<table>
<thead>
<tr>
<th>Title</th>
<th>Chiral condensate at finite density using the chiral Ward identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Goda, Soichiro; Jido, Daisuke</td>
</tr>
<tr>
<td>Citation</td>
<td>Physical Review C (2013), 88(6)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-12-19</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/182888</td>
</tr>
<tr>
<td>Rights</td>
<td>©2013 American Physical Society</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ

Kyoto University Research Information Repository
Chiral condensate at finite density using the chiral Ward identity

Soichiro Goda
Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Daisuke Jido
Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

(Received 12 August 2013; revised manuscript received 5 November 2013; published 19 December 2013)

DOI: 10.1103/PhysRevC.88.065204

PACS number(s): 11.30.Rd, 21.65.Jk, 12.39.Fe

I. INTRODUCTION

Dynamical breaking of chiral symmetry (DBχS) is one of the important phenomena of QCD for low-energy hadron spectrum and dynamics of light hadrons. The light pseudoscalar mesons, \(\pi\), \(K\), and \(\eta\), are identified as the Nambu-Goldstone bosons of DBχS, and the quark mass generation is also explained by DBχS. The quark condensate \(\langle \bar{q}q \rangle\) is one of the order parameters of DBχS and its magnitude characterizes the QCD vacuum. Because DBχS is a phase transition phenomenon, such dynamically broken symmetry is expected to be restored in extreme environments, such as high temperature and/or high baryonic density. It is very significant to confirm phenomenologically that DBχS really takes place in the QCD vacuum.

One of the proofs of DBχS is to make sure of partial restoration of chiral symmetry in nuclear matter. The partial restoration of chiral symmetry is an incomplete restoration of chiral symmetry with sufficient reduction of the magnitude of the quark condensate. Recent observations of pion atom spectra, especially precise measurements of the isotope dependence on deeply bound pionic atoms [1] and low-energy pion-nucleus scattering [2,3] have found that the \(b_1\) parameter appearing in the pion optical potential is substantially enhanced in nuclei. With this fact and theoretical examination [4,5], it turns out that the magnitude of the quark condensate does decrease about 30% at the saturation density.

The reduction of the quark condensate in nuclear medium also leads to various phenomena, for instance, attractive enhancement of scalar-isoscalar \(\pi\pi\) correlation in nuclei [6–8] and the suppression of the spectrum difference between the chiral partners, such as \(\rho-a_1\) [9,10] and \(N-N(1535)\) [11–14].

The experimental observations of these phenomena can be further confirmation of partial restoration of chiral symmetry in nuclear medium. For instance, one could observe the reduction of the \(N-N(1535)\) mass difference from the formation spectrum of the \(\eta\) mesonic nuclei [15–17]. The mass difference between the \(\eta\) and \(\eta'\) mesons is also responsible for the quark condensate through the \(U_A(1)\) anomaly effect [18,19].

These phenomena are caused by substantial quark dynamics, but because we have quark-hadron duality in the description of hadron dynamics, these phenomena should be also described in terms of hadron dynamics, such as nuclear many-body theories. This means that if one could describe the suppression of the spectrum difference of the chiral partners in a nuclear many-body theory, this does not rule out partial restoration of chiral symmetry. To a greater extent, once one could understand hadronic phenomena in terms of quark-gluon dynamics, one would have more substantial and deeper insight of hadron dynamics, which will bring us its more systematic understanding in terms of QCD.

Theoretically, the reduction of the quark condensate in the nuclear medium is naturally expected according to the model-independent low-density relation [20], in which the ratio of the in-medium and in-vacuum quark condensates is given by the \(\pi N\) \(\sigma\) term together with the in-vacuum pion mass and pion decay constant. This relation is derived under the linear-density approximation. The sign of the \(\sigma\) term determines the fate of the in-medium quark condensate. Because the \(\sigma\) term extracted from \(\pi N\) scattering data has a positive sign, the quark condensate should be reduced, at least, in the low-density limit. However, one does not know up to which density one can apply the linear-density approximation. For further detailed understanding, one needs calculation beyond the linear density based on effective theories.

Because the quark condensate is not a direct observable in experiments, one needs theoretical examination to conclude...
partial restoration of chiral symmetry phenomenologically. In Ref. [5], an exact sum rule which relates the quark condensate and hadronic observables has been derived by using the chiral Ward identity. In the linear-density approximation, the in-medium quark condensate can be written in terms of the in-medium temporal pion decay constant and the pion wave function renormalization constant. The importance of the wave-function renormalization in in-medium chiral effective theories has been also discussed in Refs. [4,7]. With this relation, the reduction of the quark condensate has been phenomenologically confirmed by using the in-medium pion decay constant extracted from pion-nucleus dynamics [1] and the wave-function renormalization constant extracted from pion-nucleon scattering [5]. Because this proof of the partial restoration of chiral symmetry in the nuclear medium is based on the linear-density approximation of in-medium quantities, precise determination of the density dependence of the quark condensate both in theory and in experiment [21,22] is strongly desired.

The in-medium quark condensate has been discussed in various approaches. The in-medium correction of the condensate is given by the pion-nucleon σ term model independently at the first order in nucleon density [20,23] and higher orders are evaluated with mean-field calculations using the Nambu-Jona-Lasinio and Gell-Mann-Levy models [23] and the relativistic Brueckner approach [24,25]. In Ref. [21], the in-medium condensate has been obtained beyond the linear density based on the Hellman-Feynman theorem, in which they have calculated the energy density in nuclear matter based on a chiral effective action and taken its derivative with respect to the quark mass to obtain the quark condensate. The pion self-energies in asymmetric nuclear matter were calculated based on chiral perturbation theory in Ref. [26]. Reference [27] developed systematic framework of chiral perturbation theory in nuclear matter and calculated the equation of state of isospin-symmetric nuclear matter. In Ref. [28], a novel formulation of chiral perturbation theory in a nuclear background was proposed and the self-energy and the nuclear optical potential of the charged pion were calculated. In Ref. [29] hadronic quantities, such as pion optical potential, have been calculated beyond the linear density.

The goal of this paper is to examine higher-density correction beyond linear density and to show a systematic way to calculate the in-medium quantities based on chiral effective theory. For this purpose, we use the formulation proposed in Ref. [30] and developed in Ref. [31]. In this formalism, one calculates matrix elements in the free Fermi nuclear matter, which are defined by the path integral under the action of the system. All the interaction between nucleons in matter and pions are assumed to be described in the interaction Lagrangian. In this formulation, one can make a double expansion in terms of Fermi see insertion and chiral-order counting. Thus, the expansion scheme is clear.

In this paper we calculate the Ward identity, which connects the quark condensate and hadronic observables, based on this in-medium chiral perturbation formulation. This paper is organized as follows. We explain the chiral Ward identity which relates the quark condensate with the correlation function of the chiral currents in Sec. II. In Sec. III, we introduce the in-medium chiral perturbation theory and the in-medium chiral counting scheme. In Sec. IV, we show the result of the calculation of the in-medium chiral condensate (⟨qârangle)∗, and finally we devote Sec. V to the conclusion of the present paper.

