<table>
<thead>
<tr>
<th>Title</th>
<th>Mass attack by the ambrosia beetle Platypus quercivorus occurs in single trees and in groups of trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamasaki, Michimasa; Ito, Yasuto; Ando, Makoto</td>
</tr>
<tr>
<td>Citation</td>
<td>Canadian Journal of Forest Research (2014), 44(3): 243-249</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/182933</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 NRC Canada; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Mass attack by the ambrosia beetle *Platypus quercivorusc* occurs in single trees and in groups of trees.

Author names and affiliations

Michimasa Yamasaki a, Yasuto Ito b, Makoto Ando c

a Laboratory of Forest Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwa-cho, Sakyo-ku, Kyoto 606-8502, Japan

E-mail: risei@kais.kyoto-u.ac.jp

b Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Ikaba, 430, Yamasaki-cho, Shisou-shi, Hyogo 671-2515, Japan

E-mail: Yasuto_Ito@pref.hyogo.lg.jp

c Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwa-cho, Sakyoku, Kyoto 606-8502, Japan

E-mail: ando@kais.kyoto-u.ac.jp

Corresponding author

Michimasa Yamasaki

Laboratory of Forest Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwa-cho, Sakyoku, Kyoto 606-8502, Japan

Tel: +81-75-753-6479

Fax: +81-75-753-6129

E-mail: risei@kais.kyoto-u.ac.jp
Abstract

Bark and ambrosia beetles sometimes kill trees by attacking them *en masse*; however, their attack is not necessarily successful. Less than half of the fagaceous trees attacked by the ambrosia beetle, *Platypus quercivorius*, die, and the factors affecting this mortality are still unknown. To examine this issue, the survival of all stems of fagaceous trees attacked by the ambrosia beetle was investigated in a secondary forest from 2008 to 2010. In an area of 93 ha, 2130 stems (1278 genets) of fagaceous trees were attacked by *P. quercivorius* during the study period, and 813 of these stems died. A generalized additive mixed model was constructed to predict the probability of mortality of the attacked stems. A best-fit model showed that the probability of mortality was higher in *Quercus crispula* than in *Castanea crenata*. A positive correlation was determined between the density of the attacked trees and the probability of mortality, suggesting that mass attack of *P. quercivorius* occurs not only on individual trees, but also on groups of trees. Assuming that trees attacked earlier in the season have a higher probability of mortality, the observed negative effects of altitude suggest that *P. quercivorius* initially seeks hosts at lower elevations.
Introduction

In general, the search pattern of animals consists of 2 parts. Firstly, when animals search a wide area without any resource cues, they move in a relatively straight path without turning (ranging). Secondly, after they detect resources, they scour a local area (local search), and then repeat their ranging and local search until they reach or gather the necessary resources (Jander 1975). This search pattern is also followed by ambrosia and bark beetles, with tree selection usually consisting of multiple phases—detection of host trees, evaluation of tree suitability, and acceptance of the host (Schoonhoven et al. 2005). Visual, olfactory, mechanosensory, and gustatory cues are considered to be involved in each phase.

Cues that ambrosia and bark beetles use to locate host trees can be predicted from differences in characteristics between attacked and intact trees. These differences have been determined in Pinus trees attacked by Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) (Coops et al. 2006; Negrón et al. 2008; Negrón and Popp 2004; Olsen et al. 1996; White et al. 2007), and the information can be used to assess risk (Coops et al. 2009; Robertson et al. 2008; Wulder et al. 2006; Wulder et al. 2009). However, analysis of damaged and intact trees without considering the multiple phases of host selection by the beetle may lead to incorrect interpretation of the results, because the cues in each phase are different. For example, the chemical factors involved in each phase of host selection by the conifer bark beetle were presumed to be different (Zhang and Schlyter 2004). Even within the same phase, different mechanisms may occur. Two conflicting mechanisms for the first phase of host selection by Dendroctonus beetles have been proposed: (1) attraction to host volatiles
(Pureswaran and Borden 2005; Pureswaran et al. 2004); and (2) random landing on
trees (Moeck et al. 1981; Wood 1982). This contradiction was explained by the
difference in timing of these two behaviors within the first phase (Saint-Germain et al.
2007).

