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Observing the rotational diffusion of nanodiamonds with arbitrary nitrogen
vacancy center configurations
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We present theoretical results on the relationship between the rotational diffusion coefficient of a nanodiamond
undergoing Brownian motion and the configuration of nitrogen vacancy centers (NVCs) contained in the particle.
Through exact calculations and simulations, we obtain the fluorescence intensity autocorrelation function that
is measured in optically detected magnetic resonance experiments conducted at single-particle level. We relate
the autocorrelation function to the rotational diffusion coefficient and discuss the influence of different NVC
configurations on the outcome of measurements. We believe that our results can be useful in interpreting
observations on nanodiamonds that contain multiple nitrogen vacancy centers.
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I. INTRODUCTION

Random motion of microscopic particles in a fluid has been
studied since the historic observations in the 18th and 19th
centuries1 and the pioneering theoretical accounts given by
Einstein2 and Smoluchowski.3 In addition to its historic role as
providing a key evidence for the discrete nature of molecules,
quantitatively studying the apparently random motion of mi-
croscopic particles is an essential part of understanding many
phenomena, and is an active research field.4–8 For instance,
Edmond et al.9 demonstrated that simultaneous measurement
of translational and rotational diffusion of optically anisotropic
particle clusters in a supercooled colloidal fluid reveals
important aspects of the dynamics near glass transition, such
as the clear decoupling between translational and rotational
degrees of freedom. It is usually less straightforward to observe
the rotational motion of particles, as probed particles do
not necessarily possess optical anisotropy. Techniques based
on magnetic resonance, such as electron paramagnetic/spin
resonance (EPR/ESR),10 have been successfully used in the
pioneering observations of rotational diffusion of biological
molecules, such as proteins in biological membranes.11

Recent advancements in the efficient production12 and
observation of diamond nanocrystals with nitrogen vacancy
centers (NVCs)13 show that diamond nanocrystals can be
promising probes in detecting rotational motion at the
nanoscale.14–16 A negatively charged NVC in a diamond
crystal is an atomic defect where the substitutional nitrogen
and the adjacent vacancy are paired, creating an S = 1 spin
triplet quantum state. The spin state can be read out by
optically detected magnetic resonance (ODMR) through the
state dependent fluorescence intensity, even for a single NVC
under ambient conditions.17 Such physical properties have
been exploited to use diamond nanocrystals containing NVCs
as sensors for not only magnetic field,18,19 but also for
electric field20–22 and temperature,23–25 which are sensitive
to spatial variations within a few tens of nanometers. The
basic principle behind this is that the presence of a static
magnetic field changes the ODMR spectrum drastically,
enabling the precise determination of the ambient magnetic
field in three dimensions.26–28 Conversely, this allows one to
deduce the orientation of an NVC relative to the magnetic
field,14,16 as the change in the spectrum depends on the angle

between the magnetic field and the NVC’s principle axis.
In an alternative approach, not based on continuous ODMR
monitoring, Ledbetter et al.29 have proposed NVC to be used
as a gyroscope by measuring quantum Berry phase acquired by
a mixing of spin states, and Maclaurin et al.30 applied quantum
control principles to provide a way of using nanodiamonds for
magnetometry and bioimaging.

In conventional microscopy, fluorescence measurements
can be used in determining the orientation of a single molecule
tagged with a fluorescent dye. This method is based on
slightly defocusing the optics to reveal the polarization of
the emitted light, altered by the electric dipole of the dye.31

However, the angular precision is often limited to a few tens of
degrees, and the photobleaching of the dye prevents long-time
measurements. On the other hand, an NVC is extremely
photostable; it neither bleaches nor blinks,32 allowing one to
trace a long term trajectory. Because the ODMR spectrum is
sensitive to minute changes in the angle between the NVC and
the external magnetic field, a diamond nanocrsytal containing
NVCs is a promising probe to study rotation, making it
possible to perform more quantitative measurements than the
defocusing method.

In this paper, a theoretical analysis of the isotropic
Brownian rotation of a nanodiamond containing single or
multiple NVCs is presented, for the purpose of guiding the
design of experiments to observe rotational diffusion. We first
calculate the time trajectory of fluorescence intensity emitted
from NVCs placed in a weak magnetic field, which can be
directly measured in experiments. We then show that the
autocorrelation function (ACF) of the fluorescence trajectory
can be used to deduce the rotational diffusion constant. Our
theoretical analysis indicates that the ACF can be expressed
as a sum of decaying exponentials (which stems from the
fact that the diffusion equation is solved in a finite space)
with rate parameters given by �(� + 1) times the diffusion
constant, where � = 2,4,6, . . . We confirm this behavior by
performing simulations, and clearly show that the decay of
the ACF distinctly depends on the number and orientational
configuration of NVCs in the crystal, implying that the
observed signal is strongly correlated with the orientation
configuration of NVCs. We also point out that the appropriate
choice of the magnetic field amplitude is crucial for examining
the dynamics without loss of signal coherency.
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The article is organized as follows. First, the theoretical
formalism is described in Sec. II. In Sec. III, simulation results
are presented along with comparisons between theoretical and
computational results. Lastly, a discussion of our findings
and our conclusions are given in Sec. IV. In order to
avoid distraction from our main point, the details of several
calculations are given in the appendices.

