T cells and expressed 

products were purified by anti-GFP antibodies. GST-G9aSET produced in   

E. coli and purified with glutathione-Sepharose beads was used as a  

positive control. The immunoprecipitated complex was incubated with    

2 μg of core histones as substrates and S-adenosyl-[methyl-C14]- 

L-methionine as a methyl donor. After incubation for 60 min at 30°C, 

samples were subjected to 15% SDS-PAGE. Methylated histones were 

detected by autoradiography (top). The amount of protein was shown by 

coomassie brilliant blue (bottom). ★ , EGFP, EGFP- or GST-fusion 

molecules.  
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A 

 

B 

 

C 

 

Fig. 2-2: (A) Schematic diagram of GST-H3N and point mutants (Tachibana 

et al. 2001). Residues 1–57 of the N-terminal of histone H3 were fused to  

GST. The lysine (K) was replaced by arginine (R) at the indicated position. 

(B) Two micrograms of GST-H3N or mutants were used as substrates for 
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the in vitro methylation assay as described in F ig. 2-1. ★, EGFP-Prdm12. 

(C) Two micrograms of recombinant H3/H4 were used as substrates for in 

vitro methylation assay as described in Fig. 2-1 except non-isotope-labeled  

SAM were used. Different types of H3K9 methylation were detected by 

specific antibody.   
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Fig. 2-3: GST-Prdm12, GST-G9aSET, and GST were expressed in E. coli and  

purified with glutathione-Sepharose beads. One microgram of each 

enzyme was incubated with 2 μg of core histones as substrates for in vitro 

methylation assay. Methylated histones were detected by autoradiography 

(top). The amount of protein was revealed by coomassie brilliant blue 

(bottom). ★, GST or GST-fusion molecules.  
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A 

 

B                         C 

   

 

 

Fig. 2-4: The second ZF domain of Prdm12 is required for G9a association  

and HKMTase activity. (A) Co-immunoprecipitation (Co-IP) of G9a and 

Prdm12. HEK293T cells were co-transfected with plasmids encoding  

EGFP-Prdm12, FLAG-G9a or both. Top, anti-FLAG blots for G9a. Bottom, 

anti-GFP blots for EGFP-Prdm12. (B) Co-IP of EGFP-Prdm12 with H3K9 

methyltransferase indicated above the panel (FLAG-G9a, FLAG-GLP, or 

FLAG-ESET). Cell lysates from HEK293T cells transfected with a  

combination of plasmids were subjected to IP using an anti-GFP antibody. 

Immunoprecipitates were then subjected to western blot analysis with  
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anti-FLAG (top) or anti-GFP (bottom) antibody. (C) NIH-3T3 cells were 

co-transfected with plasmids expressing EGFP-Prdm12 and FLAG-G9a. 

After fixation, cells were double-immunostained for GFP-Prdm12 (green) 

and FLAG-G9a (red). Co-localization was observed by confocal 

immunofluorescence microscopy. 
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A                        C 

 

B                         D 

 

 

Fig. 2-5: (A) Schematic diagram of FLAG-Prdm12 and mutants. Numbers 

indicate the amino acids that were replaced. Point mutation (Δ), deletion  

(\/). (B-C) Co-IP determined that the ZF domains of Prdm12 interacted with  

G9a. HEK293T cells were co-transfected with plasmids encoding G9a and 

FLAG-Prdm12 or the mutants described in (A). Lysates were 

immunoprecipitated with anti-FLAG antibody (B) or anti-G9a antibody (C). 

Immunoprecipitates were then subjected to western blot analysis with  
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anti-G9a (top) or anti-FLAG (bottom) antibody. (D) FLAG-Prdm12 WT or 

mutants were transfected into HEK293T cells, then immunoprecipitated  

with anti-FLAG antibody. Immunoprecipitates were subjected to the in  

vitro methylation assay. Methylated Histone H3 (top). The amounts of 

proteins were revealed by coomassie brilliant blue (bottom). ★ , 

FLAG-Prdm12 WT and mutants. 
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Section 2: Generation of rabbit anti-Prdm12 polyclonal antibody 

2-2-1 Purification of rabbit anti-Prdm12 polyclonal antibodies  

To detect Prdm12 proteins expression, rabbit anti-Prdm12 polyclonal 

antibody was generated. The process is illustrated in Fig. 2-6A and the 

details are mentioned in the Materials and Methods. Briefly, GST-Prdm12 

(43-230) proteins were expressed in Escherichia coli (Fig. 2-6B) then 

purified by glutathione-Sepharose beads (Fig. 2-6C) and cross-linked to the 

beads (Fig. 2-6D). Next, serum from rabbit immunized with GST-Prdm12 

(43-230) was incubated with GST cross-linked beads first to remove 

anti-GST polyclonal antibody. Then the serum was incubated with  

GST-Prdm12 (43-230) cross-linked beads. After wash with TBS, bound 

antibodies were eluted. 10 fractions were collected and the fractions 

contained antibodies were identified by coomassie brilliant blue staining. 

Fraction 2 and 3 were combined and dialyzed in PBS buffer (Fig. 2-6E).  