In Japan, the ambrosia beetle, *Platypus quercivorus* (Murayama) (Coleoptera:
Platypodidae), causes Japanese oak wilt by transporting the pathogenic fungus
Raffaelea quercivora Kubono et Shin-Ito (Ito et al. 1998; Kinuura and Kobayashi 2006;
Kubono and Ito 2002; Saito et al. 2001). The disease has spread throughout Japan
since the 1980s (Kobayashi and Ueda 2005). From June to October, adult males of *P.*
quercivorus fly to their host trees and bore shallow holes in them. Adult females join
the males and, after mating, the males and females make galleries in the sapwood and
deposit eggs at the terminal parts of these galleries. Hatched larvae feed on fungi that
have been transported from old host trees by adult females. The larvae grow into the
5th larval stage by winter, and then enter hibernation. Pupation starts in spring, and
new adults emerge starting in June (Sonè et al. 1998).

Infection by *P. quercivorus* occurs in 3 successive phases—initial attack (Fig.
1a–b), mass attack (Fig. 1b–c), and cessation of attack. During the initial attack phase,
some male beetles find a host tree, excavate a hole in the bark, and use an aggregation
pheromone to attract their conspecifics (Tokoro et al. 2007). During the mass attack
phase, aggregated beetles attack the host tree *en masse*, and cause death. It has been
suggested that the attractiveness of trees bored by male beetles decreases after mating of
the beetles, and this leads to the cessation of attack (Ueda and Kobayashi 2001).

Some trees survive the initial attack without receiving a mass attack, while
other trees die because of the mass attack induced by the aggregation pheromone. In
the case of *Quercus crispula* Blume, the mortality of attacked trees was about 40% (Kamata et al. 2002). It is interesting to speculate under which situations the attack status of trees shifts from initial attack to mass attack. Factors that could affect the attack sequence include tree species, tree size, local environment, and timing of the attack.

It has been suggested that *P. quercivorus* can discriminate between tree species (Yamasaki and Futai 2012) with different susceptibilities (Kobayashi et al. 2004); therefore, a difference in the probability of initiation of a mass attack may be observed among tree species. The preference of *P. quercivorus* for targeting trees with wider trunks (Akaishi et al. 2006; Yamasaki and Sakimoto 2009) may be explained by the requirement of the species for large volumes of sapwood to construct galleries (Hijii et al. 1991). A similar preference might also be observed in the initiation of a mass attack.

Platypus quercivorus shows positive phototaxis (Igeta et al. 2003), and therefore the host selection behavior of the beetle may depend on forest light environments, which change temporally and spatially. Moreover, trees at different topographies are subjected to varying levels of drought stress (Eckhardt and Menard 2008; Guarín and Taylor 2005), and this might affect the probability of their death after attack. The initiation of a mass attack might also be affected by the density of the attacked trees (DEA). A high DEA could expose surrounding trees to high levels of aggregation pheromone, and result in a high probability of a mass attack. In addition, at sites where the attack by *P. quercivorus* begins early in the season, trees will be exposed to the attack for a longer period, which might increase their mortality risk.
In the present study, we investigated the factors affecting the initiation of a mass attack by *P. quercivorus*. We analyzed the survival data of attacked fagaceous trees collected from a 93-ha area, surveyed over 3 years. Among the proposed factors, the timing of the attack was impossible to measure throughout the wide area. Therefore, based on our results, we discuss the indirect effect of topography related to the timing of the attack.

Material and methods

Study site and search for infected trees

The present study was conducted in a secondary forest near the Hacchodaira bog, located in eastern Kyoto Prefecture, Japan (35°14’ N, 135°50’ E, Fig. 2a). The altitude of the study area ranged from 800 m to 970 m above sea level. The forest is in a cool-temperate forest zone, and is dominated by *Q. crispula* and *Castanea crenata* Sieb. et Zucc., which are highly susceptible and weakly susceptible, respectively, to Japanese oak wilt.