II. THEORETICAL ANALYSIS

A. Energy eigenvalues and fluorescence intensity

An NVC forms an S = 1 spin triplet ground state. The axial
crystal field and spin-spin interaction cause the three spin states
of Sz = −1,0,+1 to split into |Sz = 0〉 and |Sz = ±1〉 states
separated by a zero field gap D, which is approximately equal
to 2.87 GHz. The ground state spin Hamiltonian of a single
NVC is expressed by

H = h
[
D

(
S2

z − 2
3

) + γ �S · �H ]
, (1)

where h is the Planck constant, γ = γe/2π , γe being the
gyromagnetic ratio of the electron (γ ≈ 28.07 GHz/T) and
�H is the applied magnetic field whose magnitude is H0. In

Eq. (1), the first term inside the brackets corresponds to the
energy of the system in the absence of an external magnetic
field, where Sz stands for the spin operator, while the second
term reflects the Zeeman interaction given by the inner product
of the vector of spin operators �S = {Sx,Sy,Sz} and the vector
�H = {Hx,Hy,Hz}. The Zeeman effect depends on the angle αi

between the orientation vector of the ith NVC and the external
magnetic field �H . Therefore the angle αi serves as a convenient
coordinate for characterizing the rotational diffusion of an
NVC.

The NVC has C3v symmetry, which implies the presence of
four distinct orientation vectors in diamond crystal. Without
loss of generality, if we choose our coordinate system such
that one of the possible orientation vectors lies along the +z

axis, these four vectors will be given by

d̂1 = ẑ, (2)

d̂2 = 1
3 (2

√
2x̂ − ẑ), (3)

d̂3 = − 1
3 (

√
2x̂ + √

6ŷ + ẑ), (4)

d̂4 = − 1
3 (

√
2x̂ − √

6ŷ + ẑ), (5)

where d̂i’s are all unit vectors. Note that the angle between
any two distinct d̂i’s is equal to ∼109.47 ◦ [see Fig. 1(a) for an
illustration].

In order to calculate the fluorescence intensity of an NVC
as a function of the angle it makes with the magnetic field, we
need to calculate how the energy levels of the NVC depend on
its orientation. To do so, we calculate the energy eigenvalues
of the system by diagonalizing the Hamiltonian H given in
Eq. (1). Defining the dimensionless variable ξ = D/(3H0γ ),
we rewrite H as

H = H ′
0

⎡
⎢⎣

ξ + cos α 1√
2

sin α 0
1√
2

sin α −2ξ 1√
2

sin α

0 1√
2

sin α ξ − cos α

⎤
⎥⎦ , (6)
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FIG. 1. (Color online) (a) Three examples illustrating different
orientations of the NVC principle axis d̂ (red arrow) and the magnetic
field �H (black arrow), where α is the angle between the two vectors.
Other three NVC orientations that are crystallographically equivalent,
〈111〉, are also depicted by black arrows in each tetrahedron. (b)
The corresponding ODMR spectra for a single NVC. D = 2.87 GHz,
Hz = 1 mT, ε = 0.1 in Eq. (11) are assumed.

where H ′
0 = γ hH0, and we omit the subscript on αi , wherever

the quantity pertains to a single NVC. Diagonalizing the matrix
in Eq. (6), we obtain the following three eigenvalues:

λ1 = (2/3)
1
3
(
1 + 3ξ 2 + 12− 1

3 ζ 2
)H ′

0

ζ
, (7)

λ2 = 12− 1
3
H ′

0

ζ
[(1 + 3ξ 2)(−1 − i

√
3) + 12− 1

3 (−1 + i
√

3)ζ 2],

(8)

λ3 = 12− 1
3
H ′

0

ζ
[(1 + 3ξ 2)(−1 + i

√
3) + 12− 1

3 (−1 − i
√

3)ζ 2],

(9)

where

ζ = {9(−1 + 3 cos2 α)ξ − 18ξ 3

+
√

3[−4 + 9(−1 − 18 cos2 α + 27 cos4 α)ξ 2

− 324ξ 4 cos2 α]1/2}1/3. (10)

If the NVC is oriented along the +z axis, that is d̂ = ẑ, then
the angle α is identical to the polar angle θ in spherical
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polar coordinates. For all other d̂ , we need to substitute
cos α = �H · d̂/H0.