 

2-2-2 Sensitivity and specificity of rabbit anti-Prdm12 polyclonal antibodies 

To check the activity of purified rabbit anti-Prdm12 polyclonal 

antibodies, anti-Prdm12 polyclonal antibodies were used to detect 
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EGFP-Prdm12 protein by western blot analysis. Fig. 2-7A shows that 

4,000-fold diluted anti-Prdm12 still could detect clear band. The purified  

rabbit anti-Prdm12 also could immunoprecipitated Prdm12 (Fig. 2-7B). 

Finally, the specificity of rabbit anti-Prdm12 polyclonal antibodies was 

examined. The purified anti-Prdm12 only recognized EGFP-Prdm12 but not 

EGFP-Prdm4, EGFP-Prdm6 and EGFP-Prdm13 (Fig. 2-7C). These results 

indicated application of purified rabbit anti-Prdm12 polyclonal antibodies 

for western blot and immunoprecipitation assays. 
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Fig. 2-6: (A) Schematic diagram of purification of anti-Prdm12 antibodies. 

Details are described in the Materials and Methods. (B) Induction of 

GST-Prdm12 (43-230) by IPTG in Escherichia coli. Bovine serum 

albumin (BSA) was used to compare the protein amount of GST-Prdm12 

(43-230).  (C) GST-Prdm12 (43-230) protein was purified by 2 ml of 50% 

slurry of glutathione sepharose beads. (D) GST or GST-Prdm12 (43-230) 

proteins were cross-linked to glutathione sepharose beads by dimethyl 

pimelimidate. After cross-link, no binding proteins were eluted. SDS 

sample buffer were used to evaluate the cross-linking efficiencies. (E) 

Eluted fractions were collected. 5μl of each fraction was separated by 

12%-PAGE. All the gels were visualized by coomassie brilliant blue staining.  
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Fig. 2-7: (A) Anti-Prdm12 antibodies were serial diluted to detect 

EGFP-Prdm12 by western blot analysis. A: cell lysates contained 

over-expressed EGFP-Prdm12. B: HEK293T cell lysates were used as 

negative control. Original serum was used as a positive control. (B) 

Anti-Prdm12 antibodies could be used for immunoprecipitation. Anti-GFP  

antibody was used as a positive control. The EGFP-Prdm12 proteins 

isolated by anti-Prdm12 antibody were also confirmed by anti-GFP  

antibodies. (C) EGFP-Prdm4, EGFP-Prdm6, EGFP-Prdm12 or EGFP-Prdm13 
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was transfected into HEK293T cells. Cell lysates were subjected for western  

blot analysis. Anti-Prdm4, anti-Prdm6, anti-Prdm12 or anti-Prdm13 

antibody was used for detection of the corresponding proteins.  
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Section 3: Retinoic acid induces the expression and antiproliferative 

activity of Prdm12 in P19 embryonic carcinoma cells  

 

2-3-1 Retinoic acid induces the mRNA and protein expression of Prdm12 in 

P19 cells  

Because Prdm12 is expressed in the nervous system from the early 

embryogenesis stage (Kinameri et al., 2008), and because Prdms have 

functions in cell differentiation during the developmental processes (Fog et 

al., 2012), the possible role of Prdm12 in neurogenesis was investigated. 

P19 embryonic carcinoma cells are a well-established in vitro  model for the 

study of neural differentiation. In this model, P19 cells were grown as 

aggregates in bacterial-grade dishes in the presence of 1 µM RA. After 4 

days, the cell aggregates were transferred to a cell culture dish, and the 

medium was changed to RA-free medium. After 1 day, 10% serum medium 

was replaced with 0.5% serum medium for final differentiation (Fig. 2-8A, 

top). The mRNA expression of Prdm12 was determined by quantitative 

reverse transcription-polymerase chain reaction (RT-PCR) during this 

differentiation process. In response to RA, Prdm12 mRNA expression  
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increased at day 2, peaked at day 4, and then decreased after the 

withdrawal of RA (Fig. 2-8A, bottom, triangle). Aggregation of the P19 cells 

without RA caused a temporary increase in Prdm12 mRNA expression at 

day 2; however, Prdm12 mRNA expression decreased on day 4 (Fig. 2-8A, 

bottom, closed circle). This result indicated that RA increased and 

sustained Prdm12 mRNA expression. To monitor the RA-induced neural  

differentiation of P19, the mRNA expression of the pluripotent 

transcription factor Oct3/4 and neuronal class III β-tubulin (Tuj1, 

neural-specific differentiation marker) was determined using quantitative 

RT-PCR (Fig. 2-8A, bottom). As expected, the expression of Oct3/4 mRNA 

decreased, and that of Tuj1 increased. Because Prdm12 interacted with  

G9a, the mRNA and protein expression of G9a was also determined during  

the differentiation process. Similar to the expression pattern of Prdm12 

mRNA, the expression of G9a mRNA increased at days 2 and 4, then 

decreased at day 5. A point of difference, however, was that G9a mRNA 

expression increased again at day 7 (F ig. 2-8A, bottom). Whereas the trend 

of G9a protein expression was similar to that of G9a mRNA expression, 

GLP protein expression remained stable during differentiation (Fig. 2-8B). 
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To further confirm the induction of Prdm12 by RA at the protein level, 

P19 cells  were cultured in cell culture dishes or bacterial-grade dishes with  

or without RA for 4 days. IP-western blot analysis revealed that RA induced 

Prdm12 protein expression regardless of aggregate formation (Fig. 2-8C, 

lanes 6 and 8). Concordant with the quantitative RT-PCR results, at day 4 

Prdm12 proteins were not detected in the P19 cell suspension in the 

absence of RA (Fig. 2-8C, lane 7). These results suggest that RA elevates 

Prdm12 mRNA and protein expression in P19 cells.  