II. CHIRAL WARD IDENTITY

To calculate the density dependence of the in-medium quark condensate, we take the chiral Ward identity approach proposed by Ref. [5]. In this approach, we consider the correlation function of the axial-vector current Aâμ(x) and the pseudoscalar density Pμ(x),

$$\Pi^\mu_5(q) = \int d^4x e^{i\bf{q}\cdot\bf{x}} \langle \Omega | T A^\mu_5(x) P^\mu(0) | \Omega \rangle,$$

where |Ω⟩ is the nuclear-matter ground state normalized as ⟨Ω|Ω⟩ = 1 and is characterized by the proton and neutron densities, ρp and ρn, respectively. The axial-vector current Aâμ(x) is associated with the SU(2) chiral transformation whose generators are given by Qâμ = ∫ d3x Aâμ(x). The pseudoscalar density Pμ(x) is defined in terms of the quark field by Pμ(x) = iqγμx ψ(x) with the Pauli matrix τf for the isospin space and transforms under the SU(2) chiral transformation as [Qâμ, Pμ(0)] = −iδâτf qμ(x).

Using the operator identity $\bar{q} \gamma^\mu [T A^\mu_5(x) P^\mu(0)] = \delta(x_0) [A^\mu_5(x), P^\mu(0)] + T[\partial^\mu A^\mu_5(x) P^\mu(0)]$ and performing the integral in the soft limit $q_0 \to 0$, we obtain the in-medium quark condensate as

$$-i\delta_{ab} (\bar{u}u + \bar{d}d)^* = \Pi^{\mu_5}_5(0) = m_0 D^{\mu_5}(0),$$

where we have written the expectation value ⟨Ω|O|Ω⟩ as ⟨O⟩* for operator O, and $\Pi^{\mu_5}_5(0)$ and $D^{\mu_5}(0)$ are defined as

$$\Pi^{\mu_5}_5(0) \equiv \lim_{q_0 \to 0} -iq^\mu \int d^4x e^{i\bf{q}\cdot\bf{x}} \langle A^\mu_5(x) P^\mu(0) \rangle^*, \quad D^{\mu_5}(0) \equiv \lim_{q_0 \to 0} \int d^4x e^{i\bf{q}\cdot\bf{x}} \langle P^\mu(x) P^\mu(0) \rangle^*.$$
its spontaneous breaking [32–35]. In this work, we use the in-medium extension of the chiral perturbation theory developed by Refs. [30,31]. In this method, first one defines the generating functional of the correlation functions by taking noninteracting Fermi gas of nucleons as the asymptotic state and assumes all the interaction between nucleons and other internal fields are described by the chiral effective Lagrangian. The in-medium correlation functions are calculated by taking functional derivatives of the generating functional.

Let us consider the noninteracting nucleon system at asymptotic times $t \to \pm \infty$, $|\Omega_{\text{out}}|$ and $|\Omega_{\text{in}}|$ as usual scattering theory. Here we assume the unpolarized nuclear matter for simplicity. The in and out states are described in terms of the nucleon creation operators $a^\dagger(p_n)$ with the nucleon momentum p_n as

$$|\Omega_{\text{in,out}}\rangle \equiv \prod_n^{\text{N}} a^\dagger(p_n)|0\rangle,$$

where the nucleon Fermi gas states are occupied up to the Fermi momentum k_F. The proton and neutron densities are given by the Fermi momenta $k_F^{(p,n)}$ as

$$\rho^i = \frac{1}{3\pi^2}k_F^3,$$

for $i = p,n$.

The generating functional is given by

$$Z[J,\eta,\eta'] = e^{iW[J,\eta,\eta']} = (\Omega_{\text{out}}|\Omega_{\text{in}}\rangle_{J,\eta,\eta'}),$$

under the presence of the external fields $J = (s,p,v,a)$, η, and η'. Here, s, p, v, and a represent the scalar, pseudoscalar, vector, and axial-vector sources, respectively, and η and η' are the nucleon external sources. We also define the generating functional for the connected Green’s functions $W[J,\eta,\eta']$ in Eq. (7). The path integral is to be performed for the fields in the Lagrangian, such as the chiral field U and the nucleon field N,

$$Z[J,\eta,\eta'] = \int DU DN D\eta \Omega_{\text{out}}|\Omega_{\text{in}}\rangle_{\eta,\eta'}(N(+\infty))$$

where L_{η} is the pion chiral Lagrangian and we take the π-N chiral Lagrangian with the nucleon bilinear interaction A given by the πN chiral Lagrangian $L_{\pi N} = \tilde{N}(i\gamma^\mu\partial_\mu - m_N)N$. The operator A is written by the pion fields and its derivatives together with the external fields and is subject to chiral-order counting, and $N = (p,n)^T$ is the nucleon field with p and n for proton and neutron, respectively. In Appendix A, the detailed expression of A is summarized. The parameters of the Lagrangian are to be fixed in vacuum.

The integral in terms of the nucleon field can be done easily by using the Gauss integral formula if the Lagrangian has the bilinear form for the nucleon interaction. As shown in Ref. [30], the generating functional is characterized by double expansion of Fermi sea insertions and chiral orders. The Fermi sea insertion is seen as

$$Z[J] = \int DU \exp \left(i \int dx \left(L_{\pi\pi} - \int \frac{dp}{(2\pi)^3} E(p) \right) \right)$$

$$\times \int \frac{dp}{(2\pi)^3} E(p) \int \frac{dq}{(2\pi)^3} E(q) \int d^4x \left[i\Gamma(x,y)(\rho + m_p)n(p) \right]$$

$$\times \int d^4x \left(\frac{\delta J}{\delta \eta'} \frac{\delta}{\delta \eta} \frac{\delta}{\delta \eta'} \right)$$

$$\times \int d^4x \left(\frac{\delta J}{\delta \eta'} \frac{\delta}{\delta \eta} \right),$$

where FT denotes Fourier transformation of the spatial variables except x, $E(p)$ is the relativistic nucleon energy $E(p) = \sqrt{p^2 + m_N^2}$, and the nonlocal vertex $\Gamma(x,y)$ is defined by $\Gamma = -iA[1 - D_0^{-1}A]^{-1}$, which is given only by the in-vacuum interactions A and the free nucleon propagator D_0^{-1}. The matrix $n(p)$ in the isodoublet size is defined to restrict the momentum integral up to the Fermi momentum as

$$n(p) = \left(\begin{array}{c} \theta(k_F^+ - |p|) \\ 0 \\ \theta(k_F^- - |p|) \end{array} \right).$$

Figure 1 shows the diagrammatic structure of the Fermi sea insertion of the generating functional (9). In the figure, the thick line represents nucleon propagation in the Fermi sea. The chiral expansion is given by the expansion of the nonlocal vacuum vertices,

$$i\Gamma = A + AD_0^{-1}A + AD_0^{-1}AD_0^{-1}A + \cdots,$$

together with the chiral expansion for the bilinear local vertex A. Using the generating functional (9), we can define the in-medium pion Lagrangian $\tilde{L}_{\pi\pi}$ as $Z[J] = \exp[i \int d^4x \tilde{L}_{\pi\pi}]$.