The fluorescence signal from each NVC depends on the
orientation of the diamond crystals with respect to the magnetic
field. Based on our experimental observations, we consider the
following empirical form for the fluorescence intensity of the
ith NVC:

Ii(αi) = 1 − ε

[
exp

(
− �E2

1,i

2w2

)
+ exp

(
− �E2

2,i

2w2

)]
, (11)

where ε quantifies the amount of decrease in the fluorescence
intensity due to magnetic resonance and w quantifies the
observed broadening of lines in the spectrum, and �E1,i =
λ1,i − λ2,i − D, �E2,i = λ3,i − λ2,i − D, in which λj,i is the
j th eigenvalue of the ith NVC [see Eqs. (7)–(9)].33 Since the
NVC density is usually extremely low ∼0.1 ppm, we assume
that there is no mutual interaction between NVCs. In this
approximation, the total fluorescence intensity from N NVCs,
normalized to have a maximum value of 1, is given by

I (�α) = 1

N

4∑
i=1

NiIi(αi), (12)

where Ni is the number of NVCs with orientation vector
d̂i , such that

∑
i Ni = N . Examples of ODMR spectra of

single NVC for three different orientations α = 0, π/3, and
π/2 are displayed in Fig. 1(b). As seen, the signal positions,
which appear as dips in fluorescence intensity, are significantly
different for different angles.

B. Probability density function of a nanoparticle undergoing
rotational diffusion

We model the diamond nanoparticles as spherical rigid
bodies in an isotropic three-dimensional (3D) viscous fluid.
Diameters of the particles that are investigated in the laboratory
are usually around several hundred nanometers. Through
collisions, we suppose that the fluid molecules exert a random
force on the particle. At equilibrium, this force is expected
to be isotropic and δ correlated. Under these conditions, the
translational and rotational motion of the particle can be
characterized by Brownian motion,2 and the model we will
present below applies. The probability density of finding such
a particle with an orientation vector

n̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ, (13)

is governed by the diffusion equation in spherical polar
coordinates with r = 134

∂ρ(θ,φ,t)

∂t

= kd

[
1

sin θ

∂

∂θ

(
sin θ

∂ρ(θ,φ,t)

∂θ

)
+ 1

sin2 θ

∂2ρ(θ,φ,t)

∂φ2

]
,

(14)

where kd is the rotational diffusion coefficient (isotropic),
such that ρ(θ,φ,t) sin θdθdφ is the probability of finding the
particle’s orientation vector in the interval [θ + dθ,φ + dφ]
at time t. Through Stokes-Einstein relation, the diffusion
coefficient can be expressed as kd = kBT/8πr3η, where kB

is Boltzmann’s constant, r is the particle radius, and η is
the viscosity of the fluid. Equation (14) can be solved via
separation of variables to yield

ρ(θ,φ,t) =
∞∑

�=0

�∑
m=−�

C�mYm
� (θ,φ)e−�(�+1)kdt , (15)

where C�m’s are determined by the initial conditions and
Ym

� (θ,φ)’s are spherical harmonics

Ym
� (θ,φ) =

√
2� + 1

4π

(� − m)!

(� + m)!
P m

� (cos θ )eimφ, (16)

where P m
� (θ )’s are associated Legendre polynomials.35 If we

consider a localized initial condition such as

ρ(θ,φ,t = 0) = 1

sin θ0
δ(θ − θ0)δ(φ − φ0), (17)

C�m’s will be equal to Ym
�

∗(θ0,φ0), where the superscript
“∗” denotes complex conjugation, and the solution for the
probability density becomes

ρ(θ,φ,t |θ0,φ0)

=
∞∑

�=0

�∑
m=−�

Ym
�

∗(θ0,φ0)Ym
� (θ,φ)e−�(�+1)kdt . (18)

Note that the sum over m could be written in an alternative
form using the addition theorem for spherical harmonics:35

�∑
m=−�

Ym∗
� (θ0,φ0)Ym

� (θ,φ) = 2� + 1

4π
P�(n̂0 · n̂). (19)

C. Time autocorrelation function of the fluorescence intensity

An experimentally accessible quantity which can be used
to characterize the rotational diffusion of nanodiamonds is
the time autocorrelation function of the fluorescence intensity,
which we will denote as ACF(t). The ACF(t) for the fluores-
cence intensity I (θ,φ) is given by

