領域気候モデルを用いた気候変動に伴う

梅雨期集中豪雨の将来変化予測に関する研究

Study on Future Change in Localized Heavy Rainfall during Baiu Season under Climate Change using a Regional Climate Model

中北英一·宮宅敏哉(1)

Eiichi NAKAKITA, Toshiya MIAYAKE⁽¹⁾

(1) 京都大学大学院工学研究科

(1) Graduate School of Engineering, Kyoto University

Synopsis

In recent year, the frequency and the intensity of localized heavy rainfall enhanced by climate change was quantified using the outputs from super high resolution regional climate model (resolutions of 5km and 30minutes) provided by KAKUSHIN program. As results of Nakakita et al. 2011, it was found that the frequency of localized heavy rainfall events has a tendency to increase significantly in the end of the 21st century and that they might occurs on the Pacific Ocean side of East Japan with obvious spatial pattern. However, 5kmRCM has only one calculation result. In this study, therefore, we statistically downscale the ensemble information of 60kmGCM using the dynamical downscale information of 5kmRCM and analyze the ensemble information of localized heavy rainfall during Baiu season.

キーワード:梅雨前線,集中豪雨,発生頻度, 5kmRCM, 60kmAGCMアンサンブル Keywords: Baiu front, localized heavy rainfall, frequency, 5kmRCM, 60kmAGCM ensumble

1. 研究の背景・目的

近年,我が国では,2012年7月の九州豪雨など, 梅雨前線に伴う集中豪雨が頻繁に発生している.こ のような集中豪雨は,100km 程度の長さで10~20 kmの幅をもち,6時間~半日程度継続する特徴があ り,流域面積が100km²までの流域面積をもつ中小 河川の外水および内水氾濫が問題となっている.一 方,近年の経済成長に伴うCO₂の排出量の増加によ り地球温暖化が進行しているとされており,その影 響は,気温の上昇だけではなく,大気循環にも影響 を与え,降水特性にも変化を及ぼし,特に極端降水 が増加する可能性がある.気象庁の気候変動監視レ ポートでは、アメダス観測地点での雨量値解析によ り時間雨量 50 mm 以上の強雨が近年増加傾向にあ ることが報告されており[1],地球温暖化と集中豪雨 増加の関連性について注目されている.

2007 年度から 2011 年度まで、21 世紀気候変動予 測革新プログラムの中で、気象庁気象研究所で開発 された気候モデルを用いた温暖化予測実験が行われ てきた.現在は、気候変動リスク情報創生プログラ ムとなり、より幅広い分野にわたって温暖化予測, およびその影響評価に関する研究が行われている. 革新プログラムで開発された気候モデルは、60km 全球大気モデル (AGCM: Atmospheric General Circulation Model), 20kmAGCM, さらに 20kmAGCM を力学的にダウンスケーリングした 5km の領域気候モデル (RCM: Regional Climate Model) などがある.また,60kmAGCM は現在気 候 (1979~2003),近未来気候シナリオ (2015~2039), 21世紀末気候シナリオ (2075~2099) の1つの時系 列において,複数の時系列データのあるアンサンブ ルモデルであるが,20kmAGCM は地球シミュレー タを用いても計算負荷が大きいため1本の時系列デ ータしかない.同様に,20kmAGCM をダウンスケ ーリングした5kmRCM も1本の時系列データであ る.

日本域で災害をもたらす豪雨には、1000 km × 1000 km 程度の広さを持ち数日継続する台風によ る豪雨,上述のような集中豪雨,非常に狭い範囲に 1 時間程度継続するゲリラ豪雨がある.台風による 豪雨に関しては、20 kmAGCM により影響評価が可 能となってきた.しかし,集中豪雨やゲリラ豪雨の ようにさらにスケールの小さい現象は 20 kmAGCM で影響評価をすることは困難である.そこで開発さ れたのが 5 kmRCM であり、これにより集中豪雨の ようなメソβスケールの現象まで表現できるように なり影響評価を可能とした.ただし、メソγスケー ルであるゲリラ豪雨の影響評価は未だ不可能である.

梅雨期の特に梅雨前線に伴った降水に着目すると, 60kmAGCM のアンサンブル情報では,21 世紀末気 候シナリオにおいて梅雨前線の北上が遅延すること や[2],7月上旬に日雨量の有意な増加傾向が出てい る[3]. 20kmAGCM では、21世紀気候シナリオは7 月上旬だけでなく8月上旬においても日雨量の有意 な増加傾向が出ている. また 5kmRCM では, さら に細かい降水の将来変化を探っており、21世紀気候 シナリオは7月上旬と8月上旬において日雨量の増 加だけでなく、特に日雨量 100 mm 以上の大雨がも たらす降水の総雨量に対する割合も増加することが 示されている[4]. すなわち, 上記のすべてのモデル において 21 世紀気候シナリオでは, 梅雨前線の北上 の遅延と7月上旬に日雨量の増加傾向が見られるた め、かなり有意性が高い変化であると言える.しか し,8月上旬の日雨量の将来変化のように, 20kmAGCM や 5kmRCM の高解像度のモデルでは 有意な変化が見られるものの, 60kmAGCM でのア ンサンブル情報では有意な変化が見られないことが ある. それゆえ, 5kmRCM において見られる将来変 化は、必ずしもすべてが有意な変化ではない可能性 もあるが,メソβスケールの現象まで影響評価が可 能になったこと自体が非常に価値のあることである. 上記のアメダス観測や気候モデルによる定量的解

エ記の) >>> ス観測や気候モアルによる足重的解 析では,統計値的には強い降水が増加していること が確認されたものの,これらの統計値からでは,実 際にどのような降水現象により降水量が増加してい るのか明確にされていない.

そこで本研究では、集中豪雨のようなメソβスケ ールの小さい現象を表現できるようになった 5kmRCMを用いて、既往研究での統計的有意性を基 に災害という視点から、レーダーを通して豪雨解析 を行ってきた経験を活かして、定性的に降水現象を 捉えていくことにより、梅雨前線に伴う集中豪雨の みの抽出を行った.具体的には、5kmRCMより出力 される 30 分降水データを1つ1つ確認し、日本域 における降水現象を目視により確認することで、梅 雨前線に伴う集中豪雨のみを抽出し、その発生頻度 と出現特性の将来変化を解析する.さらに、 5kmRCMは1本の時系列データしかないため解析 結果の有意性に不確実性が残っている点を踏まえ以 下のことを行う.

5kmRCMより得られた力学的ダウンスケール情報を 60kmスケールにアップスケーリングを行い, 5kmRCMで得られた梅雨前線に伴う集中豪雨時の 60kmスケールでの降水や大気場の情報を作成し,そ の情報を60kmAGCMアンサンブル情報に適用する ことで5kmスケールでの統計情報を算出する.つま り,力学的ダウンスケーリングと統計的ダウンスケ ーリングの融合を試みる.これにより,梅雨期集中 豪雨の将来変化の有意性を格段に上昇させることを 目的とする.

2. 気候モデルについて

2.1 20kmAGCMについて

20kmAGCM は、気象庁気象研究所で開発された 超高解像度の全球大気モデルである.モデルの実験 期間は現在気候(1979~2003)、近未来気候シナリ オ(2015~2039)、21 世紀末気候シナリオ(2075 ~2099)である.革新プログラムでは、前期実験と 後期実験の2回実験を行っており、前期実験におけ る問題点を後期実験で改良を行った.モデルの水平 解像度はTL959(格子間隔約20km)であり、鉛直 層数は64層である.境界条件として、現在気候では 全球観測値、将来気候シナリオではすべてのエネル ギー源のバランスを重視して高い経済成長を実現す る(大気中の温室効果ガス濃度が21世紀末頃に20 世紀末頃の約2倍)と仮定したA1Bシナリオにより 出力された全球海面水温分布を与えている[8].

本研究が対象としている梅雨期の集中豪雨のよう な降水現象は、気候モデルの雲物理過程や積雲スキ ームの影響が大きく反映される.後期実験の雲物理 では、雲水と雲量を予報変数とした Tiedtke (1993) のスキームを用い、格子スケールでの対流現象は Yoshimura の積雲対流スキーム(YS スキーム)を 用いて大規模場に反映させている.この YS スキー ムは, Tiedtke (1989)を改良した積雲スキームで あり,格子内の複数の背の高さの積雲を緻密に計算 し,それらの対流の平均的な効果を格子スケールに 与えている.前期モデルで使用された積雲対流スキ ーム(Arakawa-Schubert スキーム,AS スキーム) は,Yoshimura スキーム同様格子内の複数の背の高 さの積雲を計算しているが,積雲の計算自体はシン プルな計算を行っている.そのため前期モデルと比 較して後期モデルは再現性が向上している.

ー般的に数値モデルでは、格子間隔の10倍程度の 現象を再現することができると言われており[9]、 20kmAGCMでは、台風や梅雨前線などのメソαスケ ール(200km~2000km)がよく再現されているため、 台風による降水現象の影響評価が可能になった.し かし、集中豪雨のような空間スケール数10kmの現象 の表現は難しく、そのような現象の影響評価は 20kmGCM出力を用いては難しい.

2.2 5kmRCMについて

気象庁気象研究所で開発されたRCMは水平解像度 が5km, 2km, 1kmの気候モデルである.これらのモ デルはいずれも超高解像度であるため静力学平衡を 仮定しない非静力学モデルである.モデルの実験時 間は,5kmモデルと2kmモデルは現在気候(1979~ 2003),近未来気候シナリオ(2015~2099),21世 紀末気候シナリオ(2075~2099)の各25年の暖候期 (6月~10月)のみである.1kmモデルは特に顕著な 現象についてのみ計算される.モデルの出力値は 5kmモデルでは30分ごとに,2km,1kmモデルは10分 ごとである.また,5kmモデルの計算時間は6月~10 月を通して計算を行っている(5月17日から31日まで spin-up).しかし,2kmモデルでは1日ごと(前日21 時から3時間spin-up)に計算を行っている点に違いが ある.