 

2-3-2 Knockdown of Prdm12 in P19 cells increases cell number with RA 

treatment 

Based on the RA-induced expression of Prdm12 in P19 cells, Prdm12 was 

speculated to play a role in this neuronal differentiation model. To test this 

hypothesis, two shRNAs (shPrdm12#1 and shPrdm12#2) were made to  

knockdown Prdm12 expression, and a scrambled shRNA was used as a  

negative control. After infection and puromycin selection, the knockdown 

efficiency of stable Prdm12 knockdown P19 cells (P19/shPrdm12) was 

confirmed by quantitative RT-PCR or IP-western blotting; RA-induced 
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mRNA and protein expression was efficiently repressed in P19/shPrdm12 

cells (Fig. 2-9A and B). These P19/shPrdm12 cells were then used for 

RA-induced neuronal differentiation. Surprisingly, during the first 

aggregation stages, RA-treated P19/shPrdm12 cells formed more 

embryonic bodies than did control cells (Fig. 2-9C). On day 4, the numbers 

of P19/shPrdm12 cells were directly counted, and were approximately 

twice the number of the control cells (Fig. 2-9D). After differentiation was 

induced, the percentage of mature neurons was determined by 

immunocytochemistry (Tuj1 was used as a marker of mature neurons); no  

significant difference was found in the percentage of Tuj1-positive neurons 

between P19/shPrdm12 cells and control P19 cells (F ig. 2-10). 

 

2-3-3 Prdm12 overexpression reduces cell proliferation in P19 cells but not 

in NIH3T3 cells  

The effect of Prdm12 on the growth of P19 cells was further 

examined. FLAG-Prdm12 constructs and mutants were transfected into  

P19 cells to produce stable overexpressing cell lines (P19/FLAG-Prdm12, 

P19/mutants). In addition to the mutants described earlier, two point 
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mutations were made: the amino acids at the furthest N or C terminus 

were mutated to be used as controls (FLAG-Prdm12M2A, 

FLAG-Prdm12L365A; Fig. 2-5A). Cell growth was analyzed by counting the 

number of cells for 6 days to calculate the cell division times. Compared to  

P19 cells, the cell division times of the P19/FLAG-Prdm12 cells decreased 

by approximately 50% at day 6 (Fig. 2-11A). P19/FLAG-Prdm12M2A and 

P19/FLAG-Prdm12L365A cells still grew as slowly as the P19/FLAG-Prdm12 

cells; however, the other P19/mutant cells (with the deletions or point 

mutations in the PR or ZF domains) lost the ability to inhibit cell  

proliferation. To determine whether the ability of Prdm12 to impair cell  

proliferation was cell type specific, NIH3T3 cells were used instead of P19 

cells. Cell growth rates were similar between the Prdm12-overexpressing  

NIH3T3 cells and the control cells (Fig. 2-11B). Taken together, these 

results suggested that Prdm12 specifically impairs cell proliferation in P19 

cells through the PR and ZF domains. 

The location of Prdm12 was determined by immunohistochemical 

analysis of the distribution of Prdm12 and the mutants in the P19 cells. 

Only FLAG-Prdm12ΔZF moved to the cytoplasm, whereas the other 
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mutants remained in the nucleus as FLAG-Prdm12 (Fig. 2-12). This finding  

suggested that some Prdm12 mutants lose their antiproliferative ability, 

which may not result from mislocalization. 

 

2-3-4 Prdm12 increases the G1-phase population and p27 expression 

Next, the pathway through which Prdm12 regulated the proliferation of 

P19 cells  was investigated. Because cell death was not increased in the 

P19/Prdm12 cells (data not shown), whether Prdm12 slows cell growth 

through control of the cell cycle was examined. To this end, the cell cycle 

distribution of P19 cells expressing FLAG-Prdm12 or deletion mutants was 

analyzed by flow cytometry. Cell cycle analysis revealed that, compared to  

the control, the G1 population of P19/FLAG-Prdm12 cells was increased 

from 20.6% to 25.7%. FLAG-Prdm12ΔPR and FLAG-Prdm12ΔZF cells 

showed no changes in cell cycle distribution (Table I). This result suggests 

that Prdm12 inhibits the proliferation of P19 cells in part through 

regulation of the G1 phase of the cell cycle. 

