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ABSTRACT
Polarization data will soon provide the best method for measuring the CMB lensing potential,
although these data are potentially sensitive to several instrumental effects, including beam
asymmetry, polarization angle uncertainties and sky coverage, as well as analysis choices,
such as masking. We derive bias-hardened lensing estimators to mitigate these effects, at the
expense of larger reconstruction noise, and we test them numerically on simulated data. We
find that the mean-field bias from masking is significant for the EE quadratic lensing estimator.
On the one hand, the bias-hardened estimator combined with filtering techniques can mitigate
the mean field. On the other hand, the EB estimator does not significantly suffer from the mean
field due to the point source masks and survey window function. However, the contamination
from beam asymmetry and polarization angle uncertainties can generate mean-field biases for
the EB estimator. These can also be mitigated using bias-hardened estimators, with at most a
factor of ∼3 degradation of noise level compared to the conventional approach.

Key words: gravitational lensing: weak – cosmic background radiation – cosmology:
observations.

1 IN T RO D U C T I O N

On arcminute scales, the cosmic microwave background (CMB)
temperature and polarization anisotropies are distorted by gravita-
tional lensing. For the past several years, CMB observations have
been used to make increasingly precise measurements of this ef-
fect, with both cross-correlations between the CMB and large-scale
structure [Smith, Zahn & Dore 2007; Hirata et al. 2008; Bleem et al.
2012; Sherwin et al. 2012; Ade et al. (Planck Collaboration) 2013c;
Geach et al. 2013; Hanson et al. 2013; Holder et al. 2013] and the
CMB maps alone [Das et al. 2011, 2013; van Engelen et al. 2012;
Ade et al. (Planck Collaboration) 2013b; Hanson et al. 2013].

These lensing measurements are already being used to con-
strain cosmology [e.g. Sherwin et al. 2011; van Engelen et al.
2012; Ade et al. (Planck Collaboration) 2013a; Battye & Moss
2013; Namikawa, Yamauchi & Taruya 2013b; Wilkinson, Les-
gourgues & Boehm 2013]. Future measurements are expected to
quantify the sum of neutrino masses (see Namikawa, Saito &
Taruya 2010; Joudaki & Kaplinghat 2012; Abazajian et al. 2013,
and references therein), and to provide even tighter constraints
on cosmic strings (e.g. Namikawa, Yamauchi & Taruya 2012;
Yamauchi, Namikawa & Taruya 2012, 2013), primordial non-
Gaussianity (e.g. Jeong, Komatsu & Jain 2009; Takeuchi, Ichiki
& Matsubara 2012) and other fundamental physics. Lensing po-
tential estimates should also be important for delensing (Kesden,
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Cooray & Kamionkowski 2002; Knox & Song 2002) to detect
inflationary gravitational waves at � > 10 if the tensor-to-scalar
ratio is less than r ∼ 0.01.

Given an observed CMB, estimators to reconstruct the lensing
potential have been derived by several authors (e.g. Seljak & Zaldar-
riaga 1999; Zaldarriaga & Seljak 1999; Hu & Okamoto 2002; Hirata
& Seljak 2003; Okamoto & Hu 2003; Namikawa et al. 2012). These
estimators all utilize the fact that a fixed lensing potential introduces
statistical anisotropy into the observed CMB, in the form of a corre-
lation between the CMB temperature/polarization anisotropies and
their gradients. With a large number of observed CMB modes, this
correlation can be used to form estimates of the lensing potential.
The power spectrum of the lensing potential, which is of more inter-
est for cosmological parameter constraints, can then be estimated
from the power spectrum of these estimates (which probes the non-
Gaussian four-point function of the lensed CMB). For CMB obser-
vations with noise levels below 5 μK arcmin, B-mode polarization
is a particularly powerful probe of lensing because it is believed to
be dominated by the lensing contribution on scales � � 100.

For realistic CMB observations, there are so-called mean-field
biases for the standard minimum-variance quadratic lensing es-
timators because of non-lensing sources of statistical anisotropy,
such as masking, inhomogeneous map noise, beam asymmetry, or
spatially varying errors in the detector polarization angles. With a
perfect statistical understanding of the unlensed CMB and the in-
strument used to observe it, these biases can be corrected for, but
given the imperfections in our understanding of these quantities it
can be useful to design estimators that are less sensitive to them.
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Approaches have been proposed in the literature to mitigate some
of the mean-field biases. For example, the mean fields from mask-
ing in temperature have been studied by several authors, with ap-
proaches including simply avoiding mask boundaries (Hirata et al.
2008; Carvalho & Tereno 2011), or using inpainting/apodization
(Perotto et al. 2010; Plaszczynski et al. 2012; Benoit-Levy et al.
2013) to smooth them. These techniques could also be utilized
for polarization, in conjunction with pure estimators for E and B
modes (Smith 2006; Smith & Zaldarriaga 2007). For temperature,
the mean-field bias from an inhomogeneous map noise has also
been studied by Hanson, Rocha & Gorski (2009).