5kmRCMは20kmAGCMの実験結果を力学的にダウ ンスケーリングしたモデルである.5kmRCMでは, 計算領域側面から数10格子程度の緩和領域内で GCMの情報を取り入れる境界緩和法と,RCMの大規 模場をGCMの大規模場に近づくように強制を加え るスペクトルナッジング法を導入し,GCMとRCMの 予報場のずれを小さくしている.これを導入するこ とで再現性が向上している.雲物理過程として, 5kmRCMでは,計算コストを抑えるため,雲水,雨 水,雲氷,雪,あられの混合比を予報変数とする 1-moment 3-ice bulk法を用いている.2kmRCMでは, 混合比と数濃度を独立に予報変数とするより詳細な 2-moment 3-ice bulk法を用いている.また,5kmRCM は水平解像度が5kmであるが積乱雲のスケールはそ れよりも小さいため, Kain-Fritschスキーム (KFスキ ーム)を用いて格子内の対流現象を表現している. このKFスキームは1つのモデル格子内に単一の積雲 があると仮定したスキームであり、CAPEを消費して 鉛直方向の不安定を解消させ、その不安定度により 積雲の強さを決定している. 20kmAGCMに用いられ たYoshimura スキームでは、格子内の複数の背の高 さの違う積雲を1つのスキームで表現しているが、 KFスキームでは、1つの積雲を表現するという違い がある.また,前期モデル実験では,KFスキームに より海岸線に沿って不自然な強雨域が発生する特徴 があったため、後期モデルでは、1kmモデルが予想 した積乱雲の雲底高度をもとに補正することで、海 岸線での過大評価をかなり軽減できている. 2kmRCMと1kmRCMでは格子間隔がさらに詳細にな り,詳細な雲物理過程を用いているため積雲対流ス キームは用いていない. また, 5kmRCMでは 20kmAGCMと比較して、地形情報も高解像度化され ているため,山岳域等での地形性の降雨の再現精度 も向上している.5kmRCMでは、格子間隔が詳細に なることで、20kmAGCMと比べ詳細な雲物理過程を 用い、個々の積雲を表現する積雲対流スキームを用 いているため、20kmAGCMでは表現できなかった局 所的な対流現象がもたらす降水のより正確な表現が 可能となる. Fig.1 に20kmAGCMと5kmRCMの違い を示す.このように、5kmRCMでは、集中豪雨のよ うなメソβスケールの小さな降水現象の影響評価が

Fig. 1 The comparison of 20kmAGCM and 5kmRCM

2.3 60kmAGCMアンサンブルについて

可能になっている.

60kmAGCM では、複数の大気初期値条件や複数 の海面水温、複数の積雲対流スキームを用いたアン サンブル予測実験が行われた.実験期間は現在気候 (1979~2003),近未来気候シナリオ(2015~2039), 21 世紀末気候シナリオ(2075~2099)である.前 期 60km モデルでは、4 つの異なった海面水温と 3 つの異なった大気初期値条件を与えた合計 4x3=12 個のアンサンブル実験を行った.後期 60km モデル では、3 つの異なったモデル(積雲対流スキームに よる違い)と4つの異なった海面水温を与えた合計 4x3=12個のアンサンブル実験を行った.

前期 60km モデルの海面水温の予測値としては, CMIP3 (Phase 3 of the Coupled Model Intercomparison Experiment) 大気海洋結合モデル 平均の他に、昇温量の異なる3つの単独の大気海洋 結合モデル (MRI-CGCM2.3.3: Meteorological Research Institute - Coupled General Circulation Model, MIROC_hires: Model for Interdisciplinary Climate , Research On CSIRO-mk3.0: Commonwealth Scientific and Industrial Research Organisation)の出力を用いている. CMIP3 とは, 第3次結合モデル相互比較プロジェクトにおいて世 界各国の研究機関で開発された複数の気候モデルに よる温暖化実験のことである.一般的に,温室効果 ガスの増加による全球平均年平均気温の平衡昇温量 のことを気候感と言い,特に海洋の熱慣性の効果を 考慮したものを有効気候感度と言う. CMIP3 モデル 平均の有効気候感度は 2.98℃, MRI-CGCM2.3.3 は 2.97℃であり CMIP3 のほぼ中位に属する[11].

MIROC_hires は5.87℃で CMIP3 モデルの中で最も 高い. CSIRO-mk3.0 は 2.21℃で CMIP3 モデルの中 では低位である. Table.1 に前期 60km モデルアンサ ンブル実験メンバーの一覧を示す. これら海面水 温・大気初期値アンサンブル実験では,全体的に大 気の初期条件の違いよりも海面水温の違いが大きい という報告がされている[2]. 特に MIROC では,日 本の南の海上での昇温量が大きいことから,アンサ ンブルメンバーの中では降水量が多い.

後期60kmモデルの積雲対流スキームとしては、YS スキーム、ASスキーム(前期の改良版),KFスキー ムの3つを用いている.また,海面水温は,前期モデ ルでは異なるモデルの昇温を使用したが、後期実験 では客観的な方法にするため、CMIP3の各モデルに おける海面水温上昇パターンをクラスタ分析し、3 つのクラスタに分類した上でそれぞれの平均のパタ ーンを60kmモデルに加えた実験を行っている.昇温 量による違いではなくパターンの違いによる影響を 抽出するため、平均の昇温幅は各パターンとも CMIP3平均の昇温幅と同一としている.Table.2に後 期60kmモデルアンサンブル実験メンバーの一覧を 示す.これら海面水温・積雲スキームアンサンブル 実験では、全体的に海面水温の違いよりも積雲スキ ームの違いが大きいという報告がされている[2].

2.4 各気候モデルを用いた梅雨期の変化

本節では、上記の 20kmAGCM, 5kmRCM, 60kmAGCM アンサンブルの定量的な解析による梅

Table. 1 Zenki model experiment

period	Name of experiment	SST	Emsumble
			numbers
present	HP0A	observations	3
1979~2003		(HadISST)	
	HF0A	CMIP3 [2.98°C]	3
End of 21st	HF0A_CSIRO	CSIRO-mk3.[2.21°C]	3
century	HF0A_MIROC	MIROC_hires[5.87°C]	3
2075~2099	LIEOA MDI	MDL CCCM2 2 2	2
	HF0A_MRI	MRI-CGCM2.3.2	3
		[2.97°C]	

[] effective climate sensitivity , IPCC (2007)

Table. 2 Kouki model experiment

period	SST	Cumulus convection		
		Yoshimura Arakawa-schubert Kain-Fritsch (YS) (AS) (KF)		Kain-Fritsch (KF)
present 1979~2003	observation	HPA_YS	HPA_AS	HPA_KF
End of 21st	Milti-model	HFA_YS	HFA_AS	HFA_KF
century	Cluster 1	HFA_YSc1	HFA_ASc1	HFA_KFc1
2075~2099	Cluster 2	HFA_YSc2	HFA_ASc2	HFA_KFc2
	Cluster 3	HFA_YSc3	HFA_ASc3	HFA_KFc3

雨期の降水の変化傾向をモデルごとに簡潔にまとめる.

● 60kmAGCM アンサンブル

前期実験では、将来東シナ海、日本海、日本の南 海上で有意な降水量の増加傾向が見られる.また、7 月の降水量の有意な増加傾向や梅雨明けが遅れる可 能性も示唆している.

後期実験では、将来揚子江流域~東シナ海~本州 (梅雨前線帯)にかけて降水量の有意な増加傾向が 見られる.また、積雲スキーム別での梅雨期の降水 は、KFスキームでは梅雨期の降水増加をよく再現し ているが、ASスキームでは降水量が不足する結果が 出ている.

20kmAGCM

60km モデルの実験結果と同様に、7月上旬に降水 量の有意な増加傾向が出でいることに加え、8月上 旬にも降水量の有意な増加傾向が示されている.

• 5kmRCM

5kmRCMでは、より細かいスケールの降水現象 を表現することが可能となったため、上述の全球大 気モデルの結果に加え、特に7月上旬に日雨量100mm 以上が総降水量に占める割合の有意な増加傾向が示 されている.

3. 5kmRCMを用いた集中豪雨の抽出

3.1 集中豪雨の定義

集中豪雨という言葉は、1953 年 8 月 15 日の朝日新 聞の夕刊(大阪本社版)で「集中豪雨木津川上流に」 という見出しとして、初めて使用された言葉であり、 正式な気象用語ではない.しかし、現象を端的に表 現しているため、現在では学術的にも一般的にも広 く用いられている.気象庁によると「狭い範囲に数 時間にわたり強く降り, 100mm から数 100mm の降 水量をもたらす雨」と定義されている.

集中豪雨はその成因によって、梅雨前線に伴う集 中豪雨、台風に伴う集中豪雨、熱雷による集中豪雨 などに分類される.本研究で対象とする集中豪雨は 1章で述べたように梅雨前線に伴う集中豪雨である. ただし、台風の影響で梅雨前線が活発化された場合 も、梅雨前線に伴う集中豪雨とする.

本章では、5kmRCMの降水データや地表面の大気 データを用いて梅雨前線に伴う集中豪雨の抽出を行 うことが目的であり、具体的に以下のような判断基 準を用いて、梅雨前線に伴う集中豪雨を定義する. なお、メッシュ情報での頻度を抽出するのではなく、 1 つの降水現象として集中豪雨を抽出するため、本 研究では以下のような判断基準に従い、目視により 集中豪雨を抽出した.

- 1) 30 分降水量
 - 50mm/hr以上の雨域が同じ地域に2時間以 上停滞する場合
 - 50mm/hr以上の雨域が同じ地域に2時間以内に2個以上出現する場合
- 2) 3時間降水量
 - 150mm 以上の雨域が出現した場合
 - 100mm~150mmの雨域が出現し、その雨 域が同じ地域に3時間以上停滞する場合
- 3) 梅雨前線の確認
 - 地表面における相当温位の水平勾配が大 きいこと

この 1)~3)の全てを満たすものを本研究における集 中豪雨と定義する.ただし,相当温位を用いた梅雨 前線の確認は,30分降水量,3時間降水量で梅雨前 線と確認できなかった場合についてのみ行うものと する.

ここで,30 分降水量を用いる理由として,5kmRCM データ出力時間解像度が30 分であり,また,積乱雲 が通常,成長期・成熟期・減衰期の3 段階を経てそ の一生を終えるのは,30 分~60 分であるため,集中 豪雨という現象を把握する上で有効であると判断し たためである.また,3 時間降水量を用いる理由と して,同じ場所に停滞しているかどうかを判断でき るからである.最後に,梅雨前線に伴う集中豪雨か どうかを地表面における相当温位の水平勾配によっ て確定させる主眼として設定した.

また,集中豪雨の数え方として,梅雨前線に伴う 集中豪雨の1事例の中で,集中豪雨が複数の地域で 発生している場合は,2種類の数え方をする.1つ目 は,同一の気象擾乱により,複数の地域に集中豪雨 がもたらされた場合,それは別々の災害であり,別々 の集中豪雨として数える.この別々の集中豪雨を集 中豪雨災害と呼ぶこととする. 2つ目は,複数の地 域に集中豪雨がもたらされたとしても,同じ気象擾 乱によってもたらされているなら,同一の原因によ るものとして1つと数える.

3.2 梅雨前線による集中豪雨の抽出

本節では、30分降水量と3時間降水量,相当温位 の南北勾配を用いた集中豪雨の抽出の具体的な手法 について説明する.

(1)解析期間

解析期間は現在気候(1979~2003)、近未来気候 (2015~2039)、21世紀末気候(2075~2099)の梅 雨期とする.梅雨期は通常,6月~7月である.しか し,8月初旬に梅雨の戻りや,梅雨明けがなく8月 まで梅雨前線により雨が降り続く可能性があるため 解析期間は各気候25年の6月1日~8月31日とす る.