The connected n-point Green’s functions can be evaluated by taking functional derivatives of $iW[J]$ defined in Eq. (7) with respect to the external sources J^i,

$$\langle \Omega_{\text{out}}|T\mathcal{O}_1\cdots\mathcal{O}_n|\Omega_{\text{in}}\rangle = (-i)^n \frac{\delta}{\delta J_1} \cdots \frac{\delta}{\delta J_n} iW[J],$$

$$e^{iW} = \Gamma \circ \frac{1}{2} \Gamma \circ \frac{1}{2} \Gamma \circ \frac{1}{2} \cdots$$

FIG. 1. Schematic diagram for the generating functional (9) in the expansion of the Fermi sea insertion. The thick line denotes the nucleon propagation in the Fermi sea and Γ is the nonlocal vertex given by the in-vacuum πN interaction.
where O_i is the corresponding current operator to the external source J_i. The current operator O_i can be represented in terms of the corresponding quark current, such as the pseudoscalar current $P^i = \bar{q} i \gamma_5 t^i q$ and the axial-vector current $A^i_{\mu} = \bar{q} i \gamma_{\mu} \gamma_5 t^i q$.

The in-vacuum chiral perturbation theory has the chiral expansion scheme in which the pion energy momentum and the small quark mass are counted as small quantities. In addition to these quantities, in the in-medium chiral perturbation theory the Fermi momentum is also regarded as a small quantity, because the Fermi momentum at the normal nuclear density $k_F = 270 \text{ MeV}$ is as small as $2 m_\pi$. According to Ref. [31], chiral order ν for a specific diagram is given by

$$\nu = 4 L_\pi - 2 I_\pi + \sum_{i=1}^{V_\pi} d_i + \sum_{i=1}^{V_n} d_{pi} \geq 4,$$

$$d_{\pi} = 3n + \sum_{i=1}^{n} v_{\Gamma_i} - 4(n-1),$$

where L_π is the number of pion loops, I_π is the number of the pion propagators, d_i is the chiral dimension coming from the pion chiral Lagrangian $\mathcal{L}_{\pi\pi}$, d_{π} is the chiral dimension of the nonlocal in-medium vertex with n Fermi sea insertions, and v_{Γ_i} is the chiral dimension of the Γ_i vertex. This counting rule is called standard case in Ref. [31] in which the nucleon propagator is counted as $O(p^{-1})$. We note that ν is larger than 4, so that leading-order contribution to the in-medium chiral condensate appears from $O(p^{−1})$. In this formalism, we can calculate any processes in which pions interact with Fermi gas using this method. If one follows strictly the chiral expansion scheme, one has to expand also in-vacuum terms and renormalize them order by order. This kind of the expansion is useful in theoretical consideration, while it is not convenient in practical use because expanded quantities are not direct observables. Here we consider that all the in-vacuum quantities for the πN dynamics are already fixed by experiments. This implies that the renormalization procedure for in-vacuum values are already done and we do not have to evaluate in-vacuum loop diagrams. This is also consistent with having taken $\det(D_0 - A) = 1$ to obtain Eq. (9).

The expansion scheme of the generating functional in terms of the Fermi sea insertion given in Eq. (9) is equivalent to the conventional nuclear many-body calculation using the Pauli-blocked nucleon propagator in the Fermi gas,

$$i G(p) = i D_0^{-1}(p) + i D_m^{-1}(p),$$

$$i D_0^{-1}(p) = \frac{i(\not{p} + m_N)}{p^2 - m_N^2 + i\epsilon},$$

$$i D_m^{-1}(p) = -2\pi(\not{p} + m_N)\delta(p^2 - m_N^2)\theta(p_0) n(p).$$

To see the equivalence, we examine a one-nucleon loop diagram with two interaction operators A (see Fig. 2). In the conventional approach, this diagram can be calculated using the Pauli-blocked nucleon propagator G by

$$\frac{i}{2} \int \frac{d^4 p}{(2\pi)^4} \int \frac{d^4 q}{(2\pi)^4} \text{Tr} \{[i G(q) - i A(p - q)] i G(p) \}.$$
CHIRAL CONDENSATE AT FINITE DENSITY USING THE ... PHYSICAL REVIEW C 88, 065204 (2013)

IV. RESULTS

To evaluate the in-medium condensate $\langle \bar{q} q \rangle^*$ with Eq. (2), we calculate the current-current correlation functions in the soft limit, $\Pi^{ab}_{\pi}(0)$ and $D^{ab}(0)$ defined in Eqs. (3) and (4), by using the in-medium chiral perturbation theory. From Eq. (12), $D^{ab}(0)$ is expressed by the generating functional $W[J]$,

$$D^{ab}(0) = \lim_{q \to 0} \int d^4x e^{iq\cdot x} \langle \Omega_{\text{vac}}| T P^a(x) P^b(0) |\Omega_{\text{vac}} \rangle$$

$$= \lim_{q \to 0} \int d^4x e^{iq\cdot x} (-i)^2 \frac{\delta}{\delta P^a(x)} \frac{\delta}{\delta P^b(0)} iW[J].$$

Here $P^a(x)$ and $P^b(x)$ are the pseudoscalar density and the corresponding external field, respectively. Similarly, $\Pi^{ab}_{\pi}(0)$ is expressed in terms of the generating functional $W[J]$.

In Sec. IV A, we present the Feynman graphs for the calculation of $D^{ab}(0)$ based on the density-order counting and evaluate it up to the next-to-leading-order (NLO) corrections. We also present the Feynman diagram for $\Pi^{ab}_{\pi}(0)$ and evaluate it in Sec. IV B. We find that $\Pi^{ab}_{\pi}(0)$ vanishes out of the chiral limit within the NLO corrections by taking the soft limit. In Sec. IV C, we show the density dependence of the chiral condensate within the NLO corrections. In Sec. IV D, we discuss higher-order corrections beyond NLO. We find that some diagrams are divergent and show the necessity of the NN contact terms to renormalize the higher-order corrections. In the following, we consider the symmetric nuclear matter for simplicity.

A. Calculation of $D^{ab}(0)$

We calculate $D^{ab}(0)$ in the soft limit with the finite quark mass. In the following, $\langle P^a(x) P^b(0) \rangle^*$ denotes the in-medium expectation value $\langle \Omega_{\text{vac}}| P^a(x) P^b(0) |\Omega_{\text{vac}} \rangle$.

First of all, let us evaluate $D^{ab}(0)$ in the vacuum using the in-vacuum chiral Lagrangian \mathcal{L}_π. We draw the Feynman diagrams for the $\langle P^a(x) P^b(0) \rangle$ correlation function in Fig. 3 based on the chiral counting scheme. In the diagrams the wavy lines denote the pseudoscalar density and the solid circles represent the tree vertex for the pions. The dashed lines stand for the pion propagation. The diagram in (a) is for the tree level and the diagrams shown in (b) are examples of the radiative correction.