In this paper, we extend the bias-hardened estimators proposed in
our previous work (Namikawa, Hanson & Takahashi 2013a) to the
case of lensing reconstruction with polarization, constructing lens-
ing estimators that can have significantly smaller mean-field biases
than the standard minimum-variance estimators, with minimal loss
of signal-to-noise.

This paper is organized as follows. In Section 2, we briefly sum-
marize the quadratic estimators for the lensing potential using CMB
temperature and polarization. In Section 3, we discuss several pos-
sible mean-field biases, which must be corrected for, and then we
construct the corresponding bias-hardened estimators. In Section 4,
we demonstrate the usefulness of bias-hardened estimators using
numerical simulations. In Section 5, we summarize our results.

Finally, we note that when estimating the power spectrum of
the lensing potential, there is an additional worrisome bias, the re-
construction noise bias, which must be accounted for. This bias is
analogous to shape-noise in galaxy weak-lensing measurements. In
principle, it can be avoided by forming independent lensing esti-
mates from subsets of the observed sky modes, for example, using
an odd/even parity split (Hu 2001) or the in/out Fourier split (Sher-
win & Das 2010). However, there is usually a substantial loss of
signal-to-noise associated with such splits. This bias is less of an
issue in polarization than in temperature, because it falls with the
instrumental noise level for estimates that utilize B-mode polariza-
tion, and it can also be avoided using cross-spectra between different
lensing estimates. In Appendix A, we present a polarized deriva-
tion of the optimal trispectrum-estimator approach to correcting for
this bias, also extending our discussion of this approach for the
temperature case in (Namikawa et al. 2013a).

2 QUA D R AT I C L E N S I N G R E C O N S T RU C T I O N
F RO M C M B M A P S

2.1 Lensing effect on CMB anisotropies

The distortion effect of lensing on the primary temperature and
polarization anisotropies is expressed by a remapping of the primary
anisotropies. Denoting the primary CMB anisotropies at position
n̂ = (θ, ϕ) on the last scattering surface as �(s)(n̂), where s = 0
denotes the temperature, �(0) = �, while s = ±2 are the spin-2
combination of the Stokes parameter, �(±2) = Q ± iU ≡ P ±, the
lensed anisotropies in a direction n̂ are given by (e.g. Lewis &
Challinor 2006)

�̃(s)(n̂) = �(s)(n̂ + d(n̂))

= �(s)(n̂) + da(n̂)∂a�
(s)(n̂) + O(|d|2). (1)

The two-dimensional vector, da(n̂) (a = θ , ϕ), is the deflection an-
gle, and, in terms of parity symmetry, we can decompose it into two
terms, known as gradient (even parity) and curl (odd parity) modes
(e.g. Hirata & Seljak 2003; Cooray, Kamionkowski & Caldwell

2005; Namikawa et al. 2012):

da(n̂) = ∂aφ(n̂) + εab∂b� (n̂) =
∑

x=φ,�

cab
x ∂bx(n̂), (2)

where cab
φ is the Kronecker delta and cab

� = εab is the two-
dimensional Levi–Chivita symbol.

2.2 Estimator for lensing fields

The temperature anisotropies are distorted by lensing as (e.g. Hu &
Okamoto 2002)1

�̃� = �� −
∑

x=φ,�

∫
d2 L

(2π)2
cab
x La(�b − Lb)φL��−L . (3)

However, for polarization, we usually use the rotationally invariant
combination, that is, the E- and B-mode polarizations, instead of
the spin-2 quantity (e.g. Hu & Okamoto 2002):

E� ± iB� = −
∫

d2n̂e−in̂·� P ±(n̂)e∓2iϕ� , (4)

where ϕ� is the angle of � measured from the x-axis. With the
deflection angle given in equation (2), the lensed E and B modes are
given by (e.g. Hu & Okamoto 2002; Cooray et al. 2005; Namikawa
et al. 2012)

Ẽ� = E� −
∫

d2 L
(2π)2

(LaL′
aφL + εabLaL

′
b��)

× (EL′ cos 2ϕL′,� − BL′ sin 2ϕL′,�), (5)

B̃� = B� −
∫

d2 L
(2π)2

(LaL′
aφL + εabLaL

′
b��)

× (BL′ cos 2ϕL′,� + EL′ sin 2ϕL′,�), (6)

with L′ = � − L and ϕ�1,�2 ≡ ϕ�1 − ϕ�2 .
Denoting X and Y as �, E or B, the off-diagonal covariance

includes the gradient and curl modes of deflections as

〈X̃L ỸL′ 〉CMB = f
x,(XY )
�,L x�, (7)

where 〈· · ·〉CMB denotes the ensemble average over unlensed �,
E or B, with a fixed realization of the gradient and curl modes,
and we ignore the higher-order terms of lensing fields. The weight
functions for gradient and curl modes are summarized in Table 1
(Hu & Okamoto 2002; Cooray et al. 2005; Namikawa et al. 2012).
Note that, to mitigate the higher-order biases (Hanson et al. 2011),
the lensed power spectrum is used rather than the unlensed one
(Lewis, Challinor & Hanson 2011; Anderes 2013). With a quadratic
combination of X and Y fluctuations, the lensing estimators are then
formed as (e.g. Hu & Okamoto 2002)

x̂
(XY )
� = 1

2
A

x,(XY )
�

∫
d2 L

(2π)2
g

x,(XY )
�,L XLY L′ , (8)