(2) 集中豪雨の抽出の流れ

本研究では、30 分降水量と3 時間降水量を画像デ ータにし、それらを目視し確認することで集中豪雨 を抽出する.画像データを1つ1つ確認するため、 台風や熱雷に伴う集中豪雨と梅雨前線に伴う集中豪 雨とを区別することができることが本手法の利点で ある.手順として、まず、30 分降水量を用いて梅雨 前線に伴う集中豪雨の候補を抽出する.次に、30 分 降水量で候補に挙げた事例が3時間降水量の基準を 満たしているか確認する.最後に、相当温位分布を 用いて、梅雨前線に伴うものであるかどうかの確認 をする.以下、Fig2の手順により梅雨前線に伴う集 中豪雨を抽出する方法を示す.

(3)30分降水量による梅雨前線に伴う集中豪 雨の候補選び

30分降水量の画像データを用いて梅雨前線に伴う集 中豪雨の候補を抽出する.ここでは、台風や熱雷に 伴う集中豪雨と梅雨前線に伴う集中豪雨を区別しな がら、梅雨前線に伴う集中豪雨の候補を抽出する. 抽出過程において注意することは、30分降水量は抽 出の第一段階であるため、梅雨前線に伴う集中豪雨 であるかどうか疑わしい事例はすべて抽出すること である.また、集中豪雨の出現個数を数えるととも に、集中豪雨をもたらした気象擾乱の個数も数える.

(4)3時間降水量による集中豪雨の選定

3時間降水量の画像データを用いて,30分降水量 で抽出された梅雨前線に伴う集中豪雨の候補が3時 間降水量の基準を満たしているか確認する.1 つ1 つの集中豪雨を確認し,集中豪雨かどうかを判定基 準に基づいて判断する.

Fig. 2 The flow of extraction of localized heavy rainfall

(5)相当温位の南北勾配に基づく前線の存在確認

以上で選出された梅雨前線に伴う集中豪雨の候補群 について,梅雨前線に伴うものかどうか判別しがた い事例は,相当温位の南北勾配を用いて確認を行う. 相当温位は以下のように定義される.

飽和している空気塊を断熱的に上昇させ、含んでいた水蒸気を全部凝結させて、湿っていた空気塊がもっていた潜熱を全て放出させる.そして、凝結でできた水滴や氷粒は、全て降水として空気塊から落下させ、放出された潜熱は乾燥空気の温度変化にだけ使われるとする.このようにして完全に乾燥してしまった空気塊を、もう1度逆に断熱圧縮しつつ1000hPaの高さまでもってきたとき、その空気塊が もつ温度が相当温位である.飽和している空気塊が断熱的に上昇するときにはこの量は保存される.簡潔に言うと、気温が高いほど、含まれる水蒸気量が多いほど、相当温位は高くなるということである.

相当温位は温位 θ (K), 潜熱L(J/kg), 飽和空気

の混合比 W_s ,定圧比熱 C_p (J/kg・K),気温T (K) を用いて以下の式で計算される。

$$\theta e = \theta \exp(\frac{Lw_s}{C_p T}), \qquad (3.1)$$

温位 θ は気温T (K),気圧p (hPa),1kgの乾燥

空気の気体定数 R_d (J/kg・K) を用いて以下の式で 計算される.

$$\theta = T \exp(\frac{1000}{p})^{R_d/C_p} , \qquad (3.2)$$

飽和空気の混合比 W_s は飽和水蒸気圧 e_s (hPa),

気圧(hPa)を用いて以下の式で計算される.

$$w_s = 0.622 \frac{e_s}{P - e_s} , \qquad (3.3)$$

相当温位の等値線は梅雨前線に沿って分布し、梅雨 前線を境に南北で急激に差ができるため、等値線分 布を確認すると南北方向に間隔が狭くなる. 台風の 場合は,豪雨域を含んだ広い領域が高相当温位域に なっており、梅雨前線と明確な違いがある.この特 性を利用して梅雨前線の確認を行う. なお、本研究 では、地表面の相当温位分布であるため、陸域では 等値線がかなり複雑であるため、陸域だけにとどま らず,海上域も含めた広域において梅雨前線の確認 を行う. 具体的な事例を挙げる. Fig.2は, 209x年に シミュレーションされた30分降水量と相当温位分布 の空間分布である. 209x年としたのは、気候モデル では将来の正確な年月の現象を表現しているのでは なく,気候として将来そのような現象が起こるであ ろうというシミュレーションを行っているからであ る.気候モデル出力値は30分降水量では、太平洋沿 岸付近に梅雨前線が確認できる.また,相当温位分 布は30分降水量と同じところで等値線の間隔が非常 に狭くなっていることが確認できる.このように, 梅雨前線が存在する場合は,梅雨前線に沿って相当 温位の等値線の間隔が狭くなる.

3.3 集中豪雨の抽出結果と頻度解析

本節では上述の手法により抽出した集中豪雨の頻 度解析を行った.有意性の検定は仮説検定として,T 検定を行った.また,以降は現在気候と21世紀末気 候シナリオの頻度解析を示す.近未来気候シナリオ においても集中豪雨の抽出を行ったが,現在気候と 比較して頻度差が小さいため,より頻度差が出た現 在気候と21世紀末気候シナリオの比較を行う.

(1)日本全域での頻度解析

ここでは,現在気候,21世紀気候シナリオの各25 年の集中豪雨の平均発生頻度に差が生じているのか を解析し,その有意性の検定を行った.なお,この 項では集中豪雨災害という観点から頻度解析を行う. すなわち,同一の気象原因によってもたらされた集 中豪雨であっても,それが複数の地域に集中豪雨災 害をもたらすならば,別々の集中豪雨災害として捉 えられるため,別々の集中豪雨として数えた場合で ある.

各25年の平均頻度,標準偏差と25年間の合計を Table 3 に示す.この結果より,現在気候と比較して 21世紀末気候シナリオでは25年平均頻度も標準偏差 も増加していることがわかる.特に21世紀末気候シ ナリオでの頻度の増加が著しいことがわかる.Table 4 は、Table 3 の平均と標準偏差を用いて,現在気候 の25年平均頻度と比較して,21世紀末気候シナリオ の25年平均頻度が増加しているかどうかのT検定を 行った結果である.検定統計量Tが棄却域を超えれば 有意であり,越えなければ有意ではないと判断する. 今回は,現在気候と比較して21世紀末気候シナリオ の頻度が増加していることの検定であるので片側検 定を行った.現在気候と比較して21世紀末気候シナ リオでは,検定統計量Tが棄却域を超えているため, 25年平均発生頻度が有意に増加していると判断でき る.つまり,日本全体で現在気候と比較して,21世 紀末気候シナリオでは梅雨前線に伴う集中豪雨が 95%有意に増加傾向であると言える.

Table.	3 The	average	of 25	years	and	standard	deviation
--------	-------	---------	-------	-------	-----	----------	-----------

	present	End of 21 st century
Average of 25 years	6.4	11.32
Standard deviaton	4.02	6.42

Test statistic T	3.28
Rejection region 5% (One side)	1.69
10% (One side)	1.31

Table. 4 The result of test

次に,災害視点から見た集中豪雨の旬別発生頻度解 析を行う.Fig3 は現在気候と21世紀末気候シナリオ の旬別の発生頻度分布である.縦軸は25年間の合計 頻度である.ひと月を10日ごとに3分割し,その10 日間の合計頻度を表しているため,旬別と表現して いる.21世紀末気候シナリオでは,7月上旬と8月上 旬に集中豪雨の発生頻度が増加していることが読み 取れる.現在気候では,梅雨期に当たる6月中旬から 7月中旬にかけて集中豪雨の発生頻度が多くなって いる.7月上旬と8月上旬の増加は95%有意な増加で ある.

Fig 4 は集中豪雨をもたらす気象擾乱の旬別頻度分 布である.この結果においても、21世紀末気候では、 7月上旬と8月上旬に頻度が増加している.現在気候 では、6月下旬にピークを迎えたあとは下降傾向であ り、豪雨災害の頻度分布とはずれが生じている.7 月上旬と8月上旬の増加は有意な増加である.

Fig. 4 Seasonal frequency of weather disturbances which result in localized heavy rainfall

Fig 3とFig 4の結果より,集中豪雨の発生頻度とそれ をもたらす気象擾乱の発生頻度に差が生じている. つまり,1度に複数の集中豪雨をもたらす気象擾乱が 発生しているということである.そこで,1度に3つ 以上集中豪雨をもたらすような強い気象擾乱の発生 頻度解析を行った.Fig 5に結果を示す.7月上旬と8 月上旬にかけて95%有意な増加傾向が見られる.特 に8月上旬においては,現在気候ではほとんど頻度が 見られなかったが21世紀末気候シナリオにおいて頻 度が見られているため,7月上旬同様に8月上旬にお いても梅雨の戻りにより集中豪雨が発生する可能性 が高いと考えられる.

Fig. 5 Seasonal frequency of weather disturbances which result in more than three localized heavy rainfall at once

(2)地域別での頻度解析

ここでは、日本を九州、四国、中国、近畿、東海、 関東甲信、北陸、東北の8つの地域に分割し、集中豪 雨の発生頻度解析を行った.ここでの集中豪雨とは、 災害視点で見た集中豪雨のことである.日本全域と 同様に地域ごとに25年平均頻度の検定にはT検定を 用いた.

Fig 6に地域ごとの現在気候での25年合計発生頻度 (青棒グラフ,斜め上に25年合計発生頻度数),21 世紀末気候シナリオでの25年合計発生頻度(赤棒グ ラフ,斜め上に25年合計発生頻度数),現在気候と 21世紀末気候シナリオでの頻度差(□内数字)を示す. 地図上で赤色が95%有意な増加傾向があった地域, 紫色が90%有意な増加傾向があった地域,黄緑色が 有意な増加傾向がなかった地域である.

21世紀末気候シナリオにおいては、九州地方と中 国地方を除くすべての地域で有意な増加傾向が見ら れた.特に,近畿地方,東海地方,関東甲信地方と いった中日本と東日本の太平洋側で21世紀末気候シ ナリオにおいて95%の有意な増加傾向があることが 読み取れる. 九州地方は増加量が多いにも関わらず 有意性な増加傾向が見られなかった理由としては, 現在気候において、すでに発生頻度が多く、25年内 において各年のばらつきが大きかったことが原因し ていると考えられる.反対に、北陸地方や東北地方 などでは増加量が少ないにも関わらず有意性が出て いるのは、現在気候の頻度が少なくばらつきが小さ かったためであると考えられる.なお、この地域別 の解析で注意されたいのは、この有意性は各地域内 の現在気候と21世紀末気候シナリオの比較によるも のであって、地域間での比較ではない点である.