![Feynman diagrams contributing to the $D^{ab}(0)$ correlation function in vacuum. The wavy lines denote the pseudoscalar density and the solid circles represent the tree vertex for the pions. The dashed lines stand for the pion propagation. The diagram in (a) is for the tree level and the diagrams shown in (b) are examples of the radiative correction.](image)

$$D^{ab}(0) = (-i)^2 \delta^{ab} \lim_{q \to 0} \int d^4x e^{iq\cdot x} (-i)^2 \frac{\delta}{\delta P^a(x)} \frac{\delta}{\delta P^b(0)} iW[J].$$

where f is the pion decay constant in the chiral limit, B_0 is one of the low-energy constants in the chiral Lagrangian $\mathcal{L}^{(2)}_\pi$ given in Appendix B, $iD_\pi(q) = i(q^2 - m_\pi^2 + i\epsilon)^{-1}$ is the free pion propagator and m_π is the pion mass. The first term is the leading-order contribution of the in-vacuum chiral condensate and the dots mean higher-order loop corrections, such as those given as the diagrams in Fig. 3(b). Using the relation between the pion and the quark masses in the chiral perturbation theory, $m_\pi^2 = 2m_q B_0 + \cdots$, we obtain the in-vacuum chiral condensate $\langle \bar{u} u + d \bar{d} d \rangle_0$:

$$m_q D^{ab}(0) = i(-2f^2 B_0 + \cdots) = i\delta^{ab} \langle \bar{u} u + d \bar{d} d \rangle_0.$$
FIG. 4. Feynman diagrams contributing to the in-medium chiral condensate. The wavy lines denote the pseudoscalar densities, the solid lines are the free nucleon propagators appearing as the first term in Eq. (15) for the Pauli blocking effect. The solid circles represent the vertices insertions, which are represented by the second term in Eq. (15) for the linear-density order. In Fig. 4(b), we show all the diagrams of the leading order contribution in the density expansion, in which there are three diagrams. We write the LO contribution for the in-medium chiral condensate as \(\langle \bar{u}u + \bar{d}d \rangle_{LO}^{(2)} \) and evaluate the diagrams in Fig. 4(b) by the expansion of \(1/m_N \) at the final state. In the following we first calculate the left diagram in Fig. 4(b) in the soft limit of the external momentum \(q_\mu \):}

\[
D^{ab}_{LO1}(0) = (-i)^2 \lim_{q \to 0} \left[(2ifB_0) i D_\pi(q) \right]^{ab}(-1) \\
\times \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left[i D_m^{-1}(q) \right]^{ab} \left[8i c_1 B_0 \right] f \\
= -\frac{16i c_1 B_0^2}{m^2_\pi} \delta^{ab} \rho \left[\Sigma^{1}_{N}(0) + \Sigma^{1}_{N}(0) \right] \\
= -\frac{16i c_1 B_0^2}{m^2_\pi} \delta^{ab} \rho \left(1 - \frac{3k^2_F}{10m^2_N} \right).
\]

Here we have used the result of the tadpole nucleon loop \(\Sigma^{1}_{N}(k) \) given in Eq. (C1), in which we have expanded the result in terms of \(1/m_N \) and taken the first two terms, and assumed the symmetric nuclear matter by taking \(k^2_F = k^2_F = k_F \).

Next we calculate the middle and right graphs on Fig. 4(b). These contributions denote \(D^{ab}_{LO2}(0) \) and \(D^{ab}_{LO3}(0) \), respectively:

\[
D^{ab}_{LO2}(0) = (-i)^2 \lim_{q \to 0} (2ifB_0)^2 \left[i D_\pi(q) \right]^{ab}(-1) \\
\times \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left[i D_m^{-1}(q)(-i) \right]^{ab} \left[8i c_1 B_0 m_q \frac{f^2}{f^2} + 4c_2 \frac{4c_2}{f^2 m_N^2} (q \cdot p)^2 - 2c_3 f^2 q^2 \right] \\
= -\frac{32i B_0^3 m_q}{m^4_\pi} \delta^{ab} \rho \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \left[i D_m^{-1}(q) \right]^{ab} \\
= -\frac{16i B_0^3 c_1}{m^2_\pi} \delta^{ab} \rho \left(1 - \frac{3k^2_F}{10m^2_N} \right).
\]

Here we have used again the calculation of the tadpole nucleon loop (C1) and the \(k_F \) expansion has been made up to \(k^2_F \).

We have also used the relation \(m^2_\pi = 2m_q B_0 \). It is important to notice that the contributions coming from the \(c_2 \) and \(c_3 \) low-energy constants do vanish in the soft limit. \(D^{ab}_{LO3}(0) \) can be calculated in the same way as \(D^{ab}_{LO1}(0) \)

\[
D^{ab}_{LO3} = D^{ab}_{LO1} = -\frac{16i c_1 B_0^2}{m^2_\pi} \delta^{ab} \rho \left(1 - \frac{3k^2_F}{10m^2_N} \right).
\]

The leading contribution in the density expansion \(D^{ab}_{LO} \) is given by the sum of \(D^{ab}_{LO1}, D^{ab}_{LO2}, D^{ab}_{LO3} \). We obtain the linear-density contribution of the in-medium condensate together with the Fermi motion correction up to \(k^2_F \):

\[
D^{ab}_{LO} = D^{ab}_{LO1} + D^{ab}_{LO2} + D^{ab}_{LO3} \\
= -\frac{16i c_1 B_0^2}{m^2_\pi} \delta^{ab} \rho \left(1 - \frac{3k^2_F}{10m^2_N} \right).
\]

With this result we obtain the in-medium condensate in the normalization of the in-vacuum condensate as

\[
\frac{\langle \bar{u}u + \bar{d}d \rangle_{LO}}{\langle \bar{u}u + \bar{d}d \rangle_0} = \frac{4c_1}{f^2 b} \left(1 - \frac{3k^2_F}{10m^2_N} \right).
\]

Here \(c_1 \) is one of the low-energy constants (LECs) in \(L^{(2)}_\pi \) and can be determined by the \(\pi N \sigma \) term \(\sigma_{\pi N} \).

As we mentioned before, we presume that the quantum corrections in vacuum are already accounted for in the LECs and the renormalization procedure is supposed to be done. Thus, the loop contributions are renormalized into the LECs in the Lagrangian that we consider and we do not have to calculate the in-vacuum loop contributions in the in-medium calculation. For instance, we show in Fig. 5 two diagrams that have ultraviolet divergences and are counted as higher chiral orders but with the same density counting. The left diagram is the loop correction for the nucleon mass and the

FIG. 5. Two examples of the diagrams which have ultraviolet divergences and are counted as higher chiral orders but with the linear-density order.
right accounts the vertex correction. Both loop corrections are calculated by the in-vacuum quantities. Therefore, we suppose that these loop corrections should be accounted for in the nucleon mass and the vertex, respectively, and we use the observed values for these quantities. If one would follow the chiral counting scheme strictly, one would expand the physical quantities in terms of the chiral order and discard corrections of higher order than the order which one considers. Here we do not take the strict rule for the chiral counting. We exploit the observed value, in which all orders of the corrections should be included.