ACF(t) = 〈[I (θ0,φ0) − μ0] [I (θ,φ) − μ]〉, (20)

where (θ0,φ0) and (θ,φ) are the orientations of the particle at
time 0 and t , respectively, and μ0 and μ are the average values
of I (θ0,φ0) and I (θ,φ). Note that steady-state distribution of
the particle’s orientation is uniform over the ranges of θ and φ,
as rotation is isotropic, and the simple rotational diffusion
we consider is a stationary process. We will calculate the
autocorrelation function averaged over all initial conditions,
which amounts to considering uniformly distributed initial
conditions; hence, μ0 = μ. We note that the autocorrelation
function can also be written as

ACF(t) = −μ2 + 〈I (θ0,φ0)I (θ,φ)〉, (21)

as integrals of the following form vanish:∫ π

0
dθ

∫ 2π

0
dφ sin θYm

� (θ,φ) , (22)

unless � = 0. Evaluating Eq. (20) by using the definition
given in Eq. (A2) (see Appendix A), we deduce that the
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autocorrelation function can be expressed in the following
form:

ACF(t) =
∞∑

�=2,4,6,...

a�e
−�(�+1)kdt , (23)

where the coefficients a� are given by

a� = 1

4π

∫
d�0

∫
d�

×
�∑

m=−�

Ym
�

∗(θ0,φ0)Ym
� (θ,φ)I (θ0,φ0)I (θ,φ),

= 2� + 1

(4π )2

∫
d�0

∫
d�P�(n̂0 · n̂)I (θ0,φ0)I (θ,φ), (24)

and n̂ is the unit vector in spherical polar coordinates given
in Eq. (13). The term � = 0 corresponds to the average of
the squared intensity at the steady state [which is a uniform
distribution, as seen from Eq. (18)], and is found to be
equal to μ2. Nevertheless, values of the ACF at other times
depend on all nonvanishing a�, which are determined by the
geometry of the problem (diffusion in a finite space) as well
as all the physical parameters that control the fluorescence
intensity. In Appendix A, we also provide the calculation of
the time autocorrelation function for the orientation vector,
which characterizes the rate at which information about the
orientation of the particle is lost due to rotational diffusion.

III. SIMULATION RESULTS

In addition to the calculation of ACF(t) presented in the
previous section, we also performed simulations of rotational
diffusion of a nanodiamond modeled as a rigid body. We
worked in the reference frame of the nanodiamond so that
it is the magnetic field �H that undergoes rotational diffusion.
In our simulations, we rotate �H around the three Cartesian
coordinate axes by angles (�x , �y , �z) generated randomly,
all of which follow a normal distribution with the standard
deviation σ 2

d = 2kd�t , where kd is the rotational diffusion
constant and �t is the simulation time step.

The rotation of �H at each simulation step was performed
by using the rotation matrix derived by Beard and Schlick,36

which correctly takes into account the noncommuting nature
of rotation operators in Langevin and Brownian dynamics
simulations (see Appendix B). Successively applying the
rotation matrix on �H , we generated time trajectories of the
fluorescence intensity via Eq. (12). Once the fluorescence
intensity was obtained as a function of time, we calculated
the ACF(t) via

ACF(n�t) = 1

M − n

M−n∑
i=1

(Ii − μ) (Ii+n − μ) , (25)

where M is the total number of time points, μ is the average
intensity and Ii is the intensity at time i�t .

A. A single NVC

Thermal fluctuations cause a nanodiamond to undergo
rotational diffusion such that the angle α between the external

FIG. 2. (Color online) An example time trajectory of fluores-
cence intensity calculated for a single NVC at H0 = 0.3 mT. The
reduction of fluorescence intensity through the intersystem crossing
is assumed to be 20% [corresponding to ε = 0.1 in Eq. (11)],
the sampling period was �t = 0.01 s, and the rotational diffusion
coefficient kd was set to 1 rad2 s−1, such that σ 2

d = 2kd�t = 0.02 rad2.
w = 3.5 MHz. In the presence of more than one NVC, with different
orientations, the fluorescence signal becomes smoother due to
the increased frequency of detection at fMW = 2.87 GHz. (Inset)
Histogram of the whole time trajectory.