Fig. 6 Comparison of present and end of 21st century regional frequency of occurrence of localized heavy rainfall

有意な増加傾向が出ている地域は現在気候での発 生頻度が少なく21世紀末気候シナリオで増加してお り、特に北陸地方や東北地方のように現在気候では ほとんど頻度のなかった地域においても21世紀末気 候シナリオでは頻度が増加している.これは今まで 豪雨災害のなかった地域においても集中豪雨が発生 する可能性が高まったことを意味しているため、今 後の河川整備等に影響が出る可能性がある.また, 九州地方では有意な増加傾向は見られないものの, 発生頻度からみれば他地域よりかなり多いというこ とを認識していただきたい.

(3)九州南北での頻度解析

地域ごとの解析において九州地方は現在気候と比 較して 21 世紀末気候シナリオにおいて有意な増加 傾向は見られなかったが,発生頻度は多かったため, 九州地方を南北に分断し南北での発生頻度解析を行 った.南北は気候的な観点で九州山地で分断した (Fig 7).北部は福岡県,佐賀県,長崎県,大分県, 熊本県とし,南部は鹿児島県と宮崎県とする.一般 的に,九州北部では梅雨期の集中豪雨による災害が 多く,九州南部(特に宮崎)では台風に伴う豪雨に よる災害が多い.

Fig 7に九州南北の現在気候での25年発生頻度(青 棒,数字が25年合計発生頻度),21世紀末気候シナ リオでの25年発生頻度(赤棒,数字が25年合計発生 頻度),現在気候と21世紀末気候シナリオでの頻度 差(□内数字)を示す.先ず,南北それぞれにおいて 現在気候と21世紀末気候シナリオにおいてT検定を 行ったところ21世紀末気候シナリオでは頻度が増加 しているが,90%以上有意な増加傾向は見られなか った.次に,現在気候,21世紀末気候シナリオそれ ぞれで南北間比較を行ったところ,現在気候,21世 紀末気候シナリオともに北部の方が南部より頻度が 多かった.

Fig. 7 Comparison of present and end of 21st century in kyusyu

Fig 8に九州南北の現在気候と21世紀末気候シナリ オの旬別の発生頻度を示す.ここでは、7月上旬に北 部の21世紀末気候シナリオにおいて95%有意な増加 傾向が見られた.しかし、日本全域で見られた8月上 旬の有意な増加傾向は見られなかったため九州では 梅雨の戻りによる集中豪雨が増える可能性は少ない と考えられる.

Fig. 8 Seasonal frequency of localized heavy rainfall in North and South kyusyu

以上,九州を南北に分断し頻度解析を行うことで, 九州南北において発生頻度に有意な差はなく21世紀 末気候シナリオにおいての有意な増加傾向も見られ なかった.しかし,南部より北部の方が発生頻度は 多く,南北ともに21世紀末気候シナリオにおいて発 生頻度が増加しており,特に7月上旬において北部で は95%有意な増加傾向が見られた.これより,21世 紀末気候シナリオでは,北部において特に7月上旬に 集中豪雨の発生頻度が増加する可能性が高いと考え られる.

(4) 日本海側での頻度解析

ここでは、2011年7月の新潟・福島豪雨のように 梅雨前線に伴って、日本海で発生した積乱雲が次々 にやってきた場合に発生する集中豪雨の発生頻度解 析を行った.日本海側は、山口県から青森県と定義 した.

Fig 9に旬別での発生頻度を示す.現在気候ではほ とんど頻度がないが、21世紀末気候シナリオでは7 月上旬と8月上旬に発生頻度が多くなっている.特に 8月上旬に発生頻度が多くなっているということか ら、梅雨の戻りが発生した場合に日本海側で集中豪 雨が発生する可能性が高いと考えられる.

Fig. 9 Seasonal frequency of localized heavy rainfall in Japan sea side

4. 統計的ダウンスケーリング手法

4.1 統計的ダウンスケーリングの概要

統計的ダウンスケーリングは広域の気象場とロー カルな気象要素との経験的あるいは統計的関係を仮 定し,その関係式に基づいて空間解像度の低いデー タから空間解像度の高いデータへの変換を行うこと である.力学的ダウンスケーリングと比較して計算 コストが低く,同時にバイアス補正も行われること から,統計的ダウンスケーリングは古くから様々な 応用分野に用いられてきた.特に,力学的ダウンス ケーリングでは計算が困難なほどに,データを空間 詳細化したい場合には有効な方法である.

統計的ダウンスケーリング手法は大きく分類して, 天気図分類法 (パターン分類法), ウェザージェネレ ーター法,回帰モデル法の3種類存在する.これら の多数ある手法から影響評価の目的に沿う統計的ダ ウンスケーリング手法を選ぶ必要がある.一般的に, これらの手法すべてに共通することは,説明変数(独 立変数)として気候モデルの出力や再解析データな どから得られる大規模場の気象要素(風,気温,等 圧面高度,海面更正気圧,湿度など)をとり,目的 変数(従属変数)としてある特定の地点のローカル な気象要素(降水量,地表気温,日最高・最低気温, 日射量など)をとって,説明変数と目的変数との間 に何らかの統計的関係を仮定する点である.よって, 統計的ダウンスケーリングにおける計算とは、関心 のある地点においてたてられる統計的な関係式に基 づいて説明変数から目的変数を推定することである と言える.統計的ダウンスケーリング手法の主な機 能は,1)時間詳細化,2)空間詳細化,3)要素推定, 4) バイアス補正がある.本研究では, 60km スケー ルの情報を統計的にダウンスケーリングすることで 5km スケールでの集中豪雨の将来推定を行った.

4.2 本研究で構築した手法

本節では、本研究で新たに構築した統計的ダウン スケーリング手法について説明する.上述のように, 一般的な統計的ダウンスケーリング手法は気候モデ ル出力値を説明変数に,観測値を目的変数としてい るが、本研究で対象とする集中豪雨のようにメソ β スケールの現象に対応できる解像度の観測値は少な く,現在気候(1979年~2003年)のすべての期間を 網羅できる観測値はなかった.そこで、本研究では、 60kmAGCM のアンサンブル情報を説明変数とし, 5kmRCM の力学的ダウンスケーリング情報を用いた 集中豪雨時の情報(発生頻度や大気場)を目的変数 とすることで、統計的ダウンスケーリングを行い、 5km スケールでの集中豪雨のアンサンブル情報を算 出する手法を構築した. つまり, 力学的ダウンスケ ーリングと統計的ダウンスケーリングの融合を行っ t- .

(1)統計的ダウンスケーリングの流れ

本研究での概念図を Fig 10 に示す.まず, 5kmRCM 出力値を 60km スケールへとアップスケーリングす る.これを 60km_from_5km と呼ぶこととする.ここ で、この 5kmRCM 出力値は第3章において集中豪雨 事例が抽出されているため、抽出された事例を 60km_from_5km を用いて再度 60km スケールでも確 認することで、60km スケールでの集中豪雨の見え方 について明らかにできると考えられる.そこで、本 節では 60km_from_5km を用いて降水量別のクラス 分けを行い、60km スケール時での頻度分布を作成し た.なお、ここでの降水量とは、第3章と同様に集 中豪雨イベント時に最も降水量の多かったメッシュ の降水量情報であり、集中豪雨事例の抽出は第3章 と同じく全て目視により定性的に行った.

次に、60kmAGCMアンサンブルを用いた集中豪雨 事例の抽出を試みる. 今回は、アンサンブルの全て を目視で定性的に抽出することが困難であるため, 降水イベントごとに最大降水量をプログラミングに より計算し、 クラス分けするという定量的な抽出方 法を採用した.しかし,60kmスケールで定量的な抽 出法を用いると,集中豪雨事例がメッシュ内で平滑 化されてしまい、メッシュ内で集中豪雨が発生して いる場合に見逃してしまう場合が存在してしまい、 これを解決するために頻度分布に補正が必要となる. そこで、今回は二段階の補正を行った.まず、集中 豪雨時には大気側にも一定の特徴があるものと考え られるため,大気場(相当温位の南北勾配と水蒸気 フラックス) に閾値を設定した. ここで, 大気場に は地域差があるため、閾値は地域別に設定している. 次に,第3章で5kmRCM出力値から目視で定性的に抽 出した結果を真値と仮定し, 定量的抽出結果と比較 することで, 定量的抽出結果に必要な補正値を地域 ごとに設定した.以上の方法で作成した補正手法を 全アンサンブルメンバーに適用することで統計的ダ ウンスケーリングを行い、5kmスケールでの集中豪 雨のアンサンブル情報を得ることができ、これを解 析することにより降水量の頻度分布を得た.詳細な 手法は(4)に示す.

Fig. 10 Conceptual diagram of statistical downscaling of this study

(2) アップスケーリング手法

本研究では、5kmRCM 出力値を 60kmAGCM のメ ッシュにアップスケールする際には、20kmGCM メ ッシュに一度アップスケーリングした後に、更に 3x3 のアップスケーリングを行い 60kmAGCM メッシュ のデータへと変換している.しかし、60kmAGCM と 20kmAGCM で定義されているメッシュは緯度経度 を一定間隔で分割している一方で、5kmRCM では図 法が異なるためメッシュが緯度経度上に不規則に配 置されている.そのため、5kmRCM 出力値を 20kmGCM メッシュにアップスケールする際に、下 記のように、2 つのメッシュが共有する領域の面積 に応じて 5kmRCM 出力値を 20kmGCM の各メッシュ に配分した.

まず,5kmRCMの1メッシュを100 (10x10) 個に分 割し,それぞれのメッシュに中心座標を与える.次 に,その100メッシュの中心座標のうち20kmGCMの 各メッシュに含まれる割合を計算する.最終的にそ の割合に従って5kmRCMの降水量を20kmGCMの各 メッシュに配分した.この例をFig 11 に示す.黄色 の領域が20kmGCMのメッシュで,点線が5kmRCMメ ッシュを表している.左上の5kmRCMは100分割され ているが,図に示されるように分割された100メッシ ュのうち赤色で示された24メッシュが20kmGCM内 に含まれている.よって,その降水量の24%を黄色 で示されたメッシュの降水量として配分している.

Fig. 11 Grid correction method to 20kmGCM of 5kmRCM

(3) 集中豪雨の降水量別頻度情報の作成

前述の通り、5kmRCM 出力値を 60kmAGCM のメ ッシュへとアップスケールした後、第3章において 5kmRCM 出力値から目視によって定性的に抽出した 集中豪雨事例を 60km_from_5km でも再度降水量別 にクラス分けし、地域ごとに頻度解析を行った.

ここで,60km スケールにアップスケーリングを行う際には、時間解像度もアップスケーリングする必要があると考えられる.5kmRCMを用いて集中豪雨

を確認した際には,集中豪雨が3時間程度同じ地域 に停滞していることが確認できていたため,60kmに アップスケーリングした場合にも,同様に時間解像 度は3時間が最も現象を理解しやすいと考え, 60km_from_5kmにおいても3時間降水量を用いた. ここで得られた地域別の降水量別頻度分布が真の値 であると仮定し,以下の定量情報の精度検証に用い た. なお、5km スケールで集中豪雨が発生したとき の 60km スケールでの降水量がどの程度であるのか を1つ1つ確認したため真という言葉を用いている. Fig 12 に地域別の集中豪雨時の最大3時間降水量の 頻度分布を示す. 青棒が現在気候で、赤棒が21世紀 末気候である. 縦軸に25年合計頻度、横軸に最大3 時間雨量を示す.