In this way, we fix the c_1 parameter by the observed πN σ term as

$$\sigma_{\pi N} = -4c_1 m_N^2, \quad (33)$$

admitting that the loop corrections for the πN σ term are taken into account into the physical value, and we do not calculate further the in-vacuum loop contribution, most of which are divergent. Therefore, the LO contribution of the in-medium chiral condensate in the density expansion is given by the in-vacuum physical quantities as

$$\frac{\langle \bar{u}u + \bar{d}d \rangle_{LO}^\pi}{\langle \bar{u}u + \bar{d}d \rangle_0} = -\frac{\sigma_{\pi N}}{f_\pi^2 m_N^2} \rho \left(1 - \frac{3k_F^2}{10m_N^2} \right). \quad (34)$$

The second term is a $1/m_N$ correction to the linear density and it is counted as next-to-next-to-leading order (NNLO) $O(\rho^5/3)$. To complete the $O(\rho^5/3)$ contributions, we have to calculate further higher orders in the density expansion, as we see later. Here it is important to emphasize again that we take the observed values. The values which we use in this work are the σ term $\sigma_{\pi N} = 45$ MeV [36], the pion decay constant $f_\pi = 92.4$ MeV, the pion mass $m_\pi = 138$ MeV, and the nucleon mass $m_N = 938$ MeV. The result (34) coincides with the well-known linear-density approximation result [20,23].

Now we evaluate the NLO density corrections $[\bar{u}u + \bar{d}d]^{\pi}_{\text{NLO}}$. The relevant diagrams for the next leading order are shown in Fig. 4(c). These diagrams contain two loops coming from the nucleon in the Fermi sea and a free pion. The diagrams in which one of the nucleon propagators is the free propagator is already accounted as higher chiral-order terms in the renormalized πN vertex, because the diagram contains a loop written by only the free propagators, which is divergent and should be renormalized into the in-vacuum vertex. Here we use such a parametrization of the chiral field U in terms of the pion field that the naive perturbative expansion can be done. The details are written in Appendix A. The leftmost diagram in third row in Fig. 4 is calculated as

$$\frac{1}{2} (-i)^2 \lim_{q \to 0} \sum_{ij} (-1) \int \frac{d^4 k}{(2\pi)^4} \frac{d^4 p}{(2\pi)^4} (2i f B_0) i D_\pi(q) \times \left[-\frac{2i B_0}{5f} (\delta^{ai} \delta^{bj} + \delta^{ai} \delta^{jb} + \delta^{ab} \delta^{ij}) \right] (i D_\pi(k))^2 \left[\left(i \frac{g_A}{2f} i \gamma^i \tau^j \right) i D_m^{-1}(p + k) \left(i \frac{g_A}{2f} i \gamma^i \tau^j \right) i D_m^{-1}(p) \right] \Sigma^2_{N}(k)$$

$$= \delta^{ab} \int \frac{d^4 k}{(2\pi)^4} \frac{k^4}{f^2 m_\pi^2} \left(\frac{1}{k^2 - m_\pi^2 + i\epsilon} \right)^2 \Sigma^2_{N}(k)$$

where the factor $1/2$ comes from the symmetric factor for the loop. The calculation of the nucleon one loop in the Fermi sea is given in Eq. (C3). We have defined

$$F(a^2) = \int_0^1 dx \left(\frac{x^2}{x^2 + a^2} \right)^2 \frac{1}{2} (1 - x)^3 (x + 2)$$

$$= \frac{3}{8} - 3a^2/4 - 3a^2/2 \arctan \frac{1}{a} + 3a^2/4 (a^2 + 2) \ln \frac{a^2 + 1}{a^2} . \quad (35)$$

After we evaluate the other diagrams in the third row in Fig. 4, we obtain

$$\frac{\langle \bar{u}u + \bar{d}d \rangle_{\text{NLO}}^\pi}{\langle \bar{u}u + \bar{d}d \rangle_0} = \frac{g_A^2 k_F^4}{4 f^2 \pi^4} F \left(\frac{m_N^2}{4k_F^2} \right) \quad (36)$$

where $G(a)$ is given as

$$G(a^2) = \frac{3}{8} - \frac{a^2}{4} - a \arctan \frac{1}{a} + \frac{a^2}{4} (a^2 + 2) \ln \left| 1 + \frac{a^2}{a^2} \right| .$$

The Feynman diagrams in the fourth row in Fig. 4 also contribute to the NLO, representing the Ericson-Ericson double-scattering correction [37]. For example, the middle diagram of the fourth row in Fig. 4 can be calculated as

$$- \lim_{q \to 0} (2i f B_0)^2 [i D_\pi(q)]^2 \left(\frac{4B_0 c_m q}{f^2} \right)^2 \int \frac{d^4 k}{(2\pi)^4} \frac{d^4 p}{(2\pi)^4} \times \left[i D_m^{-1} \left(q - \frac{p}{2} \right) \left[i D_m^{-1} \left(q + \frac{p}{2} \right) \right] \right]$$

$$= \frac{2B_0^2 \sigma_{\pi N} k_F^4}{3 f^2 \pi^4 m_N^2} \Sigma^4_{N}(0) \quad (37)$$

$$= \frac{-8i B_0^2 \sigma_{\pi N} k_F^4}{3 f^2 \pi^4 m_N^2} G \left(m_N^2/4k_F^2 \right) \quad (38)$$

$$\text{where } G(\alpha) \text{ is given as}$$

$$G(\alpha^2) = \frac{3}{8} - \frac{\alpha^2}{4} - \alpha \arctan \frac{1}{\alpha} + \frac{\alpha^2}{4} (\alpha^2 + 2) \ln \left| 1 + \frac{\alpha^2}{\alpha^2} \right| .$$

$$065204-7$$
The detail calculations are summarized in Appendix C. In Eq. (37) we have understood that the terms with c_2 and c_3 vanish at the soft limit because they are proportional to the pion momentum q_μ. Including the rest of the diagram for the double-scattering correction, we obtain

$$\frac{\langle \bar{u} u + d \bar{d} \rangle_{\text{NLO}}^{\ast}}{\langle \bar{u} u + d \bar{d} \rangle_0} = \frac{2\sigma_{\pi N}^2 k_F^4}{3f_{\pi}^4\pi^4 m^2_\pi} G \left(\frac{m^2_\pi}{4k_F^2} \right). \tag{40}$$

In this way, we obtain NLO contributions of in-medium chiral condensate:

$$\frac{\langle \bar{u} u + d \bar{d} \rangle_{\text{NLO}}^{\ast}}{\langle \bar{u} u + d \bar{d} \rangle_0} = \frac{g^2 k_F^4}{4f_{\pi}^4\pi^4} F \left(\frac{m^2_\pi}{4k_F^2} \right) + \frac{2\sigma_{\pi N}^2 k_F^4}{3f_{\pi}^4\pi^4 m^2_\pi} G \left(\frac{m^2_\pi}{4k_F^2} \right). \tag{41}$$