1 Our definitions of the Fourier transform and its inverse for arbitrary quan-
tity X(n̂) on a map are

X� =
∫

d2n̂e−in̂·� X(n̂),

X(n̂) =
∫

d2�

(2π )2
ei�·n̂ X�.

These are the same as Hu & Okamoto (2002) but different from, for example,
Lewis & Challinor (2006).
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Table 1. The weight functions for lensing
potentials, f

x,(XY )
�,L . Note that L′ = � − L.

Lensing

�� cab
x

(
�aLbC̃

��
L + �aL

′
bC̃

��
L′
)

�E cab
x

(
�aLbC̃

�E
L cos 2ϕL,L′ + �aL

′
bC̃

�E
L′
)

�B cab
x �aLbC̃

�E
L sin 2ϕL,L′

EE cab
x

(
�aLbC̃

EE
L + �aL

′
bC̃

EE
L′
)

cos 2ϕL,L′

EB cab
x

(
�aLbC̃

EE
L + �aL

′
bC̃

BB
L′
)

sin 2ϕL,L′

BB cab
x

(
�aLbC̃

BB
L + �aL

′
bC̃

BB
L′
)

cos 2ϕL,L′

where, with the ratio of power spectra, rXY
L = ĈXY

L /ĈXX
L , we

define2

g
x,(XY )
�,L = 2

[
f

x,(XY )
�,L

]∗
− rXY

L rYX
L′
[
f

x,(XY )
�,L′

]∗
1 − rXY

L rXY
L′ rYX

L rYX
L′

, (9)

A
x,(XY )
� =

[∫
d2 L

(2π)2

g
x,(XY )
�,L f

x,(XY )
�,L

2ĈXX
L ĈYY

L′

]−1

. (10)

The inverse-variance filtered Fourier modes are given by

X� = X̂�

ĈXX
�

. (11)

For the cosmic variance case, the estimated power spectrum reduces
to the lensed power spectrum.

3 BIAS- HARDENED LENSING ESTIMATO RS

There are many effects that can generate mode-coupling between
observed �, E and B modes, leading to mean-field biases for the
conventional lensing estimators. In the following, we compute the
non-lensing statistical anisotropy due to masking, inhomogeneous
noise (and/or unresolved point sources) and polarization angle (or
scan strategy) systematics in the presence of beam asymmetry. Then,
in order to mitigate the mean-field biases from these systematics,
we construct bias-hardened estimator analogous to those of our
previous work (Namikawa et al. 2013a).

3.1 Non-lensing sources in the off-diagonal covariance

3.1.1 Masking

Let us first consider the modification due to a window function,
M(n̂), which is defined to be zero for an unmasked region and
otherwise unity:

�̂(n̂) = [1 − M(n̂)] �̃(n̂), (12)

P̂ ±(n̂) = [1 − M(n̂)] P̃ ±(n̂). (13)

Such masking mixes E and B modes, leading to mode-coupling in
temperature and polarization as

�̂� = �̃� −
∫

d2 L
(2π)2

ML�̃L′ , (14)

2 Note, here, that the normalization, Ax,(XY )
� , is independent of the direction

of �, so we write the normalization as A
x,(XY )
� .

Table 2. The weight functions
for masking, f

M,(XY )
�,L . Note that

L′ = � − L.

Masking

�� −C̃��
L − C̃��

L′

�E −C̃�E
L cos 2ϕL,L′ − C̃�E

L′

�B −C̃�E
L sin 2ϕL,L′

EE −
(
C̃EE

L + C̃EE
L′
)

cos ϕL,L′

EB −
(
C̃EE

L + C̃BB
L′
)

sin ϕL,L′

BB −
(
C̃BB

L + C̃BB
L′
)

cos ϕL,L′

Ê� = Ẽ� −
∫

d2 L
(2π)2

ML

(
ẼL′ cos ϕL′,L − B̃L′ sin ϕL′,L

)
, (15)

B̂� = B̃� −
∫

d2 L
(2π)2

ML

(
B̃L′ cos ϕL′,L + ẼL′ sin ϕL′,L

)
. (16)

With the above equations, the resultant off-diagonal covariance can
be written as

〈X̂L ŶL′ 〉 = M�f
M,(XY )
�,L + O(M2), (17)

where 〈· · ·〉 denotes the usual ensemble average, and the weight
functions are summarized in Table 2. Equation (17) implies that
the resultant lensing estimator has mean-field bias due to the mask
field, M�.