The G1-to-S phase transition is inhibited by cyclin-dependent kinase 

(CDK) inhibitory proteins (CKIs). The CKIs are classified into two subfamilies: 
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the INK4 subfamily and the CIP/KIP subfamily. To determine whether 

Prdm12 increased the G1 population through upregulation of CKIs, the 

expression levels of two CKI proteins [p15 (an INK4 member protein) and  

p27 (a CIP/KIP protein)] were examined in Prdm12- or 

mutant-overexpressing P19 cells by western blot analysis. The protein  

expression of p15 did not change, whereas that of p27 increased in  

P19/FLAG-Prdm12 cells (Fig. 2-13). The results of quantitative RT-PCR 

showed an upregulation of expression of p27 mRNA in P19/FLAG-Prdm12 

cells (data not shown). The expression levels of p15 and p27 remained  

unchanged in the deletion mutant-overexpressing P19 cells. These data 

indicated that Prdm12 upregulates p27 expression and that either the PR 

or ZF domains of Prdm12 are necessary, but not sufficient on their own, 

for optimal antiproliferative activity of Prdm12. 
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A 

 

B                  C 

 

 

Fig. 2-8: (A) Top, schematic diagram of the protocol for RA-induced neural  

differentiation in P19 cells. The details are mentioned in the Materials and 

Methods. Bottom, Prdm12, G9a, Oct3/4 and Tuj1 mRNA levels were 

determined by quantitative RT-PCR during the differentiation process. 

0.1%V EtOH, negative control. Error bars represent the s.d., * p < 0.05 

versus EtOH control at day 4. (B) The expression of the G9a and GLP  
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proteins was detected by western blot analysis at the indicated time point. 

α-tubulin was used as an internal control. (C) 

Immunoprecipitation-western blot to detect RA-induced Prdm12 proteins. 

P19 cells were cultured in bacterial grade dishes or cell culture dishes with  

or without 1 μM RA for 4 days. Cell lysates were subjected to  

immunoprecipitation followed by western blot analysis both with  

anti-Prdm12 antibody. IgG: Negative control for Immunoprecipitation. ★, 

Predicted size of Prdm12 (40 kDa).  
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A                       C 

 

B                       D 

    

Fig.2-9: Prdm12 decreases cell proliferation in P19 cells. (A–B) Knockdown 

of Prdm12 in P19 cells. P19 cells were infected with indicated shRNA 

vectors. The stable Prdm12 knockdown cells incubated with 1 μM RA for 

96 h in bacteria grade dishes. Quantitative RT-PCR (A) or western blotting  

(B) were performed to detect the knockdown efficiency of shPrdm12. ★, 

Predicted size of Prdm12 (40 kDa). (C-D) 1X106 of indicated cells were 

seeded in bacteria grade dishes with 1 μM RA. After 96 h, cells were 

taken photo by Olympus IX 71 microscope, then trypsinized to count viable 

cells by Trypan Blue dye staining. Bars, SD. *p < 0.05 versus scrambled 

shRNA control. 
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Fig. 2-10. Knockdown of Prdm12 does not affect the percentage of 

Tuj1-positive cells. P19 cells and P19/shPrdm12 cells were differentiated  

by RA as described in Materials and Methods. (A) Cells were fixed at day 9, 

then stained with anti-Tuj1 antibody, a marker for mature neurons. 

Tuj1-positive cells were labeled by goat anti-mouse IgG Alexa 568 

secondary antibody (red). DAPI staining (blue) was used to visualize the 

cell nucleus. The region marked by the white box is shown at higher 

magnification in the right. Images were visualized by Olympus IX 71 

microscopes. (B) Histograms showing the percentage of Tuj1-positive 

neurons at day 9. Error bars indicate_S.D. 
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A                         B 

 

 

Fig. 2-11: (A) Growth curves of FLAG-Prdm12-overexpressing P19 cells. P19 

cells were transfected with the indicated vectors. After selection, 1X105  

pool cells were seeded onto 6 well plates and counted every 48 h for 6 

days. The growth curve was presented in cell division times (top). Bars, SD. 

*p < 0.05 versus control cells. Expression levels of FLAG-Prdm12 and 

mutants were detected by western blot with anti-FLAG antibodies for 

Prdm12 protein (bottom) and α-tubulin as the internal control. (B) Prdm12 

does not affect cell proliferation in NIH-3T3 cells. NIH-3T3 cells were 

transfected with an empty construct or a construct expressing  

FLAG-Prdm12. After selection, cell growth curves of stable 

FLAG-Prdm12-expressing NIH-3T3 cells and control cells were determined 

as described in (A). Bars, SD. Expression of FLAG-Prdm12 was detected by 

western blot analysis with an anti-FLAG antibody.  
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Fig. 2-12 : Plasmids expressing FLAG-Prdm12 or mutants were transfected 

into P19 cells. After fixation, cells were immunostained with anti-FLAG 

antibodies and labeled by goat anti-mouse IgG Alexa 568 secondary 

antibody for overexpressed proteins (red). DAPI staining (blue) for cell  

nucleus. Images were visualized by confocal microscopy. 
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Fig. 2-13: Upregulation of p27 by overexpressing Prdm12 in P19 cells. 

When cells were harvested for the cell cycle analysis as described in Table I, 

a proportion of the cells were subjected to western blot analysis with  

anti-p15, anti-p27, and anti-FLAG antibodies for p15, p27, and the 

overexpressed Prdm12 proteins. α-tubulin was used as an internal control. 