Fig. 12 Regional frequency of localized heavy rainfall per maximum 3 hours rainfall extracted qualitatively using 60km_from_5km

60km スケールでは 20mm~40mm のような弱い雨 の事例においても 5km スケールでは集中豪雨の場合 も存在した.第3章では、5kmRCM の3時間降水量 は 100mm 以上を基準としていたが、60km スケール では平均化され降水量が弱くなってしまい、比較的 狭い範囲の弱い集中豪雨では 20mm~40mm 程度の 降水量として表現されてしまうため、20mm~40mm のような弱い雨の場合も存在した.

Fig 12 より,ほとんどの地域において現在気候と比較して 21 世紀末気候シナリオでは,頻度のピークが降水量の多い方へシフトしていることが読み取れる. これより,21 世紀末気候シナリオでは,発生頻度の増加に加えて,降水量も増加する可能性が高いと考えられる.

(4) 定量的な降水量別頻度情報の作成

本項では、60km_from_5kmを用いて、計算機上で 定量的に作成した地域別集中豪雨発生頻度情報につ いて述べる.前項では、5km スケールで集中豪雨が 発生した場合のみを対象に頻度情報を作成したが、 本項では計算機上で定量的に頻度情報を作成するた め、集中豪雨が発生した場合と発生しなかった場合 両方を抽出している.そのため、作成する際には以 下の点を考慮し、集中豪雨が発生しなかった場合を 可能な限り除去している.

a) 降水イベントの発生頻度の抽出

メッシュ単位での発生頻度情報を得ることが目的 ではなく、ある程度の広がりを持つ地域内で集中豪 雨が発生した、あるいは発生しなかった、という情 報を得ることが目的であるため、まずは同一の降水 イベント内で重複カウントを行わないように以下の ように定義した.

3x3 の合計 9 メッシュにおいて,前後 1 時間を考 えた場合,中心メッシュの降水量より周りのメッシ ュの降水量が多い場合は,その雨域は移動しており 同一のイベントであると考えた.また,重複カウン トを行わないために,最も降水量の多いメッシュだ けを定義した.水平スケールが 180km 以上離れた場 合,それは別の積乱雲による豪雨であると考え,合 計9メッシュと定義した.これにより,集中豪雨を もたらす可能性のある降水イベントを抽出し,同時 に各イベントの最大3時間降水量を得る.

b)相当温位と水蒸気フラックスを用いた集中豪雨 発生イベントの抽出

a)により抽出された降水イベントは集中豪雨が発生した場合と発生しなかった場合の両方が含まれているため、相当温位の南北勾配と水蒸気フラックスを用いて集中豪雨が発生したと考えられる場合のみを抽出した.水蒸気フラックスは大気の密度ρと比湿

qと風速 (u,v) から求まるベクトル量であり,集中豪 雨が発生する時は多量の水蒸気フラックスが見られ る. また,相当温位の南北勾配により梅雨前線を定 義した.本研究では、水蒸気フラックスにより集中 豪雨が発生するような水蒸気の流入を定義すること で、集中豪雨が発生したと考えられる事例のみを抽 出した.また、地域により集中豪雨時の相当温位の 南北勾配と水蒸気フラックスには違いが出でくると 考えられるため地域ごとに閾値を設定した. 第3章同 様、地表面データであるので、標高により気圧や気 温が変化する. そのため, 相当温位の南北勾配の確 認は海上域を中心に行った. 閾値を設定する領域は, 梅雨前線の停滞する位置と水蒸気の流入する位置を 考慮し地域ごとで設定した. Table 5 に地域ごとに設 定した閾値を示す.また,集中豪雨の中でも降水量 が多くなるような場合では,相当温位の南北勾配や 水蒸気フラックスは大きいと考えられるため、本研 究では定量的に抽出した降水イベントの内,最大3 時間降水量の大きいもの(60mm以上)の頻度と(3) で定性的に抽出した場合に得られた頻度が等しくな るように相当温位の南北勾配と水蒸気フラックスの 閾値を設定した.

九州地方,関東甲信地方,東北地方では海岸域が多 いため比較的容易に相当温位を設定することができ た. 5kmRCM を用いた梅雨期(10日平均)の相当温 位の南北勾配はおよそ 0.06~0.08K/km という結果が 得られている(kanada et al,2011) ことから,本研究 で設定した相当温位の南北勾配の閾値は,60kmスケ ールにアップスケーリングしていることも考慮する と無理矢理設定した閾値ではないと考えられる. 中 国地方において集中豪雨の発生する場合では、九州 地方においても集中豪雨が発生し、その後中国地方 でも発生する場合もあるため、梅雨前線は九州地方 から延び、水蒸気は九州地方の南西の海上や四国の 南の海上より流入する場合が多い。そのため、現在 気候において中国地方の水蒸気フラックスの閾値や 21 世紀末気候シナリオの相当温位の南北勾配の閾値 は他地域と比較して、低く設定した.また、21世紀 末気候シナリオでは、気圧配置の変化に伴い、日本 域に水蒸気の流入が多くなるという結果も得られて いるため (kanada et al,2011), 水蒸気フラックスを大 きく設定した.ただし、北陸地方では、水蒸気フラ ックスが小さい場合にも集中豪雨が発生した場合が あり、その事例を除外してしまうため低い値に設定 せざるを得なかった.

以上,定量的に降水イベントを抽出し,相当温位 の南北勾配と水蒸気フラックスを用いた大気場補正 を行うことにより,集中豪雨の発生した可能性の高 い降水イベントを抽出した.

present		
	North-south gradient of equivalent potential temperature(K/km)	Water vapor flux(Kg/m2*s)
kyusyu	0.127	260
shikoku	0.067	262
shugoku	0.067	210
kinki	0.067	250
totkai	0.083	275
kanto-koshin	0.15	300
hokuriku	0.067	260
tohoku	0.1	285
end of 21st century		
end of 21st century	North-south gradient of equivalent potential temperature(K/km)	Water vapor flux(Kg/m2*s)
end of 21st century kyusyu	North-south gradient of equivalent potential temperature(K/km) 0.083	Water vapor flux(Kg/m2*s) 295
end of 21st century kyusyu shikoku	North-south gradient of equivalent potential temperature(K/km) 0.083 0.063	Water vapor flux(Kg/m2*s) 295 265
end of 21st century kyusyu shikoku shugoku	North-south gradient of equivalent potential temperature (K/km) 0.083 0.063 0.033	Water vapor flux(Kg/m2*s) 295 265 265
end of 21st century kyusyu shikoku shugoku kinki	North-south gradient of equivalent potential temperature (K/km) 0.083 0.063 0.033 0.042	Water vapor flux(Kg/m2*s) 295 265 265 240
end of 21st century kyusyu shikoku shugoku kinki totkai	North-south gradient of equivalent potential temperature (K/km) 0.083 0.063 0.033 0.042 0.1	Water vapor flux(Kg/m2*s) 295 265 265 240 285
end of 21st century kyusyu shikoku shugoku kinki totkai kanto-koshin	North-south gradient of equivalent potential temperature (K/km) 0.083 0.063 0.033 0.042 0.1 0.1	Water vapor flux (Kg/m2*s) 295 265 265 240 285 290
end of 21st century kyusyu shikoku shugoku kinki totkai kanto-koshin hokuriku	North-south gradient of equivalent potential temperature (K/km) 0.083 0.063 0.033 0.042 0.1 0.117 0.05	Water vapor flux(Kg/m2*s) 295 265 265 240 285 290 150

Table. 5 Regional threshold in the end of 21st century and present

4.3 定量情報の精度検証

本節では、4.2 で設定した閾値を用いることにより、 60km_from_5km で定性的に集中豪雨を抽出した場合 と定量的に集中豪雨を抽出した場合を比較し、地域 ごとに精度検証を行う. Table 6~13 と Fig 13 ~20 に地域ごとの現在気候と 21 世紀末気候シナリオの 最大 3 時間降水量と 25 年合計頻度,さらに大気場補 正行った場合,補正を行わなかった場合に対する定 性的に抽出した頻度の割合を示す.

大気場補正を行わなかった場合は、20mm~40mm や 40mm~60mm のような弱い雨の発生頻度の精度 がかなり悪いことがわかる.考えられる理由として は、狭い範囲(60kmスケール以下)の弱い集中豪雨 と、広い範囲(60kmスケール以上)の20mm程度の 雨を区別することが困難なことが挙げられる.大気 場補正を行った場合は、ほとんどの地域でかなり定 性的な頻度に近づけることに成功した.特に、降水 量の多い頻度はかなりの精度で補正されている地域 も存在する.しかし、弱い大気場においても集中豪 雨が発生した場合や、梅雨前線の停滞位置、水蒸気 の流入パターンなどが海上域において確認できない 場合も存在したため、補正値を低く設定したことに より降水量の小さいところであまり補正されていな い地域も出てきた.

Table. 6 The frequency of qualitative, atmospheric correction and not correct and the percentage of
qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in kyusyu

	present				
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	12	85	361	0.1412	0.0332
40~	34	35	140	0.9714	0.2429
60~	28	30	68	0.9333	0.4118
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	74	150	569	0.4933	0.1301

enc	of 21st cent	tury			
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	11	139	326	0.0791	0.0337
40~	32	117	194	0.2735	0.1649
60~	37	65	109	0.5692	0.3394
100~	14	14	19	1.0000	0.7368
150~	1	1	1	1.0000	1.0000
total of 25 years	95	336	649	0.2827	0.1464

Fig. 13 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rainfall in kyusyu. (left is present, right is end of 21st century)

	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	1	40	176	0.0250	0.0057
40~	9	27	59	0.3333	0.1525
60~	14	14	23	1.0000	0.6087
100~	0	0	0	0	0
150~	1	1	1	1.0000	1.0000
total of 25 years	25	82	259	0.3049	0.0965
	Qualitative	Atmospheric	Not correct	Qualitative/Atmospheric	Qualitative/Not correct
		correction		correction	
20~	3	78	164	0.0385	0.0183
40~	14	47	82	0.2979	0.1707
60~	22	21	37	1.0476	0.5946
100~	3	3	4	1.0000	0.7500
150~	0	0	0	0	0
total of 25 years	42	149	287	0.2819	0.1463

Table. 7 The frequency of qualitative, atmospheric correction and not correct and the percentage of qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in shikoku

Fig. 14 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rainfall in shikoku. (left is present, right is end of 21st century)

	present				
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	6	33	178	0.1818	0.0337
40~	5	9	48	0.5556	0.1042
60~	7	4	15	1.7500	0.4667
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	18	46	241	0.3913	0.0747