3.1.2 Inhomogeneous noise/unresolved point-source

Next, let us consider the modification because of the addition of ar-
bitrary sky signals, nT (n̂), nQ(n̂) and nU (n̂), which are uncorrelated
between pixels; this approach can be used to model, for example,
residual point sources and inhomogeneous instrumental noise in
temperature and polarization maps. The corresponding �, E and B
modes are given by

n�
� =

∫
d2n̂e−in̂·� nT (n̂), (18)

and

nE
� ± nB

� =
∫

d2n̂e−in̂·�
(
nQ ± nU

)
(n̂)e∓2iϕ� . (19)

Assuming that 〈nX(n̂)nY (n̂′)〉 = S(XY )(n̂)δ(n̂ − n̂′), we have〈
nX

L nY
L′
〉 =

∫
d2n̂e−in̂·L

∫
d2n̂′e−in̂′ ·L′ 〈

nX(n̂)nY (n̂′)
〉

=
∫

d2n̂e−in̂·� S(XY )(n̂) ≡ S
(XY )
� , (20)

where we use L + L′ = �. The off-diagonal covariance then has
additional terms〈

X̂L ŶL′
〉

= 〈nX
L nY

L′
〉 = f

S,(XY )
�,L S

(XY )
� . (21)

where the weight function is f
S,(XY )
�,L = 1.

3.1.3 Polarization angle with beam asymmetry

Instrumental effects, such as beam asymmetry and errors in the
detector polarization angles, are also a potential concern for lensing
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reconstruction. Here, we consider the effect of a spatial variation
in the polarization angle in the presence of the ellipticity in beam
shape.

Denoting CMB temperature and polarization anisotropies as
�(0) = � and �(±2) = Q ± iU = P ±, we assume that the beam-
convolved anisotropies for the ith pixel are expressed as

�(s)(n̂i) =
∫

d2n̂ R[n̂i − n̂, α(n̂i)]�
(s)(n̂), (22)

where s = 0 (temperature) or ±2 (polarization), and R denotes the
beam-response function whose shape is independent of the mea-
surements but whose orientation angle, α(n̂i) (Shimon et al. 2008),
is dependent on both the pixels and measurements. The beam-
response function, R, is given by

R[r, α(n̂i)] =
∫

d2 L
(2π)2

ei L·rRL(n̂i), (23)

where the Fourier counterpart of the beam-response function is
expanded as (Shimon et al. 2008)

RL(n̂i) =
∞∑

n=−∞
bL,n e−inα(n̂i ) einϕL . (24)

Here, by denoting the Bessel function as Jn, the coefficients are
given by

bL,n = in
∫

dr rJn(Lr)
∫

dϕr

2π
R(r, 0)e−inϕr . (25)

Note that bL, −n = bL, n, and if the shape of beam function, R(r, 0),
does not depend on the angle, ϕr (e.g. a circular Gaussian beam),
the coefficients are non-zero only when n = 0. The beam-convolved
anisotropies are then rewritten as

�(s)(n̂i) = is
∞∑

n=−∞
e−inα(n̂i )

∫
d2 L

(2π)2
bL,n�

(s)
L ei L·n̂i ei(n+s)ϕL , (26)

where �(0) = � and �(±2) = E ± iB.
For a two-beam experiment, as shown in Shimon et al. (2008), the

measured temperature and polarization anisotropies are distorted by
the polarization angle and the differences in beam shapes between
the first and second detectors. If the anisotropies are measured
several times at each pixel, the optimal estimators for temperature
and polarization anisotropies are given by (Shimon et al. 2008)

�̂(0) =
〈
�

(0)
+
〉

pix
+ 1

2

〈
�

(−2)
− e2iα̂t e−2iδt

〉
pix

+ 1

2

〈
�

(+2)
− e−2iα̂t e2iδt

〉
pix

, (27)

�̂(±2) =
〈
�

(±2)
+ e±2iδt �̂±

t

〉
pix

+
〈
�

(∓2)
+ e∓2iδt e±4iα̂t �̂±

t

〉
pix

+ 2
〈
�

(0)
− e±2iα̂t �̂±

t

〉
pix

, (28)

where the arguments, n̂i , are dropped. The bracket, 〈· · ·〉pix, denotes
the average over all measurements in each pixel, and α̂t is the esti-
mated polarization angle for tth measurement at each pixel, which
has small polarization angle error δt ≡ α̂t − αt . We also define

�̂±1
t = 1 − e∓4iα̂t 〈e±4iα̂t 〉pix

1 − 〈e∓4iα̂t 〉pix〈e±4iα̂t 〉pix
. (29)

The subscripts, + and −, in �s are the total and the difference,
respectively, of anisotropies obtained from the two detectors:

�
(s)
+ = �

(s)
1 ± �

(s)
2

2
. (30)

Note that, if the temperature and polarization anisotropies are mea-
sured only one time for each pixel, the quantities, �̂±1

t , in equations
(27) and (28) should be replaced with unity.