From Eqs. (34) and (41), we obtain the in-medium chiral condensate within NNLO corrections $[O(\rho^5/\Sigma_0^2)]$

$$\frac{\langle \bar{u} u + d \bar{d} \rangle_{\text{NNLO}}^{\ast}}{\langle \bar{u} u + d \bar{d} \rangle_0} = 1 - \frac{\sigma_{\pi N}^2}{f_{\pi}^2 m^2_\pi} \rho \left(1 - \frac{3k_F^2}{10m_\Sigma_0^2} \right) + \frac{g^2 k_F^4}{4f_{\pi}^4\pi^4} F \left(\frac{m^2_\pi}{4k_F^2} \right) + \frac{2\sigma_{\pi N}^2 k_F^4}{3f_{\pi}^4\pi^4 m^2_\pi} G \left(\frac{m^2_\pi}{4k_F^2} \right) \tag{42}$$

Let us comment on the Δ resonance contribution up to $O(\rho^5/\Sigma_0^2)$. The Δ resonance contributes to the in-medium amplitudes through the Δ-hole excitation in these orders. Nevertheless, the Δ-hole excitation in the left diagram of Fig. 4(a) vanishes in the soft limit because of the p-wave nature of the $\pi N\Delta$ coupling as we have seen in the nucleon-hole excitation. The Δ-hole excitation in the diagrams of Fig. 4(c) should be accounted for in the vacuum $P\pi NN$ vertex, because the loop contribution of the pion and Δ in this diagram appears in the higher-order calculation of the $P\pi NN$ vertex in the chiral expansion. Therefore, up to NLO there are no explicit Δ contributions to the in-medium chiral condensate.

B. Cancellation of $\Pi_{4\sigma}(0)$

According to Eq. (2), $\Pi_{4\sigma}(0)$ can also contribute to the in-medium condensate. Nevertheless, the correlation function $\Pi_{4\sigma}(q)$ gives a null value in the soft limit out of the chiral limit. In this section, we confirm the cancellation of $\Pi_{4\sigma}(q)$ in the soft limit.

In vacuum the correlation function $\Pi_{4\sigma}(q)$ should vanish in the soft limit because there is no zero-mode propagation out of the chiral limit and the coupling of the axial current to pseudoscalar modes is proportional to the external momentum q, which is taken to be zero in the soft limit. This can be seen in the LO calculation of the in-vacuum calculation as

$$\Pi_{4\sigma}(q) = q^\mu i(iq_\mu f) \frac{i}{q^2 - m^2_\pi + i\epsilon} i(2f B_0) \rightarrow 0 \text{ for } q \rightarrow 0. \tag{43}$$

For the in-medium contributions of the correlation function $\Pi_{4\sigma}(q)$ we show the Feynman diagram $\Pi_{4\sigma}(p)$ in Fig. 6. In this figure, the left and right wavy lines express the axial and pseudoscalar currents, respectively, the dashed lines denote the pion propagation, and the solid dots stand for the leading vertices given by the chiral Lagrangian \mathcal{L}_σ. Up to the NLO density order, we find that the $\Pi_{4\sigma}(q)$ vanishes in the soft limit. For example, we evaluate the top left diagram in panel (a),

$$\Pi_{4\sigma}^{ab}(0)_{\text{NLO}} = \lim_{q \rightarrow 0} q^\mu i D_\mu(q)(2if B_0)(-1) \int \frac{d^4p}{(2\pi)^4} \text{Tr} \left[i g_A i \gamma_\mu \gamma_5 \frac{q^\mu}{2} \right] \times i D_m^{-1}(p + q)(-i g_A i \gamma_\mu \gamma_5 \frac{q^\mu}{2}) i D_m^{-1}(p) \rightarrow 0 \text{ for } q \rightarrow 0 \text{ and } $\Pi_{4\sigma}^{ab}(0)$ \rightarrow 0 \text{ for } q \rightarrow 0 \text{, where we have used the one-nucleon loop function given in Eq. (C3); in the last equation we have used the fact that the pion propagator is finite in the soft limit owing to the finite pion mass and the nucleon one-hole vanishes. This cancellation comes from two reasons; the one is that pion is not a zero mode and the other is that interaction between pion and the axial current is derivative interaction; in other words, explicit and spontaneous symmetry breaking leads to this cancellation. In addition, the interactions between pion and nucleon are proportional to the pion momentum because of spontaneous symmetry breaking, and it causes the same result. In the same manner one can confirm that contributions coming from the other diagrams give null value in the soft limit. Up to the NLO density order, we find that the $\Pi_{4\sigma}(0)$ correlation function vanishes. Generally speaking, there exist zero modes which couple with the axial current such as one-particle one-hole excitation as discussed in Ref. [5]. Nevertheless, up to the NLO corrections we find that such zero modes do not contribute.
the chiral limit, and the result up to the NLO of the density expansion
linear-density result in the chiral limit, the linear-density result out of
nuclear matter. The dashed, dotted, and solid lines represent the
linear-density result in and out of the chiral limit as
⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0. These are equivalent to the result obtained
⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0 in symmetric nuclear matter. The solid line represents
the dashed and dotted lines, respectively. For the result in the
chiral limit, the momentum dependence of the pion propagator cancels
the momentum dependence of the in-medium chiral condensate, while
the pion decay constant \(f_\pi \) remains finite. The in-medium chiral condensate in the soft limit
calculated by the \(\Pi_{1b}^\rho \) correlation function reads

\[
\frac{⟨\bar{u}u + \bar{d}d⟩}{⟨\bar{u}u + \bar{d}d⟩0} = \frac{4c_1}{f_\pi^2} ρ \left(1 - \frac{3k_F^2}{10m_N^2} \right) \tag{44}
\]
for the LO of the density expansion and

\[
\frac{⟨\bar{u}u + \bar{d}d⟩_{NLO}}{⟨\bar{u}u + \bar{d}d⟩0} = \frac{3g_\pi^2}{32\pi^4 f^2} \left(\frac{3\pi^2}{2} \right)^{\frac{1}{2}} ρ^{\frac{3}{2}}
\]
for the NLO. These are equivalent to the result obtained from \(D^{1b}(0) \) out of the chiral limit by taking the chiral limit afterwards.

C. Density dependence of chiral condensate

In Fig. 7, the density dependence of the ratio of the chiral condensates, \(⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0 \), is plotted as a function of \(ρ/\rho_0 \) in symmetric nuclear matter. The solid line represents the
NLO result shown in Eq. (42). For comparison, we also show the linear-density results in and out of the chiral limit as
the dashed and dotted lines, respectively. For the result in the
chiral limit, we have used chiral limit values of the \(c_1 \) parameter
\(c_1 ≈ 0.93 \text{ GeV}^{-1} \) and the pion decay constant \(f ≈ 88 \text{ MeV} \).