Table. 8 The frequency of qualitative, atmospheric correction and not correct and the percentage of qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in chugoku

enc	of 21st cent	tury			
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	3	37	174	0.0811	0.0172
40~	13	35	90	0.3714	0.1444
60~	8	9	30	0.8889	0.2667
100~	3	3	4	1.0000	0.7500
150~	0	0	0	0	0
total of 25 years	27	84	298	0.3214	0.0906

Fig. 15 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rainfall in chugoku. (left is present, right is end of 21st century)

Table. 9 The frequency of qualitative, atmospheric correction and not correct and the percentage of qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in kinki

	present				
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	2	21	132	0.0952	0.0152
40~	4	4	32	1.0000	0.1250
60~	3	3	13	1.0000	0.2308
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	9	28	177	0.3214	0.0508

end of 21st century					
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	2	64	121	0.0313	0.0165
40~	7	25	44	0.2800	0.1591
60~	16	18	25	0.8889	0.6400
100~	4	3	4	1.3333	1.0000
150~	0	0	0	0	0
total of 25 years	29	110	194	0.2636	0.1495

Fig. 16 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rain fall in kinki. (left is present, right is end of 21st century)

Table. 10 The frequency of qualitative, atmospheric correction and not correct and the percentage of qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in tokai

	present				
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	3	31	198	0.0968	0.0152
40~	16	18	71	0.8889	0.2254
60~	7	7	31	1.0000	0.2258
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	26	56	300	0.4643	0.0867

end of 21st century					
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	9	33	222	0.2727	0.1486
40~	17	27	115	0.6296	0.2348
60~	24	26	58	0.9231	0.4483
100~	4	4	7	1.0000	0.5714
150~	1	1	1	1.0000	1.0000
total of 25 years	55	91	403	0.6044	0.1365

Fig. 17 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rainfall in tokai. (left is present, right is end of 21st century)

	present				
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	3	5	148	0.6000	0.0338
40~	1	5	32	0.2000	0.1563
60~	0	0	2	0	0.0000
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	4	10	182	0.4000	0.0220

Table. 11 The frequency of qualitative, atmospheric correction and not correct and the percentage of qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in kanto-koshin

end of 21st century					
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	2	27	193	0.0741	0.0104
40~	7	14	61	0.5000	0.1148
60~	11	11	25	1.0000	0.4400
100~	1	1	1	1.0000	1.0000
150~	0	0	0	0	0
total of 25 years	21	53	280	0.3962	0.0750

Fig. 18 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rainfall in kanto-koshin. (left is present, right is end of 21st century)

Table. 12 The frequency of qualitative, atmospheric correction and not correct and the percentage of qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in hokuriku

	present				
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	2	3	99	0.6667	0.0202
40~	1	0	14	0	0.0714
60~	0	0	3	0	0.0000
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	3	3	116	1.0000	0.0259

end of 21st century					
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	2	100	122	0.0200	0.0164
40~	2	17	29	0.1176	0.0690
60~	4	3	9	1.3333	0.4444
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	8	120	160	0.0667	0.0500

Fig. 19 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rainfall in hokuriku. (left is present, right is end of 21st century)

	present				
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	0	5	131	0.0000	0.0000
40~	0	0	16	0	0.0000
60~	0	0	3	0	0.0000
100~	1	1	1	1.0000	1.0000
150~	0	0	0	0	0
total of 25 vears	1	6	151	0.1667	0.0066

Table.13 The frequency of qualitative, atmospheric correction and not correct and the percentage of qualitative/atmospheric correction and qualitative/not correct per maximum 3hours rainfall in tohoku

end of 21st century					
	Qualitative	Atmospheric correction	Not correct	Qualitative/Atmospheric correction	Qualitative/Not correct
20~	1	22	218	0.0455	0.0046
40~	3	17	69	0.1765	0.0435
60~	2	7	16	0.2857	0.1250
100~	0	0	0	0	0
150~	0	0	0	0	0
total of 25 years	6	46	303	0.1304	0.0198

Fig. 20 The frequency of qualitative, atmospheric correction and not correct per maximum 3hours rainfall in tohoku. (left is present, right is end of 21st century)

本章では、定性的に集中豪雨を抽出した事例をも とに60km_from_5kmを用いた60kmスケールでの定 性的な集中豪雨情報を作成し、地域ごとに定量的に 抽出した場合と定性的に抽出した場合の頻度差を求 めることにより、60kmスケールから5kmスケールで の集中豪雨の定量的頻度解析の手法を構築した.本 章で得られた統計情報をもとに60kmアンサンブル に適用することで、60kmアンサンブルの地域ごとの 5kmスケールでの集中豪雨の発生頻度の抽出に試み る. なお、本研究では、上図のように降水量をクラ ス別に分けたが、今後の課題として他の降水量別の 頻度分布においても対応可能であるという検証とパ ラメータ設定を行う必要がある.

5. 60kmAGCM アンサンブルへの適用と結果

本章では,第4章で得られた集中豪雨時の統計的情報を60kmAGCMアンサンブルに適用することにより統計的ダウンスケーリングを行った.

5.1 5kmRCM と 60kmAGCM の降水量差の確認

60kmAGCMアンサンブル実験では、設定した条件 (海面水温や積雲対流スキーム)により降水量に差 が出ることが報告されているため、本研究では 60kmAGCMアンサンブル実験ごとの最大3時間降水 量別頻度を60km_from_5kmと比較することにより, 降水量差の確認を地域ごとに行った.また,本研究 では梅雨前線に伴う集中豪雨のみを対象としている ため,台風は定性的に全アンサンブルを確認するこ とで除去した.本研究で使用した60kmAGCMアンサ ンブルメンバーをTable 14 に一覧で示す.前期モデ ルのInit1~3は大気初期値の違いを示しており,後期 モデルのcluster1~3は海面水温の違いを示している.

Table.14 The 60kmAGCM ensemble members

Zenki		-	
present	HP0A_Init1	HP0A_Init2	HP0A_Init3
	HF0A_Init1	HF0A_Init2	HF0A_Init3
and of Otat continue.	HF0A_miroch_Init1	HF0A_miroch_Init2	HF0A_miroch_Init3
end of 21st century	HF0A_mri_Init1	HF0A_mri_Init2	HF0A_mri_Init3
	HF0A_csiro_Init1	HF0A_csiro_Init2	HF0A_csiro_Init3

Kouki				
present	HPA_CMIP3			
	HFA_as_CMIP3	HFA_as_cluster1	HFA_as_cluster2	HFA_as_cluster3
end of 21st century	HFA_CMIP3	HFA_cluster1	HFA_cluster2	HFA_cluster3
	HFA_kf_CMIP3	HFA_kf_cluster1	HFA_kf_cluster2	HFA_kf_cluster3

(1)前期モデルにおける降水量別頻度の特徴

前期モデルでは、積雲対流スキームに AS スキー ムを用いている. AS スキームでは,格子内に複数の 背の高さの違う積雲を計算しているが、1 つの積雲 自体はシンプルな計算をし、平均的な値を格子に与 えている.5kmRCMで用いられているkfスキームは, 1つの格子内に1つの積雲を仮定し緻密な計算を行 っている. そのため, AS スキームと比較して kf ス キームでは降水量が多くなる傾向があり、前期モデ ルは, 60km_from_5km と比較して降水量はかなり少 ないと考えられるので、60km_from_5kmにおける集 中豪雨時は 20mm~40mm が最小であったが, 前期モ デルではさらに小さい 10mm~20mm の頻度も抽出 する. 定量的に抽出した降水量別頻度分布を Fig 21~25 に示す. 図中の RCM は 60km_from_5km のこ とを指している. Fig 21~25 に示すように, 60km モ デルでは, 60km_from_5km と比較して 20mm~40mm

の頻度も少なく,10mm~20mmの頻度が多い地域が ほとんどである.また,40mm を超えるような雨が ほとんど見られないことからも,前期モデルでの降 水量はかなり少ないと考えられる.

前期モデルでは、現在気候と21世紀末気候シナリ オでともに九州地方や四国地方、東海地方などの集 中豪雨の発生頻度の多い地域では、60km_from_5km と比較して合計頻度がかなり少ない傾向にあり、逆 に東北地方や北陸地方などでは頻度が多い傾向にあ った.しかし、60km スケールで10mm 以下の降水が 集中豪雨であるとは考え難いため、60km 前期モデル では10mm 以下は扱わないとする.

前期モデルの4つのアンサンブルメンバーでは,分 布形状はどのメンバーもおよそ同一であり,海面水 温により頻度差はあるものの総頻度に大きな差は見 られなかった.

Fig. 21 The regional frequency per maximum 3hours rainfall in HP0A

Fig. 22 The regional frequency per maximum 3hours rainfall in HF0A

Fig. 23 The regional frequency per maximum 3hours rainfall in HF0A_miroch

Fig. 24 The regional frequency per maximum 3hours rainfall in HF0A_mri

Fig. 25 The regional frequency per maximum 3hours rainfall in HF0A_csiro

(2)後期モデルにおける降水量別頻度の特徴 後期モデルでは積雲対流スキームの異なるモデル を用いているため,積雲対流スキームにより降水量 に大きな差が出ると考えられる.後期モデルに用い られた積雲対流スキームは前期モデルを改良した AS スキーム, 20kmAGCM の後期モデルと同様の YS スキーム、5kmRCM と同様の kf スキームである. YS スキームでは、AS スキーム同様に格子内に複数 の背の高さの積雲を計算しているが、1つ1つの積 雲を AS スキームより詳細に計算しているため、降 水量は YS スキームの方が多くなる傾向にある. AS スキームを用いているモデルもあるため、後期モデ ルにおいても 10mm~20mm の頻度も抽出すること とする. Fig 26~29 に各モデルの頻度分布を示す. HPA, HFA は積雲対流スキームが無表記であるが、 YS スキームを用いている. AS スキームを用いてい るモデルでは、前期モデル同様に 40mm を超えるよ うな降水の頻度はあまり見られなかった.このこと から、後期モデルように改良された AS スキームで も強い降水は表現できるようになっていないことが

わかる. YS スキームを用いているモデルでは,40mm 以上の降水の頻度があることから,AS スキームより は強い降水を表現できるモデルである考えられる. しかし,前期モデル同様に,九州地方や四国地方, 東海地方などの集中豪雨は発生頻度の多い地域で, 60km_from_5kmと比較して合計頻度がかなり少ない 傾向にあり,逆に東北地方や北陸地方などでは頻度 が多い傾向にあった.5kmRCMと同様のkf スキーム を用いたモデルでは,YS スキーム同様に40mm 以上 の降水の頻度が得られており,また,頻度にもYS スキームと比較してそれほど差は見られない.しか し,kf スキームでは,10mm~20mmの頻度がどの地 域においても多く,YS スキームとは違う特徴が見ら れた.