Damage caused by *P. quercivorus* in the study area was first observed in 2008. The 93-ha area was thoroughly searched from April to June in 2009, 2010, and 2011, to identify fagaceous trees that had been attacked by *P. quercivorus* in the previous year. The search effort was approximately 0.5 ha/h per person. Attacks by *P. quercivorus* were identified by the presence of holes bored by the beetle, and frass accumulation at the base of the tree. We identified the tree species and measured the diameter of each attacked tree at 130 cm above the ground (diameter at breast height [DBH]).
survival of each attacked tree was determined and recorded, by checking the leaf flush of the investigated year. For multi-stemmed trees, DBH and survival were recorded for each individual stem. Differences in the mortality rate among trees species were tested using a 2-sample test for equality of proportions.

The location of each attacked tree was mapped using a global positioning system (GPS; GPS map 60 CSx, Garmin International, Inc., Olathe, Kansas). The longitude and latitude of each tree were projected onto a Transverse Mercator coordinate system in meter units. The altitude, topographic wetness index, and slope aspect of each location were calculated from a digital elevation model provided by the Geospatial Information Authority of Japan. The topography projection and calculation were performed using GRASS geographic information system (GIS) software (GRASS Development Team 2010).

Preparation of explanatory variables

Although it was presumed that the DEA affected the probability of mortality of an individual tree, the scale of this was unclear. Therefore, we prepared the basal area of attacked fagaceous trees (BA) by generating buffers around each stem, using 10 different scales ranging from a 2.5-m to a 25-m radius at 2.5-m intervals, and summing the BA of stems included in each buffer. When the generated buffer crossed the boundary of the study area, the BA was corrected by dividing the cumulative basal area, by the proportion of the buffer area inside the study area to the total buffer area.

We mapped the locations of attacked fagaceous trees (gray and black trees in Fig. 1c) in the study area, and calculated the surrounding BA of each attacked tree as a
candidate explanatory variable for predicting its mortality. The locations of intact fagaceous trees (trees drawn with dotted lines in Fig. 1c) were not mapped; therefore, the density of fagaceous trees, including intact and attacked trees (density of probable host trees [DEP]), could not be calculated. As a substitute for DEP, we prepared the categorical variable of vegetation type at the location of each attacked tree. Vegetation type was determined using the vegetation map created by the national survey on the natural environment, conducted by the Biodiversity Center of Japan, Ministry of the Environment. Five types of vegetation were observed in the study area—(1) secondary forest dominated by C. crenata and Q. crispula, (2) secondary forest dominated by Japanese cedar (Cryptomeria japonica) and Q. crispula, (3) secondary forest dominated by F. crenata and Q. crispula, (4) bog, and (5) grassland. Fagaceous trees were not observed in the grasslands.

The candidate explanatory variables for predicting the probability of mortality of trees attacked in the present year did not include the distance from trees attacked in the previous year, because of the lack of information regarding attacked trees outside the study area, and the prevention control of beetle emergence conducted in the study area. In the study area, diameter measurements of the trees have been recorded at 3-year intervals since 1980, in 13 fixed plots (boxes in Fig. 2b). No damage caused by P. quercivor us was observed in these plots or their surroundings, until the 10th measurements were conducted in 2007. In 2008, trees killed by P. quercivorus were first observed in the surrounding plot; therefore, nearly all the damage in 2008 was thought to be caused by beetles from outside the study area. It was difficult to check the locations of trees outside the study area that had been attacked in the previous year, i.e., 2007. In addition, irrespective of the present study, damage control trials were
conducted in the study area by Kyoto City, a conservator of this area. From May to July in 2009 and 2010, the basal parts of trunks of all dead trees attacked in the previous year were covered by vinyl sheets, up to 3 m or 4 m above the ground, to prevent beetle emergence and minimize damage to other trees. Therefore, it was difficult to evaluate the potential of trees attacked in the previous year to be sources of infection.

Model construction and selection

We modeled the probability of mortality of trees attacked by P. quercivorus by using a generalized additive mixed model (GAMM) with the package gam4 in R 2.15.3 (R Core Team 2013). The response variable used in the model was the survival of stems (0 for surviving stems and 1 for dead stems). The response variable follows a binomial distribution, and therefore we set the link function of the model as a logit link.

The candidate explanatory variables were tree species, DBH, BA within a 2.5–25-m radius, altitude, topographic wetness index, slope aspect, and vegetation type. We assumed a nonlinear effect of slope aspect, and used a cyclic cubic regression spline as a smoother, to ensure that the values of the smoother at each end of slope aspect—0° and 360°—were the same.