We find that the linear-density result in the chiral limit
decreases more rapidly than the results out of the chiral limit.
The NLO correction amounts to about as small as
5\% at \(ρ = ρ_0 \), and becomes higher in significant density,
for instance, at \(ρ = 2\rho_0 \) the NLO correction is around 10\%.
Therefore, the linear-density approximation is good in low
densities, while in higher density the NLO contribution is
not ignorable. Numerically, we find that at normal nuclear
density up to LO \(⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0 \approx 0.65 \) and up to
NLO \(⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0 \approx 0.68 \). These values are close
to the value suggested by the recent precise pionic atom
determination \(⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0 \approx 0.67 \) [1]. We note
that this experimental value is determined by linear-density
extrapolation under the assumption that the pion bound in the
1s orbit is in a nuclear medium with an effective density
\(ρ_e ≈ 0.6\rho_0 \). We also evaluate the quark condensate at \(ρ = 0.6\rho_0 \) and find \(⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0 \approx 0.78 \) for LO and
\(⟨\bar{u}u + \bar{d}d⟩/⟨\bar{u}u + \bar{d}d⟩0 \approx 0.80 \) up to NLO. These values are
very close to the experimentally extracted value of the
ratio \(\bar{b}_1^{\text{free}}/b_1 \approx 0.78 ± 0.05 \) [1], where \(b_1 \) is a parameter
of the optical potential for the in-medium pion presenting
the in-medium isovector \(πN \) scattering length and \(b_1^{\text{free}} \) is
the \(πN \) isovector scattering length. Under the linear-density
approximation and a small isoscalar \(πN \) scattering length,
the ratio of \(b_1^{\text{free}}/b_1 \) is equivalent to the ratio of the chiral
condensate. Thus, this implies that the density expansion might
be good in at least the low-density region.

We note that in-medium chiral perturbation theory (CHPT)
is a low-energy effective theory and this theory would be
applicable up to about 2 normal density because at twice the
normal nuclear-density Fermi momentum is about 340 MeV.
In a further higher-density region this theory would be beyond
applicability. Nevertheless we could estimate the density at
which chiral symmetry is restored. In the Fig. 7, we would
find that the NLO correction raises the symmetry restoration
density from \(3\rho_0 \) to \(4\rho_0 \), which would imply that the NLO
correction is not ignorable in high-density region.

D. Higher-order corrections and role of \(NN \) contact terms

When one considers further higher-order correction beyond
NLO, one encounters divergent amplitudes even though all
of the \(πN \) interactions are fixed in vacuum. For instance,
diagrams of multipion exchange in Fermi gas as shown in
Fig. 8 give divergent amplitudes. In the figure the solid lines
denote Fermi (see insertion) and the dashed line represents
pion propagation. These diagrams count as \(O(k_F^3) \), namely
\(O(ρ^3) \). The upper diagram is proportional to

\[
\int \frac{d^4p'}{(2π)^4} \frac{d^4k}{(2π)^4} \frac{d^4k'}{(2π)^4} \text{Tr} \left[(-i A^{(1)}_{πP}) i D_{m}^{-1}(p) (-i A^{(1)}_{ππ}) \right] \times i D_{m}^{-1}(k) (-i A^{(1)}_{ππ}) i D_{m}^{-1}(p') i D_π(p + p' - k).
\]

In this expression the integral with respect to \(p' \) for the pion
loop gives divergence. As pointed out in Ref. [30], we need

![FIG. 8](attachment:contact_terms.png)
FIG. 8. Contact terms for renormalization of higher-order corrections beyond NLO.
of the chiral field is not unique [40] and all of the correct parametrizations provide the same physical result. However, one should realize that the basic field for the nonlinear \(\sigma \) model to maintain chiral symmetry is the chiral field \(U \) not the pion field as one can see that the partition function of the chiral perturbation theory is defined by the path integral with respect to the chiral field \(U \). Therefore, when one considers quantum corrections of the pion field in perturbative calculations, one should be careful with chiral invariance; naive perturbative calculations might break chiral symmetry [41]. The perturbative expansion of the pion fields is defined by the path integral with respect to the pion field, so that one should make the integral measure be chiral invariant [42]. One of the popular prescriptions is the background field method as it applied to the chiral perturbation theory in Ref. [33].

Here, instead of the celebrated Callan–Coleman–Wess–Zumino (CCWZ) parametrization, we take the parametrization of the \(U \) field which can be used for the naive perturbative calculation. This was found in Refs. [41,42]. In this parametrization the chiral field is written [42] as

\[
U = \exp \left[i \pi \left(\frac{y(\pi^2)}{2\sqrt{\pi^2}} \right) \right], \quad (A1)
\]

where the function \(y(\pi^2) \) satisfies

\[
y - \sin y = 4 \left(\frac{\pi^2}{4} \right) \frac{3}{2}. \quad (A2)
\]

For the calculation we expand the chiral field in terms of the pion field [41] as

\[
U = 1 + \frac{i \pi^i \tau^i}{f} \pi^i \pi^i \frac{10 f^3}{40 f^4} - \frac{10 f^3}{40 f^4} + \ldots \quad (A3)
\]

and take some first terms.

APPENDIX B: CHIRAL LAGRANGIAN AND \(\pi N \) INTERACTION

In this section, we show the chiral Lagrangian and the \(\pi N \) interaction which we use in this work. The chiral Lagrangian for the pion sector is

\[
\mathcal{L}_{\pi}^{(2)} = \frac{f^2}{4} \text{Tr}(D_\mu U^\dagger D^\mu U + \chi^\dagger U + \chi U^\dagger), \quad (B1)
\]

where the covariant derivative is defined with the vector external fields as

\[
D_\mu U \equiv \partial_\mu U - i(v_\mu + a_\mu)U + iU(v_\mu - a_\mu) \quad (B2)
\]

and the external scalar fields are given by

\[
\chi = 2 B_0 (s + ip). \quad (B3)
\]

In the following we present the interaction Lagrangian relevant for the present calculations. These terms are obtained from the Lagrangian (B1) with the expansion (A3):

(i) \(\pi - P \) vertex,

\[
\mathcal{L}_{\pi P}^{(2)} = 2 f B_0 \pi^i P^i; \quad (B4)
\]
We present the vertices that we use in the calculation:

(i) \(aNN \) vertex,
\[
A^{(1)}_a = -g\lambda \gamma^\mu \gamma_5 \partial_\mu \frac{r^i}{2};
\]

(ii) \(\pi aNN \) vertex,
\[
A^{(1)}_{\pi a} = \frac{i}{2f} \gamma^\mu [\pi, a_\mu] = -\frac{1}{2f} \gamma^\mu \pi^i a_\mu \epsilon^{ijk} r^k,
\]

\(A^{(2)}_{\pi a} = -\frac{2c_2}{f m_N^2} \partial_\mu \pi^i a_\mu \epsilon^{ijk} r^k + \frac{2c_3}{f} \partial_\mu \pi^i a^{ui}
\]
\[- \frac{ic_4}{f} \epsilon^{ijk} r^k \gamma^\nu \gamma_5 \partial_\mu \pi^i [\gamma^\mu, \gamma_5] r^v;\]

(iii) \(\pi PNN \) vertex,
\[
A^{(2)}_{\pi p} = -\frac{8c_1 B_0}{f} p^i \pi^i;
\]

(iv) \(\pi NN \) vertex,
\[
A^{(1)}_{\pi N} = \frac{8A}{\pi} \gamma^\mu \gamma_5 \partial_\mu \frac{r^i}{2};
\]

(v) \(\pi NN \) vertex,
\[
A^{(2)}_{\pi N} = -\frac{4B_0 c m_d}{f^2} \pi^i \pi^i + \frac{c_1}{f^2} m_N^2 \pi^i \pi^i \epsilon^{ijk} \gamma^\mu \gamma_5 F^{\mu\nu}_{\pi\nu}
\]
\[- \frac{c_3}{f} \partial_\mu \pi^i \partial_\mu \pi^i + \frac{ic_4}{f} \epsilon^{ijk} r^k \gamma^\mu \gamma_5 \partial_\mu \pi^i r^v;\]

APPENDIX C: IN-MEDIUM NUCLEON LOOPS

In this section we calculate the nucleon loop diagrams in the Fermi sea. In these calculations we take the trace only in the spin space, which is indicated by Tr_* and the isospin is considered in other places.