The expression of p15 was not changed. p27 was increased in  

P19/FLAG-Prdm12 cells. 
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1X106 cells expressing indicated proteins were plated to 10-cm cell culture 

dishes for 24 h. Cell cycle was measured by flow cytometry as described in 

Materials and Methods. ✽, p<0.05 versus control cells. 
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Chapter 3: Discussion 

 

3-1 Potential role of Prdm12 in neurogenesis  

Retinoic acid has been reported to increase the number of G1-phase 

cells and the expression of p27 in P19 cells (Sasaki et al., 2000; Pao et al., 

2011). In this paper, ectopic Prdm12 has been described to have the same 

function in P19 cells. In addition, it has been demonstrated that RA could  

induce the expression of Prdm12. Putative RARβ-response elements in the 

promoter region of Prdm12 have been predicted by transcription element 

search system analysis (data not shown). Furthermore, Prdm12 was found 

to be expressed in the dorsal root ganglia (DRG) of the mouse embryo 

(Kinameri et al., 2008), and RARβ2 was upregulated by RA in embryonic  

DRG neurons (Corcoran et al., 2000). Considering these findings, Prdm12 

may play a role downstream of RARβ2 in the RA signaling pathway. This 

hypothesis could be examined using RARβ2 antagonists or analogues. This 

direction is worth pursuing because RA induces axon outgrowth in  

embryonic DRG neurons through activation of RARβ2, and because the RA 

signaling pathway is activated in injured neurons (Wong et al., 2006). In 
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addition, Prdm14 is required for axon growth in primary motor neurons in  

zebrafish (Liu et al., 2012). If Prdm12 is transcriptionally activated by 

RARβ2, it may have a role in axon regeneration.  

Prdm14 maintains the human ES cell identity and represses the 

expression of differentiation marker genes (Tsuneyoshi et al., 2008; Chia et 

al., 2010). Prdm12 has antiproliferative effects on P19 cells but not on  

NIH3T3 cells (Fig. 2-11). This finding suggests that Prdm12 regulates a  

pathway specifically activated in “stem” cells.  

 

3-2 HKMTase activity of Prdm12 

This study has demonstrated, using an in vitro model, that Prdm12 

interacts with G9a to mediate HKMTase activity (Fig. 2-5). Prdm1 also 

functions to recruit G9a through ZF domains, and G9a activity is required  

for Prdm1 to repress the transcription of target genes (Gyory  et al., 2004). 

Transcriptional regulation by Prdm12 involving G9a and/or G9a-mediated 

H3K9 dimethylation (a silencing mark) would indicate that Prdm12 

targeted to the promoter region induces transcriptional repression. 

Therefore, this study suggests that Prdm12 indirectly increases the 
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expression of p27 by repressing the transcription of a negative regulator(s) 

of p27. It has been reported recently that retinal progenitor cells lacking  

G9a show defects in differentiation and proliferation, but photoreceptor 

precursors lacking G9a still develop into normal retina (Katoh et al., 2012). 

This result indicates that G9a has a stage- or lineage-specific role(s) in  

proliferation and differentiation, and that it may be involved in the 

Prdm12-mediated function(s) of neuronal cells.  

ZF domains are not only required for G9a interactions. Fig. 2-12 shows 

that the Prdm12 ZF domain contains nuclear localization signals (NLS) for 

its nuclear localization. Although the PR domain is not needed for H3K9 

methylation, both the PR domain and ZF domains are necessary for 

Prdm12 to decrease cell proliferation in a gain-of-function model, and each 

domain alone is not sufficient for Prdm12’s antiproliferative activity (Fig. 

2-11). The PR and ZF domains have been reported to be required for 

Prdm4 to inhibit the cell cycle through transcriptional repression of cyclin E 

(Chittka et al., 2004). Therefore, the properties of Prdm12 demonstrated in  

this study are similar to those of other Prdms. 
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3-3 Prmd12 as a potential tumor suppressor 

Aside from their functions in differentiation, several Prdms act as tumor 

suppressors, and mutations or deletions frequently occur in these Prdm 

genes (Fog et al., 2012). In activated B cell-like diffuse large cell  

lymphomas, Prdm1 deficiency increases tumor growth in mouse models 

(Mandelbaum et al., 2010). Prdm5 is repressed in colorectal and gastric  

cancers (Watanabe et al., 2007; Shu et al., 2011). In contrast, 

overexpression of Prdm5 causes cell cycle arrest and apoptosis in cancer 

cells (Deng et al., 2004). Deletion of DNA regions encoding Prdm12 has 

been reported in 15% of chronic myeloid leukemia (CML) patients (Reid et 

al., 2004). Furthermore, Prdm2 is downregulated in CML 

(Lakshmikuttyamma et al., 2009), and overexpression of Prdm2 in CML cell  

lines increases apoptosis and promotes cell differentiation (Pastural et al., 

2007). RA is currently used in differentiation therapy for acute 

promyelocytic leukemia (APL) patients (Kamimura et al., 2011). In CML cell  

lines, RA cooperates with α-interferon (IFNα) to inhibit cell growth 

(Benthin et al., 2001). These findings suggest that Prdm12 is a good 

candidate tumor suppressor in CML. Investigating whether Prdm12 is 
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involved in the RA signaling pathway may contribute to the understanding  

of RA mechanisms in CML. 