magnetic field �H and the NVC axis changes in time, as illus-
trated in Fig. 1. Simulation data showing the time-dependent
spectrum that results from this rotational motion is displayed
in Fig. 2. In Fig. 2, we plot the fluorescence intensity I (t) for a
single NVC as a function of time, measured at the microwave
frequency fMW = 2.87 GHz. We envisage experiments
where continuous laser illumination at 532 nm and microwave
irradiation at 2.87 GHz are employed, and the fluorescence
intensity is periodically measured at a fixed frequency. The
largest reduction in fluorescence intensity was observed at
α = π/2 and around fMW = 2.87 GHz, which is equal to
the zero-field gap D [see the Hamiltonian (1)]. The intensity
quickly returns to its background value once α deviates from
π/2. The inset of Fig. 2 displays a histogram of I (t), showing
the relative frequency with which the fluorescence signal was
observed at a certain value. Note that the maximum intensity
�0.99 is smaller than the base intensity which was set to
unity, meaning that for these parameter values there is a finite
contribution from the overlapping tails of the two signal dips
[see Fig. 1(b)] even when they are most separated at α = 0.
The presence of this residual intensity is crucial for not losing
the signal during the experimental observations. As Horowitz
et al.15 concluded, the optimal combination of the monitored
frequency fMW and the magnitude of the external field H0 to
observe the motion of the particle without losing the signal is
realized either at fMW = 2.87 GHz under an external magnetic
field of a few Gauss,37 or at fMW of the downward slope of the
signal. Throughout this work, we monitored the fluorescence
intensity at fMW = 2.87 GHz.

Using our simulation method described at the beginning
of this section, we considered a nanodiamond containing a
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FIG. 3. (Color online) ACF(t) vs time, for different numbers of
NVCs N � 4, where each NVC has a distinct orientation vector. The
red, blue, and green data sets are for N = 1, 2, and 3, respectively,
while the orange data set corresponds to N = 4. NVC orientations
were set according to the diamond crystal structure, given by the
unit vectors in Eqs. (2)–(5). Forty independent trajectories ACF(t) of
106 time points were calculated for each case. Parameter values are
kd = 1 rad2 s−1 and H0 = 0.3 mT.

single NVC and generated forty intensity ACF trajectories
containing 106 time points, with a time step of �t = 0.01 s,
parameter values of H0 = 0.3 mT, kd = 1 rad2 s−1, ε = 0.1,
and w = 3.5 MHz. The result, obtained by averaging over all
trajectories, is shown with the red curve in Fig. 3. In order to
compare our theoretical results with the simulations, we also
plot Eq. (23) together with the simulation data, keeping the
first five nonvanishing exponential terms (see Appendix C for
the values of the coefficients a�).

B. Multiple NVCs

There are four possible, equivalent, orientations for an NVC
in a diamond nanocrystal, as we noted earlier (see Fig. 1).
We first examined the effect of the presence of multiple
NVCs on the behavior of the ACF by considering three cases
with N = 2,3, and 4 NVCs, where each NVC points in a
different direction. Similar to what we did for a single NVC,
we generated forty ACF trajectories of 106 time points, and
averaged over all trajectories to obtain the ACF(t) curves
displayed in Fig. 3. Again, we see excellent agreement with
the prediction of Eq. (23) and the simulation data. Note that the
results for nanodiamonds containing one, two and three NVCs
are not significantly different from each other, except that the
overall amplitude of the ACF decreases with the number of
NVCs. For these three cases, we find that the asymptotic
decay rate of the ACF is given by 6kd. However, we find
that a nanodiamond containing four NVCs has a markedly
different ACF, as its asymptotic decay rate is different from
the rest, being 20kd. We attribute this to the symmetry of the
configuration when all possible NVC states are occupied, and
all NVCs have distinct orientations, which leads to a vanishing
coefficient a2 [see Eq. (24) and its numerical evaluation in
Table I].

Next, we investigated the effect of degenerate NVC con-
figurations, where there are multiple NVCs pointing in the

x 1 2 3 4 8
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C
F
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FIG. 4. (Color online) ACF(t) vs time, for different NVC con-
figurations with four or more NVCs. The dots represent sim-
ulation results, and the curves are analytical results based on
Eq. (23), showing excellent agreement between the simulation and
theory. Different data sets correspond to NVC configurations of
(1,1,1,x), where x is indicated in the legend. Parameter values are
kd = 1 rad2 s−1 and H0 = 0.3 mT.

same direction. In practice, this consideration is relevant for
nanodiamonds with diameters larger than 100 nm, where a
few tens of NVCs are likely present. We considered NVC
configurations of the form (N1,N2,N3,N4) where Ni denotes
the number of NVCs with orientation vector d̂i present in
the nanodiamond. Here, we report our results for several
specific configurations of the form (1,1,1,x), where x ∈
{2,3,4,8}. Simulation results as well as theoretical predictions
[see Eq. (23)] are plotted in Fig. 4, also including the case
(1,1,1,1) that we discussed above, for comparison. First, we
note that as soon as the symmetry of the configuration with
x = 1 is broken by adding one more NVC with an orientation
d̂4, the asymptotic decay rate of 6kd is recovered, which is
the lowest possible value, as the decay rate is restricted to the
values �(� + 1)kd, where � = 2,4,6, . . . Second, unlike the
previous case with no degeneracy, increasing the number of
NVCs result in an overall increase in the amplitude of the ACF.