First of all, we calculate the nucleon tadpole \(\Sigma_N^L(k), \) which appears in a panel (a) of Fig. 9:
\[
\Sigma_N^L(k) = -\int \frac{d^4p}{(2\pi)^4} \text{Tr}_* [i D^{-1}(p)]
\]
\[
= \int \frac{d^3p}{(2\pi)^3 E(p)} \text{Tr}_* [(\hat{\rho} + m_N)] \theta(k_F^p - |p|)
\]
\[
= \int_0^{k_F} \frac{p^2 dp}{E(p)} m_N \int_0^{k_F} \frac{p^2 dp}{E(p)} \left(1 - \frac{p^2}{2m_N^2} \right)
\]
\[
= \rho^* \left(1 - \frac{3k_F^4}{10m_N^4} \right).
\]

In Eq. (C1), we have taken the first two terms in the \(1/m_N \) expansion and the nucleon density is given by \(\rho^* = 2k_F^3/(3\pi^2). \)
Next we consider \(\Sigma^1_{N_i}(k) \), which arises in a panel (b) of Fig. 9,
\[
\Sigma^1_{N_i}(k) = \int \frac{d^4p}{(2\pi)^4} \text{Tr}_s \left[\gamma \gamma_5 D^{-1}_m(p+k)(\gamma \gamma_5)i D^{-1}_m(p) \right]
\]
\[
= \int \frac{d^3p}{(2\pi)^3 2E(p)} \frac{\delta(k_0 + E(p) - E(k + p))}{2E(k + p)}
\times \text{Tr}_s \left[[\gamma \gamma_5, 2\delta^{ij}] \right]
\times \theta(k'_F - |p + k| - |k'_F - p|),
\]
where we have used \(\delta(k_0 + p_0 - E(k + p))/[2E(k + p)] \), with \(p_0 = E(p) \). Because both nucleons are in the Fermi sea, they are on the mass shell, \(p^2 = m_N^2 \) and \((k + p)^2 = m_N^2 \), which provides \(2k \cdot p + k^2 = 0 \). Using these facts, the trace can be evaluated as
\[
\text{Tr}_s \left[[\gamma \gamma_5, 2\delta^{ij}] \right] = -8k^2m_N^2. \tag{C2}
\]
Now we consider the 1/m expansion in the nucleon energy and take the first term, that is, \(E(p) = E(p + k) = m_N \). Then, finally we obtain
\[
\Sigma^1_{N_i}(k) = \frac{k^2}{2\pi^2} \delta(k_0) \int d^3p \theta(k'_F - |p + k|) \theta(k'_F - |p|)
\]
\[
= \frac{k^2}{3\pi} \delta(k_0)k^3_F(1-x)^2(1-x) \theta(1-x), \tag{C3}
\]
where \(x = |k|/(2k'_F) \) and we have used the formula [43]
\[
\int d^3p \theta(k'_F - |p + k|) \theta(k'_F - |p|)
= \frac{2\pi}{3} k^3_F(1-x)^2(1-x) \theta(1-x). \tag{C4}
\]
We calculate \(\Sigma^3_{N_i}(k) \) which appears in a panel (c) of Fig. 9 in the soft limit:
\[
\Sigma^3_{N_i}(0) = \lim_{k \to 0} \left(\int \frac{d^4p}{(2\pi)^4} \right)
\times \text{Tr}_s \left[(i \gamma \gamma_5) D^{-1}_m(p+k)(i \gamma \gamma_5)D^{-1}_m(p) \right]
\]
\[
= \lim_{k \to 0} \int \frac{d^3p}{(2\pi)^3 2E(p)} \frac{i}{(k + p)^2 - m_N^2 + i\epsilon}
\times \text{Tr}_s \left[[\gamma(\vec{p} + \vec{k} - m_N), \gamma(\vec{p} + m_N)] \theta(k'_F - |p|) \right]
\]
\[
= \lim_{k \to 0} \int \frac{d^3p}{(2\pi)^3 2E(p)} k^2 + 2k \cdot p + i\epsilon \theta(k'_F - |p|)
\times 4 \left((2k - p)^2 - 2k^2m_N^2 \right) = 0. \tag{C5}
\]
This goes to zero in the soft limit.
Finally, we calculate \(\Sigma^4_{N_i}(k) \) given in panel (d) of Fig. 9 in the soft limit:
\[
\Sigma^4_{N_i}(0) = (-1) \lim_{k \to 0} \int \frac{d^4p}{(2\pi)^4} \frac{d^4q}{(2\pi)^4}
\times \text{Tr}_s \left[2i q \gamma_5 - \frac{p^0}{2} - (\vec{q} + \vec{p} + m_N) \right]
\times \frac{\theta(k'_F - |q + \frac{p}{2}|)}{2E(q - \frac{p}{2})} \theta(k'_F - |q + \frac{p}{2}|) iD_{\sigma}(p). \tag{C6}
\]
Here we have performed the \(p_0 \) and \(q_0 \) integrals, which contain two delta functions for the energy conservation and give us the following relation:
\[
q_0 = \frac{1}{2} \left[E \left(q + \frac{p}{2} \right) + E \left(q - \frac{p}{2} \right) \right]. \tag{C6}
\]
\[
p_0 = E \left(q + \frac{p}{2} \right) - E \left(q - \frac{p}{2} \right). \tag{C7}
\]
In addition, we have the following kinematical relations:
\[
q \cdot p = 0, \tag{C8}
\]
\[
q^2 + p^2 = m_N^2. \tag{C9}
\]
Using these relations, the trace can be evaluated as
\[
\text{Tr}_s \left[\left(q - \frac{p}{2} + m_N \right) \left(q + \frac{p}{2} + m_N \right) \right] = 8m_N^2 - 2p^2. \tag{C10}
\]
Taking the leading term of the $1/m_N$ expansion in which $p_0 = 0$ and $q_0 = m_N$, we obtain Σ^4_N as

$$\Sigma^4_N(0) = -2i \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} \frac{1}{p^2 + m_N^2} \theta \left(k_F^2 - |q - p| \right) \theta \left(k_F^2 - |q + p| \right)$$

$$= -2i G \left(\frac{m_N^2}{4k_F^2} \right). \quad (C11)$$

Here $G(\alpha)$ is defined by

$$G(\alpha) = \frac{k_F^4}{6\pi^2} \left[\frac{3}{8} - \frac{\alpha^2}{4} - a \arctan \frac{1}{a} + \frac{\alpha^2}{4}(a^2 + 3) \ln \left| 1 + \frac{a^2}{\alpha^2} \right| \right].$$