With equations (27) and (28), taking into account the polarization
angle involved in �(s), the measured temperature and polarization
in Fourier space are given by

X̂� =
∞∑

n=−∞

∑
p=0,±1

∑
Y=�,E,B

∫
d2 L

(2π)2

× B(XY )
L,(n,p)ỸLψ

(n,p)
L′ einϕL,L′ e2ipϕL,� , (31)

where X = �, E or B. The quantities, ψ (n,p)
L (p = 0, ±1), are defined

as the Fourier transform of the following quantities,

ψ (n,p)(n̂i) = 〈e−inα̂t (n̂i ) ei(n+2p)δt (n̂i )�̂
p
t (n̂i)〉pix einϕL, (32)

with �̂0
t = 1. Note that ψ

(n,p)
L is the spin-(−n) transform of spin-

(−n) quantity, 〈e−inα̂t (n̂i )�̂
p
t (n̂i)〉pix, in the limit of δi = 0 for all

measurements. The coefficients, B(ZZ′)
L,(n,p), are given by

B(��)
L,(n,0) = b+

L,n

B(�E)
L,(n,0) = −b−

L,n+2 + b−
L,n−2

2

B(�B)
L,(n,0) = i

b−
L,n+2 − b−

L,n−2

2

B(E�)
L,(n,±1) = −b−

L,n±2

B(EE)
L,(n,±1) = b+

L,n + b+
L,n±4

2

B(EB)
L,(n,±1) = ±i

b+
L,n − b+

L,n±4

2

B(BY )
L,(n,±1) = ∓iB(EY )

L,(n,±1), (33)

where b±
L,n is the total and the difference of beam transfer functions

for the two detectors:

b±
L,n = b

(1)
L,n ± b

(2)
L,n

2
. (34)

Note that, in full sky and the temperature-only case, equation (31)
is consistent with Hanson, Lewis & Challinor (2010).

In Fourier space, we break ψ
(n,p)
� into constant and fluctuation

pieces

ψ
(n,p)
� = C(n,p)δ�=0 + (ψ (n,p)

� )ani, (35)

with the assumption that (ψ (n,p)
� )ani are small. Then, equation (31)

is rewritten as

X̂� =
∞∑

n=−∞

∑
p=0,±1

∑
Y=�,E,B

[
B(XY )

�,(n,p)Ỹ� einϕ�C(n,p)

+
∫

d2 L
(2π)2

B(XY )
L,(n,p)ỸL(ψ (n,p)

L′ )ani einϕL,L′ e2ipϕL,�

]
, (36)

For realistic cases, b+
L,n/b

+
L,0 � 1 for n �= 0, b−

L,n � b+
L,n and

δi � 1. Under these approximations, the dominant term in the
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Table 3. Same as Table 2, but for polarization angle, f
ψ (n,p),(XY )
�,L . For clarity, the exponential is expressed

as ‘exp ’.

p = 0

��
[
B(��)

L,(n,0)C̃
��
L + B(�E)

L,(n,0)C̃
�E
L

]
exp(inϕ−L,�) + (L ↔ L′)

�E
[
B(��)

L′,(n,0)C̃
�E
L′ + B(�E)

L′,(n,0)C̃
EE
L′
]

exp(inϕ−L′,�)

�B B(�B)
L′,(n,0)C̃

BB
L′ exp(inϕ−L′,�)

EE 0

EB 0

BB 0

p = ±1

�� 0

�E
[
B(E�)

L,(n,p)C̃
��
L + B(EE)

L,(n,p)C̃
�E
L

]
exp(inϕ−L,� ± 2iϕ−L,L′ )

�B
[
B(B�)

L,(n,p)C̃
��
L + B(BE)

L,(n,p)C̃
�E
L

]
exp(inϕ−L,� ± 2iϕ−L,L′ )

EE
[
B(E�)

L,(n,p)C̃
�E
L + B(EE)

L,(n,p)C̃
EE
L

]
exp(inϕ−L,� ± 2iϕ−L,L′ ) + (L ↔ L′)

EB
[
B(B�)

L,(n,p)C̃
�E
L + B(BE)

L,(n,p)C̃
EE
L

]
exp(inϕ−L,� ± 2iϕ−L,L′ ) + B(EB)

L′,(n,p)C̃
BB
L′ exp(inϕ−L′,� ± 2iϕ−L′,L )

BB B(BB)
L,(n,p)C̃

BB
L exp(inϕ−L,� ± 2iϕ−L,L′ ) + (L ↔ L′)

first term of equation (36) becomes b+
�,0X�. Assuming that b+

�,0 = 1,
the convolution in equation (36) leads to an off-diagonal covariance
given by

〈X̂L ŶL′ 〉 =
∑
n�=0

∑
p=0,±1

f
ψ (n,p),(XY )
�,L

(
ψ

(n,p)
�

)
ani

+ O [(ψ (n,p))2
ani

]
,

(37)

where the weight functions are summarized in Table 3. For b+
�,0 �= 1,

we can utilize f
ψ (n,p),(XY )
�,L /(b+

L,0b
+
L′,0) for the weight function. Note

that the above derivations cover simpler cases. If the beams of two
detectors are the same, b− = 0, with Gaussian shape, bL, n ∝ δn, 0,
and if α̂t is the same for all measurements, we obtain �̂(±2)(n̂) =
�(±2)(n̂)e±2iδ(n̂). We also note that, for the temperature-only case,
the results are consistent with our previous work.