In addition, we would like to note in passing that the decay
rates for several artificial cases where NVCs are co-planar, or
pointing along Cartesian axes in three-dimensions were also
found to be significantly different. For instance, as shown in
Fig. 5, the decay rate for two and six NVCs that are separated
by 90◦ and 60◦ in the same plane were found to be ∼6.3kd and
∼6.0kd, respectively, by fitting the tail part of the simulation
data with a single exponential function. Whereas for the case
of three and six orthogonal NVCs pointing along Cartesian
axes, we observed a decay rate of ∼20.2kd. This suggests the
importance of dimensionality of the structure which NVCs
form in space. Nevertheless, we would like to note that
even though the results in Fig. 5 suggest that the asymptotic
decay constant for coplanar and noncoplanar arrangement of
NVCs significantly differ, our previous result for three NVCs
(see Fig. 3) does not support such a general conclusion, since
a nanodiamond with three noncoplanar NVCs still has an
asymptotic decay constant equal to those of the coplanar,
artificial configurations in Fig. 5.
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FIG. 5. (Color online) ACF(t) vs time, for several artificial con-
figurations. Red and blue points correspond to co-planar NVCs,
whereas green and orange points correspond to NVCs that point along
Cartesian axes in three dimensions. See text for further explanation.
To obtain each curve, forty independent trajectories ACF(t) of 106

time points were calculated for each case. Parameter values are
kd = 1 rad2 s−1 and H0 = 0.3 mT.

IV. CONCLUDING REMARKS

In this paper, we presented our theoretical and computa-
tional results on the relationship between the number and
orientation of NVCs and the rotational diffusion coefficient of a
nanodiamond. Supposing that the rotational motion of the nan-
odiamond can be approximated by simple Brownian diffusion,
we derived an exact relationship between the fluorescence ACF
of a particle, measured via ODMR, and its rotational diffusion
coefficient. We clarified how the fluorescence ACF depends
on the configuration of NVCs inside a nanodiamond, and
verified our findings by performing simulations. Our results
show that the fluorescence ACF can be expressed as a sum of
exponential terms [see Eq. (23)], where the exponents are given
by −�(� + 1)kdt with � = 2,4,6, . . . While the exponents
are purely determined by the nature of Brownian motion in
isotropic 3D space, the coefficients contain information about
the configuration of NVCs in the nanodiamond.

Due to the simplicity in interpreting observations, most of
the experiments with nanodiamonds have employed particles
that exclusively contain a single NVC. We believe that
our results can be useful in extracting information from
particles that contain more than one NVC, since we presented
an analysis of how observables depend on more general
NVC configurations (see Fig. 4). Among our findings, one
case of particular interest is that if there are precisely four
NVCs in a nanodiamond pointing in different directions,
the coefficient for the � = 2 term vanishes. Hence, the ACF
decays much more rapidly compared to other (asymmetrical)
NVC configurations, which can make it possible to identify
nanodiamonds with this particular configuration. In addition
to this qualitatively different result observed in the presence of
four NVCs, we observed that the overall amplitude of the ACF
depends on the number of NVCs, in a specific case where there
is an excess number of NVCs in one of the orientations. When
the NVC configuration is of the form (n1,n2,n3,n4) where
n1,n2,n3 are 0 or 1, and n4 � 1, we found two different trends

in the absence and presence of degeneracy in NVC occupancy.
As seen in Figs. 3 and 4, for N � 4, the overall amplitude of the
ACF decreases with N , whereas the opposite is observed for
N � 4, where there is an excess number of NVCs in one of the
possible NVC orientations. Since the value of the ACF at t = 0
is equal to the variance of the fluorescence intensity, the overall
amplitude of the ACF is an indicator of the variability of the
intensity signal. In the cases that we studied, it is found that the
variability decreases until all NVC orientations are occupied
nondegenerately, and starts increasing after that. Nevertheless,
we would like to emphasize that it is the NVC orientation
configuration rather than merely the number of NVCs that
determines the behavior of the ACF, and more general NVC
configurations with degeneracy can result in a different trend.