The data for analysis were prepared at the individual stem level. We observed a high frequency of multi-stemmed fagaceous trees in the study area; further, stems of the same genet (individual tree) were basally connected with each other, implying a dependent structure. Therefore, the genet of trees, nested within tree species, was included in the model as a random intercept (Zuur et al. 2009). Model selection was performed in 2 steps, to obtain the best-fit model for predicting the
probability of mortality of trees attacked by *P. quercivorus*. In the first step, the best scale to calculate the density of attacked trees as an explanatory variable in the model for predicting the probability of mortality was evaluated. In the second step, the best-fit model with the lowest Akaike’s information criterion (AIC) was selected from various combinations of candidate explanatory variables.

In the first step, 10 models were constructed—including the BA values at 10 different scales and all other candidate explanatory variables—and the model with the lowest AIC was selected as the full model. In the second step, the best-fit model was selected from the full model, by comparing the AIC of all candidate models with various combinations of explanatory variables. We used 7 candidate explanatory variables (tree species, DBH, BA, altitude, topographic wetness index, slope aspect, and vegetation type), and therefore the inclusion or exclusion of each variable resulted in 128 combinations. Among these 128 models, the model with the lowest AIC was selected as the best-fit model. The relative variable importance (RVI) of each candidate explanatory variable was calculated using the Akaike weights of the 128 models. Comparisons of AIC and calculation of RVI were performed using the *MuMIn* package in R.

Results

In the study area, *P. quercivorus* attacks were observed on 3 fagaceous species, namely, *Q. crispula*, *Q. serrata* Murray, and *C. crenata*. In 2008, 2009, and 2010, we recorded 366 (227), 531 (320), and 1,233 (731) stems (numbers within parentheses are the number of genets), respectively (Table 1). In general, the mortality
rate of the attacked stems was higher in *Q. crispula* than in *C. crenata* (Table 1), and these differences were significant for all 3 years (2-sample test for equality of proportions: Chi-squared = 4.368, *P* = 0.037 for 2008; Chi-squared = 24.328, *P* < 0.001 for 2009; Chi-squared = 25.4, *P* < 0.001 for 2010). The study forest was dominated by *Q. crispula* and *C. crenata*; the density of *Q. serrata* was low. In comparison with *Q. crispula* and *C. crenata*, *Q. serrata* showed a much lower number of attacked stems (Table 1); therefore, data on *Q. serrata* were excluded from the statistical analyses. In 2010, 40 stems of *Q. crispula* with a previous infection history (20 stems attacked in 2008 and 20 stems attacked in 2009) were reattacked by *P. quercivorus*. Data on these 40 stems were also excluded from the statistical analyses, because trees with a previous infection history are known to be resistant to *P. quercivorus* (Soné et al. 1998; Urano 2000). Thus, data on the remaining 2063 stems were used for the statistical analyses.

The annual distribution of attacked *Q. crispula* in the study area differed from that of *C. crenata* (Fig. 3). Clumps of attacked *Q. crispula* were observed at the lower edges of the ridge face on the bog (Fig. 3). Generally, the density of attacked *Q. crispula* was low on the west side of the study area (Fig. 3), where the vegetation was dominated by Japanese cedar and *Q. crispula* (Fig. 2b). Similar to this area, the center area (bog) was distinguished by a low density of attacked *Q. crispula* (Fig. 3). In 2008, attacked *C. crenata* trees were distributed only on the north side; however, after 2009, their distribution range extended to the south (Fig. 3).

We compared the ability of 10 models to predict the probability of mortality of the attacked trees, by using tree species, DBH, altitude, topographic wetness index, slope aspect, vegetation type, and BAs calculated at 10 different scales as explanatory variables (Fig. 4). The AIC of the model decreased with an increase in the radius of
the area used to calculate the BA, reaching its lowest value at a 15-m radius; thereafter, 266 the AIC increased (Fig. 4). Therefore, the BA within a 15-m radius was used as a 267 candidate explanatory variable for modeling the probability of mortality of the attacked 268 trees. DBH, topographic wetness index, slope aspect, and vegetation type were not 269 selected as explanatory variables in the best-fit model to predict the probability of 270 mortality of the attacked trees. When *C. crenata* was set as a baseline, the estimated 271 coefficient for *Q. crispula* was positive (tree species in Table 2). The estimated 272 coefficient for the BA was also positive, indicating that this variable had significant 273 positive effects on the probability of mortality of the attacked trees (Table 2). A 274 significant negative effect on the probability of mortality was detected for altitude 275 (Table 2). Tree species, BA, and altitude were equally important predictors in the 276 model (RVI = 0.99 or 1.00, Table 2). Among the variables not selected for the best-fit 277 model, DBH showed the highest RVI (0.51), while vegetation type showed the lowest 278 RVI (0.16).