後期モデルの3つのモデルのうち、ASスキームと YSスキームでは分布形状が違うものの、総頻度では およそ近い値となっていたが、kfスキームでは10mm ~20mmの頻度がかなり多いため総頻度も多い値と なっていた.

Fig. 26 The regional frequency per maximum 3hours rainfall in HPA

Fig. 27 The regional frequency per maximum 3hours rainfall in HFA_as

Fig. 28 The regional frequency per maximum 3hours rainfall in HFA

Fig. 29 The regional frequency per maximum 3hours rainfall in HFA_kf

5.2 60kmAGCMの降水量の補正について

5.1 節で示したように 60kmAGCM アンサンブルメ ンバーでは, 60km_from_5km と比較して, 降水量別 の頻度分布にかなりの差が生じていた.これは、各 アンサンブルメンバーの特徴を表しているものであ り、重要な特徴であると考えられる.しかし、この 頻度差は各アンサンブルメンバーの本研究で設定し た降水量に合わせたものであり、各アンサンブルメ ンバーの降水量が 60km_from_5km のどの降水量と 対応しているのかという情報は、上図の頻度分布の 結果だけでは得ることは不可能である. そのため, 第4章で設定した降水量別のパラメータ(頻度の割 合)を用いることは困難である.これは本研究にお いて、今後の重要な課題である. そこで、本研究は その第一段階として,全頻度を用いて,全頻度のパ ラメータを用いることにより,地域ごとの集中豪雨 の発生頻度の解析を行うこととした.

5.3 地域別での集中豪雨の将来変化

本節では、第4章で地域ごとに設定した全頻度の パラメータを用いることで、60kmAGCM における 5km スケールでの集中豪雨の発生頻度を解析する. なお、60kmAGCM の大気場のデータは1ヶ月平均デ ータしかないため、本研究の手法には用いることが できなかった.そこで本研究では、地域ごとに大気 場補正をおこなっているため,60kmAGCM アンサン ブルにおいてもおよそ同様なパラメータになると考 え,60km_from_5kmで設定したパラメータをそのま ま利用する.つまり,60km_from_5kmにおける大気 場補正が同一であるので,大気場補正なしの定量的 頻度から定性的頻度に対するパラメータをそのまま 用いることとする.

(1) 全頻度を用いた集中豪雨の抽出

ここでは、各アンサンブルメンバーにおいて、地 域ごとに定量的に抽出された集中豪雨の可能性のあ る降水イベントの25年全頻度を用いて,第4章で設定 した全頻度のパラメータで補正することにより,各 アンサンブルメンバーの地域別の集中豪雨の発生頻 度を得た. Table 15 に地域別の全頻度に対するパラ メータ補正値を示す. 全地域において21世紀末気候 シナリオのパラメータ補正値の方が、現在気候のパ ラメータ補正値より大きいことがわかる. Table 16 に各アンサンブルメンバーの地域ごとの集中豪雨の 発生頻度とアンサンブルメンバー(前期は3つ,後期 は4つ)の平均頻度と標準偏差を示す.前期モデルの 現在気候では、発生頻度としては、九州地方などで 5kmRCMの発生頻度より少なくなっているが、これ は積雲対流スキームがASスキームであり、全頻度が 少なくなったことに起因している.21世紀末気候シ

ナリオも同様傾向が見られる.また,九州地方では, 5kmRCMの頻度と 比較してかなり少ないことがわ かる.

前期モデルの21世紀末気候シナリオでは,各アン サンブル平均値は現在気候と比較して,全地域にお いて増加傾向であるが,標準偏差はアンサンブルご とでばらばらである.また,全頻度を用いているた め,5kmRCMより少ない地域や多い地域のばらつき が見られる.特に,九州地方では,5kmRCMほど他 地域との頻度差が見られないことがわかる.

後期モデルの現在気候はHPAの1つだけである.前 期モデルと比較して積雲対流スキームをYSスキー ムに変更しているため,頻度の増加が見られる.ま た,各積雲対流スキームの違いを見ると,ASスキー ムとYSスキームでは頻度にそれほど差は見られな いが,kfスキームではかなりの頻度が出ており, 5kmRCMに匹敵するかそれ以上の地域も見られる. この影響は、kfスキームでは弱い雨の頻度が他スキ ームと比較してかなり多かったことに起因している.

Table.15 The regional corrections for all frequency

	Correction value			
	proport	end of 21st		
	present	century		
kyusyu	0.1686	0.2079		
shikoku	0.1202	0.1963		
chugoku	0.1268	0.1607		
kinki	0.0776	0.2266		
tokai	0.1150	0.2068		
kanto-koshin	0.0310	0.1040		
hokutiku	0.0385	0.0825		
tohoku	0.0104	0.0335		

Table.16 The frequency, ensembles average and standard deviation of localized heavy rainfall in different 60kmAGCM ensemble members

	HP0A				
	HP0A_Init1	HP0A_Init2	HP0A_Init3	ensumble average	SD
kyusyu	22.59	22.26	17.37	20.74	2.93
shikoku	9.74	6.13	5.53	7.13	2.28
chugoku	16.36	12.05	14.96	14.46	2.20
kinki	6.36	6.13	7.22	6.57	0.57
tokai	10.47	12.65	10.01	11.04	1.41
kanto-koshin	3.29	3.19	2.79	3.09	0.26
hokutiku	5.58	5.16	5.51	5.42	0.23
tohoku	2.28	1.87	2.24	2.13	0.22
	HF0A				
	HF0A Init1	HEOA Init2		an aumhla, au arara	0.0
			TFUA_INIU	ensumble average	SD
kyusyu	42.62	39.92	46.36	42.97	3.24
kyusyu shikoku	42.62 18.26	<u>39.92</u> 15.12	46.36 19.04	42.97 17.47	3.24 2.08
kyusyu shikoku chugoku	42.62 18.26 26.52	39.92 15.12 24.75	46.36 19.04 28.93	42.97 17.47 26.73	3.24 2.08 2.10
kyusyu shikoku chugoku kinki	42.62 18.26 26.52 26.97	39.92 15.12 24.75 27.87	46.36 19.04 28.93 34.22	42.97 17.47 26.73 29.68	3.24 2.08 2.10 3.95
kyusyu shikoku chugoku kinki tokai	42.62 18.26 26.52 26.97 28.54	39.92 15.12 24.75 27.87 29.16	46.36 19.04 28.93 34.22 37.22	42.97 17.47 26.73 29.68 31.64	SD 3.24 2.08 2.10 3.95 4.85
kyusyu shikoku chugoku kinki tokai kanto-koshin	42.62 18.26 26.52 26.97 28.54 15.29	39.92 15.12 24.75 27.87 29.16 14.25	46.36 19.04 28.93 34.22 37.22 18.82	42.97 17.47 26.73 29.68 31.64 16.12	SD 3.24 2.08 2.10 3.95 4.85 2.40
kyusyu shikoku chugoku kinki tokai kanto-koshin hokutiku	42.62 18.26 26.52 26.97 28.54 15.29 15.18	39.92 15.12 24.75 27.87 29.16 14.25 15.92	46.36 19.04 28.93 34.22 37.22 18.82 21.37	42.97 17.47 26.73 29.68 31.64 16.12 17.49	SD 3.24 2.08 2.10 3.95 4.85 2.40 3.38

	HF0A_miroch				
	HF0A_miroch_Init1	HF0A_miroch_Init2	HF0A_miroch_Init	3 ensumble average	SD
kyusyu	30.56	34.51	38.67	34.58	4.05
shikoku	18.26	24.14	18.26	20.22	3.40
chugoku	36.48	28.28	30.69	31.82	4.21
kinki	26.97	30.36	33.54	30.29	3.29
tokai	28.54	34.12	39.71	34.12	5.58
kanto-koshin	15.29	17.26	19.34	17.30	2.03
hokutiku	20.05	17.82	22.03	19.97	2.10
tohoku	8.61	8.41	11.26	9.42	1.59
	HFUA_mri				
	HF0A_mri_Init	HF0A_mri_Init2	HF0A_mri_Init3	ensumble average	SD
kyusyu	49.06	50.94	51.56	50.52	1.30
shikoku	17.86	17.47	19.83	18.39	1.26
chugoku	25.07	21.21	25.39	23.89	2.33
kinki	28.10	28.78	26.74	27.87	1.04
tokai	tokai 28.54		30.19	29.78	1.09
kanto-koshin 18.10		16.12	16.33	16.85	1.09
hokutiku	17.57	15.51	14.69	15.92	1.49
tohoku	8.27	8.88	8.78	8.64	0.32

	HF0A_csiro				
	HF0A_csiro_Init1	HF0A_csiro_Init2	HF0A_csiro_Init3	ensumble average	SD
kyusyu	42.62	44.07	44.70	43.80	1.07
shikoku	19.04	19.43	15.31	17.93	2.28
chugoku	24.75	25.23	23.62	24.53	0.82
kinki	33.54	31.50	26.97	30.67	3.36
tokai	38.46	38.26	31.43	36.05	4.00
kanto-koshin	17.58	15.70	16.12	16.47	0.98
hokutiku	17.00	19.47	15.35	17.27	2.08
tohoku	8.94	8.88	8.14	8.65	0.45

	HPA
	ensumble average
kyusyu	35.74
shikoku	11.54
chugoku	18.64
kinki	9.31
tokai	16.56
kanto-koshin	7.19
hokutiku	7.85
tohoku	2.49

	HFA_as					
	HFA_as_CMIP3	HFA_as_cluster1	HFA_as_cluster2	HFA_as_cluster3	ensumble average	SD
kyusyu	41.37	41.79	52.18	40.75	44.02	5.46
shikoku	19.24	18.45	20.22	19.24	19.29	0.72
chugoku	23.46	22.66	26.19	19.77	23.02	2.65
kinki	31.04	37.62	29.68	29.00	31.84	3.94
tokai	27.92	25.23	33.09	28.12	28.59	3.28
kanto-koshin	39.42	42.22	40.87	37.23	39.94	2.14
hokutiku	22.36	23.35	20.63	17.74	21.02	2.46
tohoku	10.39	10.18	9.15	7.77	9.37	1.20

	HFA					
	HFA_CMIP3	HFA_cluster1	HFA_cluster2	HFA_cluster3	ensumble average	SD
kyusyu	40.75	42.41	56.34	45.53	46.26	7.01
shikoku	15.51	11.97	20.61	14.92	15.75	3.59
chugoku	23.46	18.48	23.30	20.73	21.49	2.37
kinki	21.75	22.43	31.27	26.74	25.55	4.41
tokai	22.95	24.61	26.88	29.57	26.01	2.87
kanto-koshin	21.74	19.03	23.30	23.82	21.97	2.15
hokutiku	16.34	18.07	18.48	18.07	17.74	0.96
tohoku	10.18	10.28	10.62	9.72	10.20	0.37

	HFA_kf					
	HFA_kf_CMIP3	HFA_kf_cluster1	HFA_kf_cluster2	HFA_kf_cluster3	ensumble average	SD
kyusyu	79.21	89.19	78.59	91.27	84.56	6.60
shikoku	30.43	31.02	36.51	31.21	32.29	2.83
chugoku	39.69	40.01	36.00	36.32	38.01	2.14
kinki	41.24	50.31	43.96	49.40	46.23	4.35
tokai	52.53	55.84	50.25	55.63	53.56	2.68
kanto-koshin	30.89	27.77	27.14	28.60	28.60	1.64
hokutiku	19.14	20.79	18.40	19.64	19.49	1.00
tohoku	10.85	9.41	10.92	11.09	10.57	0.78

(2) 有意性の検定

本項では,前項により抽出された集中豪雨のアン サンブル情報の検定を行う.検定行う際に留意した 点は,積雲対流スキームが違えば降水頻度に大きな 差が出るため,違う積雲対流スキームのモデルを一 つにした場合は分散が非常に大きくなる.そのため, 有意性の検定に大きな影響が出ると考えられたため, 本研究では,同じ積雲対流スキームのモデルのみで 有意性の検定を行った.また,YSスキームでは,現 在気候が1つのモデルしかないため有意性の検定に は用いることができなかった.