 

3-4 Conclusion  

In this study, Prdm12 was demonstrated to di-methylate H3K9 by 

recruiting G9a through ZF domain and exhib it  antiproliferativ e effects  

in  P19 cells. The findings of this study provide some insights into the 

role(s) of Prdm12 in neural development.  
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Chapter 4: Materials and methods 

4-1 Plasmids and cloning  

Full-length Prdm12 cDNA was amplified by PCR from an EST clone 

(image #6734548) purchased from the IMAGE consortium. For the 

generation of expression plasmids, amplified Prdm12 cDNA was inserted  

into pEGFP-C2 (Clontech, Mountair View, CA, USA), pGEX4T-1 (GE 

Healthcare, Little Chalfont, UK), or pCAG-FLAG-IRES-Puro vectors at 

specific restrict enzyme sites in frame with the indicated tag. To make 

Prdm12 deletion and point mutants, mutated fragments were created by 

PCR amplification and were subcloned into a pCAG-FLAG-IRES-Puro vector. 

Glutathione S-transferase (GST)-tagged H3N, mutants, and GST-G9aSET 

have been described earlier (Tachibana et al. 2001). Three oligonucleotides 

of short hairpin RNAs (shRNA) targeting the Prdm12 gene were designed 

and synthesized from Sigma (St. Louis, MO, USA) then inserted into a  

pSUPER.retro.puro vector (OligoEngine, Seattle, WA).  

 

4-2 Cell culture and differentiation 

HEK293T, NIH3T3, and P19 cells were cultured in Dulbecco’s Modified 
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Eagle Medium (DMEM, Nissui Pharmaceutical Co. Ltd.) supplemented with  

10% fetal bovine serum (FBS), 100 µg/ml streptomycin, and 100 U/ml 

penicillin (Gibco, Carlsbad, CA, USA) at 37°C in a 5% CO2 atmosphere. To  

induce neural differentiation, 1 × 106 P19 cells were cultured on 10 cm 

bacteria grade dishes for aggregation in DMEM supplemented with 10% 

FBS and 1 μM RA (solved in 99.9% EtOH; Sigma). After 96 h, cells were 

trypsinized then transferred to poly-L-lysine (Sigma) coated tissue culture 

dishes at a density of 1 × 105 cells/ml in 10% FBS DMEM without RA. After 

24 h, the medium was changed to 0.5% FBS DMEM to induce neural  

differentiation for another 96 h. All media were replaced with fresh media  

every 48 h. 

 

4-3 Transfection and infection of cells 

HEK293T, NIH3T3, and P19 cells were seeded in 6-well culture plate for 

24 h before transfection. Two micrograms of indicated plasmids were 

transfected into HEK293T cells using TransIT-LT-1 reagent (Mirus Bio corp., 

Madison, WI, USA) or 4 μg of plasmids were transfected into NIH3T3 and 

P19 cells using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA) 
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according to the manufacturer’s instructions. For infection, GP2-293 cells 

were co-transfected with a pSUPER.retro.puro vector containing the 

shRNA against mouse Prdm12 and a pVSV-G vector. After 48 h, the culture 

media was filtered with a 0.45-μm filter then used to infect P19 cells with  

polybrene (8 μg/ml). To establish stable cell lines, cells were treated with 1 

μg/ml puromycin for five days. 

 

4-4 In Vitro Histone methyltransferase (HMTase) assay  

HMTase assays was performed as described (Tachibana et al. 2001), with 

some modifications. Briefly, 10 μl of reaction mixture containing 2 μg of 

core histones, immunoprecipitated enzymes, and 125 nCi of 

S-adenosyl-[methyl-14C]-L-methionine in assay buffer (50 mM Tris, pH 8.5, 

5 mM DTT) were incubated for 1 h at 30°C. Proteins were separated by 

15% SDS–PAGE and visualized by coomassie brilliant blue staining. 

Detection of methyl-14C was performed by using a BAS-5000 imaging  

analyzer (Fuji Film). 
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4-5 Immunoprecipitation and immunocytochemistry 

After 48 h of transfection (or at the harvesting times indicated), cells 

were lysed in lysis buffer containing 20 mM Hepes, pH 7.5, 420 mM NaCl, 

1.5 mM MgCl2, 0.1% NP-40, and protease inhibitor cocktail (Nacalai  

Tesque, Kyoto, Japan). Supernatants were collected by centrifugation then 

incubated with 0.5–1 μg antibody overnight at 4°C and subsequently 

isolated by protein G-agarose (GE Healthcare). Immunoprecipitants were 

washed extensively with lysis buffer then used in Western blot or in vitro 

HMTase assays. For immunocytochemistry, cells were washed with PBS 

and fixed in 4% paraformaldehyde at room temperature for 10 min. After 

two washes with PBS, cells were permeabilized and blocked with 0.1% 

Triton X-100/5% BSA/PBS at room temperature for 30 min. First antibodies 

were added as follow: anti-FLAG (1:1000, Sigma), anti-Prdm12 (1:500, 

made by our Lab) in 1% BSA/PBS at 37°C for 1 h. After three washes with  

1% Tween/PBS, anti-mouse IgG Alexa 568 or  anti-rabbit IgG Alexa 488 

(1:1000, Invitrogen) with DAPI (1:3000, Sigma) were added at room 

temperature for 1 h. After three washes with 1% Tween/PBS then 

mounted in Vectashield (Vector). Slides were analyzed using a TSC SP3 
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(Leica) confocal microscope. 