Discussion

In the present study, we showed that the mortality of trees attacked by *P. quercivorus* was significantly higher in *Q. crispula* than in *C. crenata* (Table 1); further, 284 tree species was included in a best-fit model to predict the probability of mortality 285 (Table 2), implying that the probability of mortality was higher in *Q. crispula* than in *C. 286 crenata*. *Quercus crispula* is a more suitable host for *P. quercivorus* than is *C. crenata* 287 (Tarno et al. 2011); therefore, the beetle is more inclined to use *Q. crispula* as an attack
target (Yamasaki and Futai 2012), resulting in a higher probability of death for this species.

We demonstrated a positive effect of DEA on the probability of mortality (Table 2), suggesting that mortality is low when the tree is individually attacked (i.e., with a low density of surrounding attacked trees), and high when the tree is attacked together with surrounding individuals (i.e., with a high density of surrounding attacked trees). In other words, changes in infection phases, from initial attack to mass attack (and subsequent death of the attacked tree), tend to occur when groups of trees are attacked. Therefore, it is likely that mass attacks of *P. quercivorus* occur not only in individual trees, but also in groups of trees. The ambrosia and bark beetles are thought to attack trees *en masse* to break down the host tree’s resistance; further, the male beetles use an aggregation pheromone to attract conspecifics to an individual tree (Wood 1982). When attacked trees are clumped together (Fig. 3), the effects of the aggregation pheromone might also work on a larger scale, and the beetle might be attracted primarily to a group of trees. The BAs calculated at a 15-m-radius scale, i.e., 706.5 m² in area, were good predictors of the probability of mortality of the attacked trees (Fig. 4), and may show the effective scale of clumped attacked trees as attractants to the beetle. In the case of initial attack by *P. quercivorus*, the effective DEP scale was 900 m² (Yamasaki and Sakimoto 2009), which is slightly higher than the scale suggested in the present study. Beetles might begin to search for a suitable host tree within a wide range, and after detecting clumped host trees, might narrow the target, and precipitate a mass attack.

Previous studies showed negative effects of altitude on the probability of mortality of ponderosa pine caused by *Ips* beetles (Negrón et al. 2009). These
negative effects were explained by the shorter growing season for the beetles, caused by the cooler temperatures at higher altitude (Williams et al. 2008). A similar negative effect of altitude was determined in the present study (Table 2); however, considering the small range of altitude (800–970 m) in the study area, it is improbable that the length of the beetle’s growing season differs among trees at different altitude. The decrease in the probability of mortality of the attacked trees with an increase in altitude may have arisen because of the host-seeking process of *P. quercivorus* in forests. A previous study showed that *P. quercivorus* moves upward along slopes (Esaki et al. 2004). *Platypus quercivorus* might initially seek hosts at lower elevations in a forest, and trees at the lower elevations might have a higher probability of mortality because of their longer exposure to the beetle.

As reviewed in Fettig et al. (2007), insect resistance mechanisms are damaged in trees that are stressed by factors such as drought, and this causes high susceptibility to attack by the bark beetle. Moreover, under severe drought conditions, susceptibility to beetle attack is further increased by other stress factors (Eatough Jones et al. 2004). In the present study, we determined no effect of wetness on the mortality of the attacked trees (the topographic wetness index was not selected in the best-fit model, Table 2). Vegetation type was also not selected in the best-fit model (Table 2). The model confirmed the lack of a relationship between water availability and the mortality of the attacked trees. The dataset for the present study included 4 vegetation types, namely, bog and 3 types of secondary forest. Water availability was evidently higher for trees growing in a bog than for trees growing with other vegetation types; however, the mortality of the attacked trees did not differ among vegetation types. The mortality of trees attacked by *P. quercivorus* is considered to be mainly affected by the occurrence
of mass attacks, and the local environment of trees may have little effect once a mass
attack is initiated.