3.2 Mean-field biases

All of the above contaminations lead to the mean-field bias for
lensing estimator, x̂

(XY )
� . Omitting the subscript (XY), the mean-

field biases are given by

〈x̂�〉 = Axx
�

∫
d2 L

(2π)2
gx

�,L〈XLY L′ 〉

= Axx
�

∫
d2 L

(2π)2

∑
y

gx
�,Lf

y
�,Ly�

=
∑

y

R
xy
� y�, (38)

where y = M, S or ψ (n, p). Also, we define the response function R�

and normalization A� as

R
xy
� = Axx

�

A
xy
�

; A
xy
� =

[∫
d2 L

(2π)2
gx

�,Lf
y

�,L′

]−1

. (39)

3.3 Bias-hardened estimator

Estimators that are bias-hardened against the above effects can be
constructed analogously to the temperature case. That is, we first
construct a naı̈ve estimator for a given effect y as

ŷ� = A
yy
�

∫
d2 L

(2π)2
g

y
�,LXLY L′ , (40)

where g
y
�,L and A

yy
� are defined as equations (9) and (10), respec-

tively, but using the weight function, f
y,(XY )
�,L , instead of the lensing

weight function, f
x,(XY )
�,L (x = φ, � ). This estimator for y� is in turn

biased by lensing. We can then obtain a bias-hardened estimator as

x̂
(BHE)
� ≡

∑
y

{
R−1

�

}x,y
ŷ�. (41)

4 D E M O N S T R AT I O N O F B I A S - H A R D E N E D
ESTI MATO R FOR MEAN-FI ELD BI AS

In this section, we discuss whether the bias-hardened estimator for
lensing fields can be used as a cross-check for the conventional
estimator. For this purpose, first we compute the case where the
mean field is generated only from the effect of masking. One concern
here is the validity of linear-order approximation. That is, to derive
the bias-hardened estimator, we have ignored any higher-order terms
of ML (and, of course, for other non-lensing fields).

4.1 Simulated maps and analysis

We use simulated polarization maps produced using methods sim-
ilar to our previous work (Namikawa et al. 2013a). For lensing
reconstruction, we use 100 realizations of lensed Stokes Q and U
maps, simulated on a 5 × 5 deg2 patch. The details of the method
used to generate these lensed maps are described in Appendix B. To
simulate the masking of point sources, we create masks by cutting
200 regions of randomly located 10 × 10 arcmin2 squares. Note
that the area covered by the point-source masks is ∼5 per cent of
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total area, and the percentage roughly corresponds to that used in
the South Pole Telescope (SPT) polarization analysis (Hanson et al.
2013). To consider experiments with high-angular resolution such
as SPTpol, PolarBear and ACTPol, as well as to avoid contami-
nation by the Sunyaev–Zel’dovich effect (Zel’dovich & Sunyaev
1969) and unresolved point sources, we assume a delta function in-
strumental beam. The E- and B-mode multipoles are used at 2 ≤ � ≤
3000. We assume homogeneous map noise, with a level of 0.01 μK
arcmin. Note that, even in the presence of inhomogeneous noise, by
combining the bias-hardened estimator described in Section 3.1.2,
the mean field due to inhomogeneous noise would be reduced
as already applied to the lensing reconstruction with the Planck
temperature map [Ade et al. (Planck Collaboration) 2013b], and
the qualitative result would be similar to that obtained in this paper.

4.2 Filtering

For the conventional estimator approach, we experiment with the
following filtering techniques to suppress the mask-mean field:
apodization of the survey boundary and C−1 filtering for the point-
source holes.

4.2.1 Apodization window function

In our analysis, we use the following analytical apodization func-
tion, whose value and derivatives are zero at the boundaries of the
survey region:

W (x, y; s0) = w(x; s0)w(y; s0)M(x, y). (42)

Here, w(s; s0) is a sine apodization function given by

w(s; s0) =

⎧⎪⎪⎨⎪⎪⎩
1 |s| < as0

1−|s|/a
1−s0

− 1
2π

sin
(

2π 1−|s|/a
1−s0

)
as0 ≤ |s| < a

0 a ≤ |s|
, (43)

and M(x, y) represents the point-source mask [i.e. 0 at the presence
of (resolved) point sources, and otherwise 1]. The parameter, s0,
indicates the width of the region where the apodization is applied.