 

4-6 Antibodies 

The commercially available primary antibodies used were as follows: 

mouse monoclonal antibodies to FLAG M2 (F3165; Sigma); GFP (11 814 

460 001; Roche, Mannheim, Germany); G9a (A8620A, Perseus Proteomics 

Inc., Tokyo, Japan); p27 (K25020; BD Biosciences, San Jose, CA);  G9a 

(A8620A, Perseus Proteomics Inc., Tokyo, Japan); GLP (#422, Perseus 

Proteomics Inc.); Neuronal Class III β-Tubulin (Tuj1, MMS-435P; Covance, 

Princeton, USA); p27 (K25020; BD Biosciences, San Jose, CA); α-tubulin  

(T-5168, Sigma) and normal rabbit IgG (sc-2027; Santa Cruz Biotechnology, 

Santa Cruz, CA); and rabbit polyclonal antibodies to p15 (#4822; Cell  

Signaling, Danvers, MA). Secondary antibodies were as follows: 

peroxidase-conjugated mouse or rabbit IgG secondary antibodies (NA931V 

and NA934V; GE Healthcare) and anti-mouse IgG Alexa 568 and anti-rabbit 

IgG Alexa 488 (A11004 and A11008; Invitrogen). The antibodies generated 

from our laboratory were as follows: rabbit polyclonal antibodies to Prdm4, 

Prdm6, Prdm12 and Prdm13. 
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4-7 Anti-Prdm12 antibody generation  

To generate rabbit anti-Prdm12 polyclonal antibodies, cDNA fragments 

corresponding to residues N43–F230 of mouse Prdm12 were subcloned 

into pGEX-4T-1, then the fusion protein (GST-Prdm12 (43-230)) was 

purified and immunized into a rabbit (Hokudo Co., Ltd., Sapporo, Japan).  

   BL21 competent cells transformed with pGEX4T-1-Prdm12 (43-230) 

or pGEX4T-1 were cultured at 4 ml LB overnight then transferred to 500 ml 

LB. Cells were incubated until OD600 reached 0.5 and IIsopropyl- 

1-thio-β-Dgalactopyranoside (IPTG) was added to a f inal concentration of 

200 μM. After 3 h, cell pellets were collected and stored at -80°C at least 1 

h, then resuspended in 20 ml RIPA buffer (140mM NaCl, 10mM Tris, pH 8, 

1mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% deoxycholic acid). After 

sonication, supernatant was collected by centrifugation at 10000 g for 10 

minutes. 2 ml glutathione sepharose beads were added to supernatant. 

After 4°C rotation overnight, beads were washed by 5 ml RIPA buffer 3 

times, then 1.5 ml 20mM dimethyl pimelimidate (DMP) in 200 mM HEPES 

crosslinking buffer was added for cross-link. After 1 h rotation at room 

temperature, 1.5 ml 200mM ethanolamine was added and beads were 
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incubated for 30 minutes at room temperature with rotation. Then beads 

were washed as follows: TBS (25 mM Tris-Cl, pH 7.5, 150 mM NaCl) 2 times, 

elution buffer (150 mM NaCl, 200 mM Glycine-HCl, pH 2.0) 5 time, and TBS 

2 times. First 2 ml serum was mixed with GST-beads then rotated for 30 

minutes at 4°C. Next, serum was transferred to column with GST-Prdm12 

(43-230)-beads. After incubation, column was washed by 1 ml TBS 3 times, 

2 ml wash buffer (500 mM NaCl, 20 mM Tris, pH 7.5, 0.1% Triton X-100) 2 

times and 1 ml TBS again 2 times, then 250 μl elution buffer was added to  

elute antibodies. 10 fractions were collected in tube with 32 μl 2M Tris (pH  

8.8). Fractions contained antibodies were combined and dialyzed in PBS 

buffer.  

 

4-8 Cell counting and cell cycle analysis  

FLAG-Prdm12 or mutants overexpressing P19 cells were seeded in 6 well 

plates at a density of 1 × 105 cells/well. Cell numbers were counted under 

a light microscope by trypan blue exclusion every 48 h for 6 days. The 

division times were calculated according to the following formula:  

(lgND−lgN0)/ lg2, where N0 is the cell number on the day of seeding, and 
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ND is the cell number after culture for 2, 4, or 6 days. For cell cycle analysis, 

1 × 106 FLAG-Prdm12 or mutants overexpressing P19 cells were seeded 

into 10-cm culture dishes. After 24 h, cells were collected and washed in  

PBS before fixing in cold 75% ethanol for 1 h at -20°C. After three washes 

with cold PBS, fixed cells were incubated with 50 mg/ml propidium iodide, 

10 mg/ml RNase A, and 0.1% Triton X-100 at least 30 min before analysis. 

The cell cycle was analyzed using a BD FACS Calibur flow cytometer ( BD 

Biosciences,), and the cell cycle analysis was done by Dean-Jett-Fox 

method of FlowJo software. 