Platypus quercivorous shows positive phototaxis, and might concentrate in
stands with more light (Igata et al. 2003). A study conducted at Hacchodaira—the
same site as that used in the present study—showed a negative effect of DEP at a large
scale on the probability of beetle attack (Yamasaki et al. in press), suggesting a beetle
preference for bright stands with low DEP. Assuming that phototaxy functions during
the host-seeking process, the heterogeneity of light environments in a forest interior
caused by differences in slope aspect might have some effects on beetle aggregation.
However, in the present study, the mortality of attacked trees was not affected by slope
aspect (Table 2). Therefore, positive phototaxis may function at an earlier time, such
as immediately after beetle emergence from holes, in order to orient them toward the
sky. Nevertheless, many uncertainties regarding the flight behavior and flight height
of *P. quercivorous* exist.

Assuming that the DEP was uniform within the area of the same vegetation
type, exclusion of vegetation type (which showed the lowest RVI; Table 2) from the
model indicated no difference in mortality among attacked trees with different DEP
values. However, even for the same vegetation types, DEP differed at a local scale.
Therefore, the possibility that DEP affects the mortality of attacked trees cannot be
excluded. The inclusion of DEP at various scales as a candidate explanatory variable
for the model may clarify this issue. Moreover, to elucidate a more precise host
selection process of *P. quercivorous*, the inclusion of variables not measured in the
present study (for example, the distance from trees attacked in the previous year) as
candidate explanatory variables is required.
Conclusion

Previous studies on trees attacked by *P. quercivorus* have considered all probable host trees in a certain area as subjects of analysis, and have shown the preferences of the beetles during their attack process with regard to species (Yamasaki and Futai 2012), size (Akaishi et al. 2006; Yamasaki and Sakimoto 2009), and infection history (Yamasaki and Futai 2008). However, the attack process of the beetles is thought to be divided into 2 phases—the initial attack and the mass attack (Fig. 1). In the present study, by analyzing only attacked trees, we clarified the factors affecting the initiation of mass attack. The exclusion of DBH and vegetation type from the best-fit model for predicting the probability of mortality of the attacked trees suggests that *P. quercivorus* selects clumped, wide trees not as a mass attack target, but as an initial attack target. The inclusion of BA in the best-fit model showed that *P. quercivorus* selects dense stands of attacked trees as mass attack targets. The results of a 3-year survey of beetle infection over wide areas revealed the detailed host selection process of the ambrosia beetle, *P. quercivorus*.
Acknowledgments

We thank all members of the Laboratory of Forest Biology, Kyoto University, for their assistance in the fieldwork, and their help and advice during the study. We would like to thank the associate editor and the two referees for their helpful comments on a previous draft of this manuscript. This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 22580162).
References

Akaishi, D., Kamata, N., and Nakamura, K. 2006. Initial stage of an infestation of
Platypus quercivorus (Coleoptera: Platypodidae) in a secondary forest dominated by
For. Soc. 88: 274-278.

assessment of bark beetle-induced mortality of lodgepole pine using estimates of
stand vigor derived from remotely sensed data. Remote Sens. Environ. 113:

Coops, N.C., Wulder, M.A., and White, J.C. 2006. Integrating remotely sensed and
ancillary data sources to characterize a mountain pine beetle infestation. Remote

and nitrogen deposition on bark beetle activity under drought conditions. For. Ecol.

Platypus quercivorus adults and patterns of incidence of new infestation. Agric. For.

Fettig, C.J., Klepzig, K.D., Billings, R.F., Munson, A.S., Nebeker, T.E., Negrón, J.F.,
and Nowak, J.T. 2007. The effectiveness of vegetation management practices for

Table 1 Mortality rate of stems attacked by *Platypus quercivorusc*, and number of attacked stems (within parentheses), in a secondary forest near the Hacchodaira bog, located in eastern Kyoto Prefecture, Japan. Data are separately shown for 3 fagaceous species, in 2008, 2009, and 2010. In all 3 years, the mortality rate was significantly higher in *Q. crispula* than in *C. crenata* (2-sample test for equality of proportions: Chi-squared = 4.368, *P* = 0.037 for 2008; Chi-squared = 24.328, *P* < 0.001 for 2009; Chi-squared = 25.4, *P* < 0.001 for 2010).