Depending on the time resolution of ODMR measurements,
a single or multiexponential fit based on Eq. (23) can be
performed on experimentally obtained ACFs to extract the
decay coefficients. If the motion of nanodiamonds is well-
characterized by isotropic Brownian rotation, one can then
extract the rotational diffusion coefficient using the relation-
ship between the exponential decay rates, and the kd. Note that
when a relatively large nanodiamond containing hundreds of
NVCs is employed, we can expect the NVC orientations to be
uniformly distributed along four 〈111〉 axes. Then, we could
expect to use a single exponential fit to estimate kd ≈ τ−1

c /20
to a good approximation. We also would like to point out that
the choice of an appropriate magnitude for the magnetic field
is essential for a reliable measurement of the fluorescence
signal. An excessively strong magnetic field causes a large
separation between the signal dips [see Fig. 1(b)], resulting
in an increase in the fraction of time where the measured
intensity corresponds to the maximum intensity (equal to
unity), which does not contain any information about the
rotation. Therefore, when the spectrum is monitored only
within a narrow frequency window, this effect degrades
the quality of the measured ACF. In general, the magni-
tude should be set around 0.3 ∼ 0.5 mT,37 also pointed in
Ref. 15.

For applications, observing the rotational diffusion of
nanodiamonds via ODMR can be a useful method to measure
rheological and transport properties of a medium. For instance,
in the simplest cases where linear response holds, mobility μ of
a particle is related to its diffusion coefficient via kd = μkBT ,
where kB is Boltzmann’s constant.38 Therefore, deducing the
diffusion coefficient from ODMR experiments performed at
constant temperature can enable the extraction of particle
mobility. When the geometry of the particle is known, one
can then relate mobility to fluid viscosity via a generalized
form of the Stokes-Einstein relationship.39 One interesting
extension of this study would be generalizing the calculations
to consider rotational motion in a viscoelastic medium, which
can be applied to explore the properties of polymer melts
and complex fluids such as the cytoplasm of a biological
cell.

In our future studies, we would like to generalize the
calculation of ACF to a case where the nanodiamond is
practically confined to a two-dimensional space. A theoretical
understanding of the rotation of particles confined to a surface
is much needed to interpret observations on nanodiamonds
that are incorporated to biological membranes. We believe
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that research along these lines will greatly contribute to
our interpretation and design of new experiments to study
the rotational motion of molecules that are confined to a
membrane.
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APPENDIX A: AUTOCORRELATION FUNCTION
OF THE ORIENTATION VECTOR

Here, we outline the calculation of the time it takes for
the particle’s orientation to relax to its equilibrium value,
averaging over all initial conditions. The relaxation time can
be obtained by calculating the time autocorrelation function of
the orientation vector, given by

ACF0(t) = 〈n̂0 · n̂(t)〉, (A1)

where the angular brackets indicate averaging over the ori-
entation vector at time t as well as over all initial conditions

uniformly such that

〈·〉 = 1

4π

∫
d�0

∫
d�ρ(θ,φ,t |θ0,φ0)(·), (A2)

where �i = dθidφi sin θi , and the integrations are performed
over 0 � θi � π and 0 � φi � 2π . Note that the orientation
vector averaged over all initial conditions or over the equi-
librium distribution vanishes. Writing Eq. (A1) explicitly, we
get

ACF0(t) = 1

4π

∫
d�0

∫
d�

∞∑
�=0

�∑
m=−�

Ym
�

∗(θ0,φ0)

×Ym
� (θ,φ)e−�(�+1)kdt (sin θ cos φ sin θ0 cos φ0

+ sin θ sin φ sin θ0 sin φ0 + cos θ cos θ0), (A3)

where we used Eqs. (13) and (18). Carrying out the integrals in
Eq. (A3), we realize that only the terms with � = 1 contribute
to the final result, which is given by

ACF0(t) = e−2kdt . (A4)

Therefore the characteristic rotational relaxation time
is τ0 = 1/2kd.

APPENDIX B: SIMULATION OF RANDOM ROTATIONS

In order to rotate a rigid body around each axis by
(�x,�y,�z), the following rotation operator can be used:36

R̂(�x,�y,�z) =

⎡
⎢⎢⎢⎢⎣

(
�2

y + �2
z

)
cos � + �2

x

�2
�x�y

�2 (1 − cos �) − �z

�
sin �

�x�z

�2 (1 − cos �) + �y

�
sin �

�x�y

�2 (1 − cos �) + �z

�
sin �

(
�2

x+�2
z

)
cos � + �2

y

�2
�y�z

�2 (1 − cos �) − �x

�
sin �

�x�z

�2 (1 − cos �) − �y

�
sin �

�y�z

�2 (1 − cos �) + �x

�
sin �

(
�2

x + �2
y

)
cos � + �2

z

�2

⎤
⎥⎥⎥⎥⎦ , (B1)

where �2 = �2
x + �2

y + �2
z . This approach avoids the er-

rors and bias introduced by applying rotation operators in
sequence to rotate a body around different axis (rotation
operators do not commute). See Beard and Schlick36 for
details.