4.2.2 C−1 filtering

The minimum-variance filtering that emerges from likelihood-based
derivations of lensing estimators is known as C−1 filtering. The
inverse-variance filtered Fourier modes, X̄� = (E�, B�), are ob-
tained by solving(

1 + C1/2N−1C1/2
)

(C1/2 X̄) = C1/2N−1X̂, (44)

where X̄ is a vector whose components are X̄�, C is the covariance
of the CMB anisotropies with

{C}�i ,�j
= δ�i−�j

(
CEE

�i
0

0 CBB
�i

)
, (45)

and N = 〈n†n〉 is the covariance matrix for the instrumental noise.
The noise covariance matrix in Fourier space is obtained from that
in real space as

N−1 = Y†N−1Y , (46)

where the pointing matrix, Y , is defined by

{Y}n̂i ,�j
= exp(in̂i·�j ) exp(−2ϕ�j

)

(
1 i

1 −i

)
. (47)

Note that the matrix in equation (47) describes the transformation
of (E�, B�)t to (E� + iB�, E� − iB�)t . The mask is incorporated by
setting the noise level of masked pixels to infinity, and therefore
the inverse of the noise covariance in real space N−1 to zero for
masked pixels. The inversion of the matrix on the left-hand side of
equation (44) can be numerically costly, but can be evaluated using
conjugate descent with careful preconditioning (Smith et al. 2007).
Because the mask mean field due to the survey boundary remains
after applying the C−1 filter, we additionally apply an apodizing
function given by equation (43).

4.3 Mean-field bias due to masking

We now discuss the mean-field bias generated by masking.
Given N realizations of estimator, x̂

i,(XY )
� (i = 1, 2, . . . , N), we

define the mean-field power spectrum as

Mx,(XY )
� = 1

W4

∫
dϕ�

2π

∣∣∣∣∣ 1

N

N∑
i=1

x̂
i,(XY )
�

∣∣∣∣∣
2

, (48)

where the quantity W4 is the normalization correction for effect of
window function as

W4 =
∫

d2n̂ [W (n̂)]4. (49)

With N-realizations of CMB maps, the mean field becomes (Benoit-
Levy et al. 2013)

Mx,(XY )
� � 1

W4

∫
dϕ�

2π
|〈x̂(XY )

� 〉|2 + A
xx,(XY )
� + Cxx

�

N
. (50)

The resulting mask mean fields for φ̂ are shown in Figs 1 and
2 for the quadratic combinations of EE and EB cases, respectively.
We compare results between the case with and without the bias-
hardened estimator for the mitigating mask mean field. We also
vary the apodization parameter, s0, introduced in equation (43). The
Monte Carlo noise floor is the second term of equation (50). For EE,
the mask mean field is large on large angular scales, and exceeds the
expected lensing power. We can clearly see that the bias-hardened
estimator works well to mitigate the mask mean field. However,
the EB estimator has small contributions to the mask mean field.
The reason for this is as follows. If we use the filtering methods, the
quantity M� has a value of only around � ∼ 0, and thus the mask
mean field, which is expressed as RxM

� M�, is significant only for
� ∼ 0. For the EB estimator, however, the response function, RxM

� ,
given in equation (39), has the sine function involved in the weight
function, f

x,(EB)
�,L , and goes to zero as � → 0. This is contrary to the

case of the EE estimator in which the weight function includes the
cosine function instead of the sine function. Note that the origin of
the sine function in the weight function is the parity of EB cross-
correlation (i.e. odd parity symmetry), because the weight function
is given by equation (7). We have also checked that, because the
behaviour of the response function for �B is similar to that of EB,
the mask mean field is negligible for the �B estimator. As expected,
the mask mean field on the curl mode shown in Fig. 3 would also
be negligible for both EE and EB estimators.

The residual mean-field bias also affects the power spectrum
estimation through∫

dϕ�

2π
|x̂�|2 = Mx

� + Axx
� + Cxx

� . (51)

The figure shows that, for EE, the conventional estimator generates
a significant mask mean field, which exceeds the lensing power
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CMB lensing with polarization 1513

Figure 1. Mean-field power spectrum for the gradient-mode EE estimator, Mφ,(EE)
� , estimated with 100 lensed simulated maps. The left panel shows results

with the conventional estimator, varying the apodization parameter, s0, as 0.0 and 0.5. The Monte Carlo noise floors (dashed line) are shown comparing with
the mean-field power spectrum. The theoretical lensing power spectrum is also shown as a solid grey line. Note that the reconstruction is performed on (5 deg)2,
with E-mode multipoles ranges of 2 ≤ � ≤ 3000. The right panel is the same as the left panel but with the bias-hardened estimator.

Figure 2. Same as Fig. 1, but for the EB case.