 

4-9 Quantitative RT-PCR 

Total RNAs were isolated with Sepasol-RNA I (Nacalai Tesque) on the 

indicated days after RA treatment and cDNA was synthesized using the 

Omniscript RT kit (QIAGEN, KJ Venlo, Netherlands) according to the 

manufacturer’s instructions. Quantitative RT-PCR was performed with  

Power SYBR Green PCR Master Mix (Applied Biosystems, Warrington, UK) 

on a StepOne Plus Real-Time PCR System (Applied Biosystems). The 

primers used were Prdm12 forward 5′-CCCTTTTGGGGCTTCAGTTTC-3′, 
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and reverse 5′-GGTCGCTCATTCTCTTGTTTGG-3′; G9a forward 5 ′

-CACAAGCACATCGATGTGATT-3 ′ , and reverse 5 ′

-ATGGTAGTTGACAGCATGGAG-3 ′ ; Oct3/4 forward 5 ′

-GAAGCAGAAGAGGATCACCTTG-3 ′ , and reverse 5 ′

-TTCTTAAGGCTGAGCTGCAAG-3 ′ ; Tuj1 forward 5 ′

-TGGACAGTGTTCGGTCTGG-3 ′ , and reverse 5 ′

-CCTCCGTATAGTGCCCTTTGG-3 ′ ; GAPDH forward 

5′-CATCTTCTTGTGCAGTGCCA-3′, and reverse 

5′-CGTTGATGGCAACAATCTCC-3′. Gene expression was analyzed by the 

ΔΔ-CT method through StepOne Software 2.1 (Applied Biosystems). 

 

4-10 Primers 

List of Primers used for plasmid construction. F, forward primer; R, 

reverse primer.  

FLAG-PRDM12-F :  5′ - AAGCGGCCGC TATGATGGGCTCTGTGCTC - 3′ ;  

F L AG- P RD M1 2 - R:  5′ - T TA GAT CTT CA CAGCA CC ATGG CCGG - 3′ ;   

GF P- P r dm1 2 - F :  5′ - CGGAATT CATG ATGGG CTC TG TGCT CCC - 3′ ;  

GF P- P RD M1 2 - R:  5′ -  T TGG ATCCT CACAG CAC CATG GCCGG - 3′ ;  
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GSTPrdm12Primer-F: 5′ - CCGAAT TC ATGATGGG C TC TG TGC TCC C - 3′ 

GSTPrdm12Primer-R: 5′-ATGCGGCCGCTCACAGCACCATGGCCGG-3′ 

PRDM12ΔSET-F: 5′ - CTATCTAGC CT GGTGAATT CC CA CA AC AC C - 3′  

PRDM12ΔSET-R: 5′ - GGTGT TG TGGGAAT TCAC CAGGC TAGATAG - 3′  

PRDM12ΔZF-F: 5′-GACTCCGCGACCGGCGAGCGTCCCTACAAGTGC-3′ 

PRDM12ΔZF-R: 5′-GCACTTGTAGGGACGCTCGCCGGTCGCGGAGTC-3′ 

P R D M 1 2 - G 1 1 5 A - F :  5 ′ - G A G AT G G C T C C C T T C A C T G G C - 3 ′ ;  

P R D M 1 2 - G 1 1 5 A - R :  5 ′ - G C C A G TG A A G G G A G C C AT C T C - 3 ′ ;  

P R D M 1 2 -  F 1 1 7 A - F :  5 ′ - T G G G C C C C G C T A C T G G C C G - 3 ′ ;  

P R D M 1 2 -  F 1 1 7 A - R :  5 ′ - C G G C C A G T A G C G G G G C C C A - 3 ′ ;  

P R D M 1 2 Z 1 - - F :  5 ′ - AT G C G C C G A G T C AT C C G A C A C C G C - 3 ′ ;  

P R D M 1 2 Z 1 - - R :  5 ′ - G C G G TG T C G G A TG A C T C G G C G C AT - 3 ′ ;  

P R D M 1 2 Z 2 - - F :  5 ′ - T T C G T G C G C C G C T T C C G C A A C C G C - 3 ′ ;  

P R D M 1 2 Z 2 - - R :  5 ′ - G C G G T TG C G G A A G C G G C G C A C G A A - 3 ′ ; 

FLAG-PRDM12M2A-F: 5′-AAGAATTCAATGGCTGGCTCTGTGCTCCC-3′;  

FLAG-PRDM12L365A-R: 5′-TTAGATCTTCAAGCCACCATGGCCGG-3′; 

shPRDM12#1-F: 

 5′-AGCTTAAAAAAGGTACAGTACGCTACTTCATCGTGACAGGAAGCGAT  

GAAGTAGCGTACTGTACCGG-3′; 
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shPRDM12#1-R:  

 5′-GATCCCGGTACAGTACGCTACTTCATCGCTTCCTGTCACGATGAAGTAG  

CGTACTGTACCTTTTTTA-3′; 

shPRDM12#2-F: 

5′-AGCTTAAAAAACTATAGAACGCAGTAATTAGAGTGACAGGAAGCTCTAAT  

TACTGCGTTCTATAGGG-3′; 

shPRDM12#2-R: 

 5′-GATCCCCTATAGAACGCAGTAATTAGAGCTTCCTGTCACTCTAATTACTGC  

GTTCTATAGTTTTTTA-3′; 

Scrambled shRNA-F:  

5′-AGCTTAAAAAAGCCCGTGTTCATATCAAGACTGTGACAGGAAGCAGTCTTG  

ATATGAACACGGGCGG-5′; 

Scrambled shRNA-R: 

 5′-GATCCCGCCCGTGTTCATATCAAGACTGCTTCCTGTCACAGTCTTGATAT  

GAACACGGGCTTTTTTA-5′. 
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