TABLE I. First few values of a� for different NVC configurations
where the total number of NVCs is less than or equal to four
and each NVC points in a different direction. We use the notation
(N1,N2,N3,N4) to denote that there are Ni NVCs with the orientation
vector d̂i . Parameter values are H0 = 3 × 10−4 T, γ = 28.02 GHz,
D = 2.87 GHz, ε = 0.1, w = 3.5 MHz. Computed value of a2

for four NVCs is comparable to the machine precision, which is
2.2204 × 10−16, implying that a2 vanishes in this case. For this data
set, μ = √

a0 = 0.8973.

NVCs → (1,0,0,0) (1,1,0,0) (1,1,1,0) (1,1,1,1)

a2 3.79 × 10−3 1.26 × 10−3 4.21 × 10−4 1.16 × 10−19

a4 3.96 × 10−4 2.00 × 10−4 1.35 × 10−4 1.02 × 10−4

a6 2.03 × 10−5 1.21 × 10−5 9.37 × 10−6 8.00 × 10−6

a8 6.10 × 10−7 2.22 × 10−7 9.24 × 10−8 2.76 × 10−8

a10 1.20 × 10−8 7.41 × 10−9 5.87 × 10−9 5.10 × 10−9

APPENDIX C: NUMERICAL VALUES OF COEFFICIENTS
AND EXPONENTS THAT APPEAR IN THE ACF

For a particular set of experimentally relevant parameters,
values of the first few a�’s are given in Tables I and II as a
function of the number of NVCs. Table I includes a�’s for cases
where each NVC points in a different direction and there are
up to four NVCs. Note that when there are four NVCs pointing
in different directions, the coefficient a2 vanishes. For some
cases where there are more than four NVCs, such that there

TABLE II. First few values of a� in the presence of more than four
NVCs, where at least four NVCs have distinct orientation vectors.
Parameter values and the convention in labeling NVC numbers and
orientations are the same as in Table I. Note that the coefficient a2

does not vanish when there are 2 NVCs pointing in d̂4.

NVCs → (1,1,1,2) (1,1,1,3) (1,1,1,4) (1,1,1,8)

a2 1.52 × 10−4 4.21 × 10−4 6.96 × 10−4 1.53 × 10−3

a4 1.14 × 10−4 1.35 × 10−4 1.56 × 10−4 2.21 × 10−4

a6 8.50 × 10−6 9.37 × 10−6 1.02 × 10−5 1.30 × 10−5

a8 5.09 × 10−8 9.24 × 10−8 1.35 × 10−7 2.63 × 10−7

a10 5.39 × 10−9 5.89 × 10−9 6.40 × 10−9 7.95 × 10−9
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are more than one NVCs pointing in certain directions, we
display the first few a�’s in Table II. Note that in the presence

of degeneracy, none of the even coefficients up to � = 10
vanish.
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G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg,
F. Jelezko, and J. Wrachtrup, Nat. Phys. 7, 459 (2011).

22L. C. Bassett, F. J. Heremans, C. G. Yale, B. B. Buckley, and D. D.
Awschalom, Phys. Rev. Lett. 107, 266403 (2011).

23V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S.
Bouchard, and D. Budker, Phys. Rev. Lett. 104, 070801 (2010).

24D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and
D. D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 110, 8417 (2013).

25P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr,
J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya,
J. Isoya, and J. Wrachtrup, Nano Lett. 13, 2738 (2013).

26S. Steinert, F. Dolde, P. Neumann, A. Aird, B. Naydenov, G.
Balasubramanian, F. Jelezko, and J. Wrachtrup, Rev. Sci. Instrum.
81, 043705 (2010).

27D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham,
L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L.
Walsworth, Nature (London) 496, 486 (2013).

28B. J. Maertz, A. P. Wijnheijmer, G. D. Fuchs, M. E. Nowakowski,
and D. D. Awschalom, Appl. Phys. Lett. 96, 092504 (2010).

29M. P. Ledbetter, K. Jensen, R. Fischer, A. Jarmola, and D. Budker,
Phys. Rev. A 86, 052116 (2012).

30D. Maclaurin, L. T. Hall, A. M. Martin, and L. C. L. Hollenberg,
New J. Phys. 15, 013041 (2013).
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