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus crispula</td>
<td>40.3% (325)</td>
<td>45.5% (453)</td>
<td>39.5% (1124)</td>
</tr>
<tr>
<td>Quercus serrata</td>
<td>50.0% (2)</td>
<td>0% (8)</td>
<td>0% (17)</td>
</tr>
<tr>
<td>Castanea crenata</td>
<td>23.1% (39)</td>
<td>14.3% (70)</td>
<td>13.0% (92)</td>
</tr>
</tbody>
</table>
Table 2 Estimated coefficients, their standard errors, and z-statistics of variables selected for a best-fit model ($n = 2063$, AIC $= 2196.764$) to predict the probability of mortality of fagaceous trees caused by the ambrosia beetle, *Platypus quercivorus*, in a secondary forest near the Hachchodaira bog, located in eastern Kyoto Prefecture, Japan.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimatea</th>
<th>SE</th>
<th>z</th>
<th>P^b</th>
<th>RVIc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree speciesd</td>
<td>3.85180</td>
<td>1.05806</td>
<td>3.640</td>
<td>0.00027***</td>
<td>1.00</td>
</tr>
<tr>
<td>BAe</td>
<td>4.03259</td>
<td>0.73263</td>
<td>5.504</td>
<td><0.0001 ***</td>
<td>1.00</td>
</tr>
<tr>
<td>Altitude</td>
<td>$−0.02997$</td>
<td>0.00904</td>
<td>−3.316</td>
<td>0.00091 ***</td>
<td>0.99</td>
</tr>
<tr>
<td>DBHf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.51</td>
</tr>
<tr>
<td>Topographic wetness index</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.39</td>
</tr>
<tr>
<td>Slope aspect</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.39</td>
</tr>
<tr>
<td>Vegetation type</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.16</td>
</tr>
</tbody>
</table>

aVariables without estimates were not selected as explanatory variables for a best-fit model

bSignificant differences from zero were tested using z-statistics (**$P < 0.01$, ***$P < 0.001$)

cRVI = relative variable importance, calculated using Akaike weights of all candidate models

dTree species = species of attacked tree (estimated intercept for *Quercus crispula*, when *Castanea crenata* is set as a baseline, is shown)

eBA = basal area of attacked fagaceous trees within a 15-m radius

fDBH = diameter at breast height, i.e., diameter of the attacked tree at 130 cm above ground
Fig. 1 Course of infection by *Platypus quercivorus*. (a) Intact fagaceous trees distributed in a forest. (b) Some trees receive an initial attack by the beetle. (c) Mass attack occurs on some of the trees that received the initial attack. White, gray, and black trees show intact trees, trees that received an initial attack, and trees that received a mass attack subsequent to the initial attack, respectively. Trees drawn with a dotted line are not a target of the mass attack.
Fig. 2 (a) Location of the study site in Japan. (b) Vegetation type in and around the study area. The thick line shows the study area. The white, gray, dark gray, black, and light gray areas show the secondary forest dominated by *Castanea crenata* and *Quercus crispula*, other types of secondary forest, artificial forest, bogs, and other types of vegetation such as grasslands, respectively. Gray lines show contour lines at 10-m intervals. Boxes show the location of 13 fixed plots set up in 1980.
Fig. 3 Distribution of *Quercus crispula* (top) and *Castanea crenata* (bottom) attacked by *Platypus quercivorus* in 2008 (left), 2009 (center), and 2010 (right) in a secondary forest near the Hachodaira bog, located in eastern Kyoto Prefecture, Japan. Circle, surviving tree; cross, dead tree.
Fig. 4 Akaike’s information criterion (AIC) of 10 different models to predict the mortality probability of fagaceous trees attacked by *Platypus quercivorus* in a secondary forest near the Hacchodaira bog, located in eastern Kyoto Prefecture, Japan. The basal areas of attacked trees calculated within a radius of 2.5–25 m of the target tree were included in each model, together with the other candidate explanatory variables.