Title
HTLV-1 bZIP factor suppresses c-Fos transcription and impairs T cell activation

Author(s)
Kawatsuki, Akihiro; Yasunaga, Jun-ichiro; Matsuoka, Masao

Citation
Retrovirology (2014), 11(Suppl 1)

Issue Date
2014-01-07

URL
http://hdl.handle.net/2433/180649

Rights
© 2014 Kawatsuki et al; licensee BioMed Central Ltd.

Type
Journal Article

Textversion
publisher
HTLV-1 bZIP factor suppresses c-Fos transcription and impairs T cell activation

Akihiro Kawatsuki*, Jun-ichiro Yasunaga, Masao Matsuoka

From 16th International Conference on Human Retroviruses: HTLV and Related Viruses
Montreal, Canada. 26-30 June 2013

HTLV-1 bZIP factor (HBZ) is responsible for the suppressed c-fos transcription in ATL cells. The results of reporter assay implied the roles of LXXLL motif of HBZ on the suppression of c-fos. HBZ has been reported to suppress AP-1 and NFAT signaling pathways through the direct interaction with c-Jun and NFATc2, respectively. We found c-Fos overexpression impairs the suppressive effects of HBZ on AP-1 and NFAT, suggesting that HBZ overcomes the inhibitory effects of c-Fos by suppressing its transcription. HBZ is known to bind to c-Jun instead of c-Fos. Suppressed transcription of c-fos facilitates HBZ to interact with c-Jun, and enhances suppressive effect of HBZ on AP-1 pathway. AP-1 and NFAT signaling pathways are activated by T-cell receptor (TCR) stimulation, leading to T cell activation. We found that TCR stimulation induces the c-fos up-regulation and the expression of the activation marker CD69 on CD4+ T cells of wild type mice, but not of HBZ transgenic mice, indicating that the activation of the signaling pathways initiated from TCR are suppressed by HBZ. We hypothesize that c-fos suppression by HBZ may contribute to impaired activation of T cells and pathogenesis of HTLV-1 infection.

Published: 7 January 2014

© 2014 Kawatsuki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.