以上を考慮して、本研究では、前期モデルの現在 気候3アンサンブルメンバーと21世紀末気候シナリ オ12アンサンブルメンバーで有意性の検定を地域ご とに行った. なお,前期モデルでは,総頻度にそれ ほどの差が見られなかった. Table 17に現在気候と21 世紀末気候シナリオのアンサンブル平均値と分散示 す. この情報を用いてT検定を行った結果をTable 18 に示す.

現在気候と比較して 21 世紀末気候シナリオでは, 全地域においてアンサンブル平均値と分散が増加し ていた.また,T 検定を行ったところ,全地域で棄 却域を超えていたため有意な増加傾向であった. 5kmRCM の1つの時系列データでは,九州地方と中 国地方では有意な変化が見られなかったが, 60kmAGCM アンサンブルの前期モデルを用いるこ とで,有意性が見られた.

	ensumble average		SD	
	proport	end of 21st	procent	end of 21st
	present	century	present	century
kyusyu	20.740	42.966	2.923	6.351
shikoku	7.133	18.502	2.277	2.302
chugoku	14.457	26.743	2.199	3.964
kinki	6.570	29.630	0.575	2.883
tokai	11.043	32.898	1.410	4.389
kanto-koshin	3.090	16.683	0.265	1.546
hokutiku	5.417	17.663	0.225	2.528
tohoku	2.130	9.059	0.226	0.947

Table.17	The regional	ensumble average an	d standard deviation of	present and end of 21 ^s	t century
				I The second sec	

	Test statistic	Rejection region(99%)	Rejection region(95%)
kyusyu	7.888	2.65	1.771
shikoku	6.483	2.65	1.771
chugoku	6.266	2.65	1.771
kinki	24.035	2.65	1.771
tokai	13.189	2.65	1.771
kanto-koshin	27.061	2.65	1.771
hokutiku	15.731	2.65	1.771
tohoku	21.169	2.65	1.771

Table.18 The test statistic and rejection region

5.4 まとめと今後の課題

本章では、第4章で設定したパラメータを用いる ことで,60kmAGCM アンサンブルを統計的にダウン スケーリングし、5km スケールでの集中豪雨の抽出 を行った. 60kmAGCM アンサンブルでは、積雲対流 スキームやその他の設定条件により降水量に差が出 ることがわかったが、本研究手法では、降水量補正 を正確に行えなかったため,全頻度を用いることで 集中豪雨の将来変化を解析した.この 60kmAGCM ア ンサンブルの降水量補正手法は、今後の課題である. 現在解析中であり,気候値(メッシュの平年降水量) の違い等を考慮する予定である.ただし、気候値と 降水イベント時の最大降水量の関係は不明確であり, 気候値が大きい場合でも、それは弱い長雨によるも のである可能性も考えられるので,最大時間降水量 も考慮する必要があると考えられる.また, 60kmAGCM アンサンブルでは大気場の利用可能な 情報がなかったため、60km_from_5kmの情報を使わ ざるを得なかった.しかし,創生プログラムより出 力されてくる 60kmAGCM アンサンブル情報では, 大気場の細かい情報も含まれるため、さらに精度向 上に繋がると考えられる.また、5kmRCMの力学的 ダウンスケーリング元である 20kmAGCM も 5kmRCM と同様に 60km スケールにアップスケーリ ングし、第4章で行ったパラメータ設定を行うこと で積雲対流スキームの違う2つのモデルからのパラ メータを得ることができるため,60kmAGCMアンサ ンブルに適用する際にさらに幅を持たせることが可 能であると考えられる.

本研究では、5kmRCMと60kmAGCMアンサンブル 情報の限られたデータから、60kmAGCMアンサンブ ルを統計的にダウンスケーリングする手法を開発す ることで、集中豪雨の発生頻度のアンサンブル情報 を作成する新たな手法の最初の土台となる研究であ ったが、課題となる点も多く今後改善していく必要 がある.しかし、このような限られたデータしかな い状況下でも、集中豪雨の発生頻度のアンサンブル 情報が得られたことで、有意性の向上に繋がった.

6. 結論

第1章では、本研究の背景・目的及び本論文の構成を述べた。

第2章では,解像度の違う気候モデルの概要について述べた.また,各気候モデルを用いて,梅雨期の降水の将来変化の特徴について述べた.

第3章では、5kmの領域気候モデルを用いて、目 視により定性的に降水現象を確認することで、梅雨 前線に伴う集中豪雨のみの抽出に成功した. その抽 出結果の頻度解析を行ったところ,現在気候と比較 して21世紀末気候シナリオでは、日本全体で集中豪 雨の発生頻度が有意に増加しており、特に7月上旬 と8月上旬において集中豪雨の発生頻度と1度に3 つ以上の集中豪雨をもたらす気象擾乱の頻度の有意 な増加傾向が見られた.また,地域別の頻度解析で は、中日本や東日本において有意な増加傾向が見ら れた. 有意な変化傾向は見られなかったが、頻度の 多い九州地方を南北に分けて頻度解析を行ったとこ ろ,南北ともに21世紀末気候シナリオで頻度の増加 が見られ、南部より北部で発生頻度が多く、特に北 部では,7月上旬において有意な増加傾向が見られ た. さらに、新潟・福島豪雨のような日本海側での 集中豪雨の発生頻度も解析したところ、特に8月上 旬において増加傾向が見られた.

第4章では、まず、5kmRCMを60kmスケールに アップスケーリングし、それを用いることで、第3 章で 5kmRCM を用いて抽出した集中豪雨事例の 60km スケールでの降水量別の頻度分布を求めた.こ の頻度分布が 60km スケールを 5km スケールにダウ ンスケーリングした場合の集中豪雨の真値とした. 次に,60kmスケールで定量的な降水量別頻度分布を 作成した.この定量的頻度では、実際に5kmスケー ルで集中豪雨が発生した場合としなかった場合が含 まれるため、地域ごとに大気場(相当温位の南北勾 配と水蒸気フラックス) に閾値を設定し補正を行っ た.このときの補正された頻度と真値との差は定量 的には除けない差であるので、この差(割合)をパ ラメータとし、地域ごとに設定することで、60kmス ケールの5km スケールにダウンスケーリングした歳 の集中豪雨の統計情報とした.

第5章では、まず、60kmAGCMアンサンブルでは、 5kmRCMを60kmスケールにアップスケーリングし た場合と比較して、降水量が少なくなることが考え られるので、60kmAGCMアンサンブルごとに降水量 別の頻度分布作成し、比較を行った.結果として、 積雲対流スキームにより、かなり差が出ることがわ かった.本研究では、第4章で設定した降水量別頻度 分布に従っているため、60kmAGCMアンサンブルの 降水量が60kmスケールの5kmRCMのどの降水量に 属するにかは、頻度分布からでは求められない.そ こで、全頻度を用いて、第4章で地域ごとに設定した パラメータを用いることで60kmAGCMアンサンブ ルを統計的にダウンスケーリングした.前期モデル を用いて、現在気候と21世紀末気候シナリオの地域 別有意検定を行ったところ、全地域で95%以上有意 な増加傾向が得られた.後期モデルは現在気候が1 つのモデルしかなく、また、積雲対流スキームによ るばらつきが大きいため有意性の検定は行えなかっ た.60kmAGCMアンサンブルを用いて、統計的にダ ウンスケーリングを行うことで、5kmRCMでは増加 傾向の有意性が出なかった地域でも有意性が得られ、 他地域においても有意性が得られたため、集中豪雨 の増加傾向の有意性の向上となった.

参考文献

- 気象庁: 気象庁気候変動監視レポート 2007, 90pp., 2008.
- 21 世気候変動予測革新プログラム: 超高解像度大気 モデルによる将来の極端現象の変化予測に関する 研究 平成22 年度研究成果報告書, pp.50-56, 2011.
- 21 世気候変動予測革新プログラム: 21 世気候変動予 測革新プログラム日本語 Brochure2012 版, 2012
- 中北英一・ 革新プログラム京大グループ: 我が国の 災害環境への気候変動影響評価, 土木学会安全問 題研究論文集 Vol.5, 2010
- 21 世気候変動予測革新プログラム: 超高解像度大気 モデルによる将来の極端現象の変化予測に関する 研究 平成21 年度研究成果報告書, 198pp., 2010

- 山崎剛・岩崎俊樹: ダイナミックダウンスケールの 課題と展望,2008 年度秋季大会シンポジウム「地域 の詳細な気象と気候の再現を目指して--ダイナミ ックダウンスケール技術の高度利用--」の報告, pp.6-11,2010
- 上田拓治: 44 の例題で学ぶ統計的検定と推定の解き 方, オーム社, 210pp., 2000.
- 飯泉仁之直・西森基貴・石豪岡康史・横沢正幸:統計 的ダウンスケーリングによる気候変化シナリオ作 成入門,農業気象,66(2),pp131-143,2010.
- Kusunoki, S, R, Mizuta and M, Matsueda.: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size, Climate Dynamics, 2011.
- Kanada, S, M, Nakano and T, Kato.: Projection of Future Changes in precipitation and Vertical Structures of the Frontal Zone during the Baiu Season in the vicinity of Japan Using a 5-km-mesh Regional Climate Model, JMSJ, 2011.Sachie Kanada, Masuo Nakano and Teruyuki Kato: Climatological Characteristics of Daily Precipitation over Japan in the Kakushin Regional Climate Experiments Using a Non-Hydrostatic 5-km-Mesh Model: Comparison with an Outer Global 20-km-Mesh Atmospheric Climate Model, SOLA, Vol.6, pp.117-120, 2010.
- IPCC: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Solomon, S., et al. Cambridge University Press, 996 pp., 2007

(論文受理日: 2013 年 6 月 11 日)