Figure 3. Mean-field power spectrum for curl modes with EE (left) and EB (right) estimators. The Monte Carlo noise floors are shown with dashed lines.

spectrum; the lensing power spectrum estimation could therefore
suffer from uncertainties in the mean-field correction. However, the
bias-hardened estimator significantly suppresses the mask mean
field, which is below the lensing power spectrum.

4.4 Mean-field bias due to polarization angle

The mask mean field for the EB estimator is negligible even for the
case with a simple apodization function. However, the mean-field
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1514 T. Namikawa and R. Takahashi

Figure 4. Left: comparison of the noise level of lensing reconstruction between the case with and without the bias-hardened estimator for EB case. The noise
level of the bias-hardened estimator, N

φ
� , is computed from equation (57). The labels, n = 2 and n = 4, denote the temperature to polarization leakage, and

E − B mixing by the rotation of the coordinate system, respectively (see the text for the definitions and details). Right: the ratio of the noise level described in
the left panel compared to the case without the bias-hardened estimator, N

φ
� /A

φφ
� .

biases can be generated from other sources, such as polarization
angle errors. Here, to see the potential of bias-hardened estimators
to mitigate polarization angle systematics, we compute a rough
estimation of the response function and degradation of noise level
for the EB estimator.

For a two-beam experiment, with b− �= 0 and bL, n ∝ δn, 0, as an
example, we consider the following non-zero weight functions for
the EB estimator:

f
ψ (±2,∓1)

�,L = ∓i e±2iϕL′ ,�b−
L,0C̃

�E
L (52)

f
ψ (±4,∓1)

�,L = ±i e±2i(ϕL,�+ϕL′,�)
(
bL,0C̃

BB
L + bL′,0C̃

EE
L′
)

, (53)

where we have omitted the label, (EB), in the weight functions.
Note that the cases with (n, p) = (±2, ∓1) and (±4, ∓1) de-
note the systematics due to temperature to polarization leakage and
E − B mode mixing, respectively. In general, as an alternative to
ψ

(n,p)
� , we can use the following quantities:

ψ
(n,ε)
� = ψ

(−n,+1)
� + (−1)nψ (n,−1)

� , (54)

ψ
(n,β)
� = −i

[
ψ

(−n,+1)
� − (−1)nψ (n,−1)

�

]
, (55)

where the above quantities satisfy (ψ (n,ε)
� )∗ = ψ

(n,ε)
−� and (ψ (n,β)

� )∗ =
ψ

(n,β)
−� . The corresponding weight functions for ψ

(n,ε)
� and ψ

(n,β)
� are

f
ψ (2,ε)

�,L = b−
L,0 sin(2ϕL′,�)C̃�E

L ,

f
ψ (2,β)

�,L = −b−
L,0 cos(2ϕL′,�)C̃�E

L ,

f
ψ (4,ε)

�,L = − sin(2ϕL,� + 2ϕL′,�)
(
bL,0C̃

BB
L + bL′,0C̃

EE
L′
)

,

f
ψ (4,β)

�,L = cos(2ϕL,� + 2ϕL′,�)
(
bL,0C̃

BB
L + bL′,0C̃

EE
L′
)

. (56)

In our calculation, for simplicity, we assume b−
L,0 ≡ εbL,0 and a top-

hat function for bL, 0 (i.e. bL, 0 = 1 for � ≤ 3000, and 0 otherwise).
We also ignore C̃BB

L in the above equation. Because the weight
functions of ψ

(n,β)
� are obtained only by replacing the sine function

in f
(n,ε)
�,L with the cosine function, we expect that the amplitude of

the noise level for ψ
(n,β)
� would not be so different from that for

ψ
(n,ε)
� . Thus, we only focus on the case to mitigate ψ

(n,ε)
� in the

following calculations.

In the left panel of Fig. 4, we show the noise level for the bias-
hardened estimator incorporating polarization angle systematics of
ψ

(n,ε)
� . The noise level for the conventional approach corresponds to

the normalization, A
φφ
� . However, with n = 2 and 4, the noise level

for the bias-hardened estimator is given by

N
φ
� = A

φφ
�

1 − R
φψ (n,ε)

� R
ψ (n,ε)φ
�

, (57)

where the response functions, Rφψ (n,ε)
and Rψ (n,ε)φ , defined in equa-

tion (39), are computed with the weight functions given in equation
(56). Note that the noise level does not depend on ε. We find that
the noise level is not necessarily much larger using a bias-hardened
estimator compared to the conventional approach. In the right panel,
we also show the ratio of the case with the bias-hardened estimator
to that with conventional estimator. We find that the degradation of
noise level is only up to �1 per cent for n = 4, and by a factor
of ∼3 for n = 2. Our results imply that the bias-hardened estima-
tor is enough to utilize for a cross-check of the usual method for
polarization angle systematics.

5 SU M M A RY

We have discussed methods for mitigating the mean-field bias in
the case of lensing reconstruction with CMB polarization. First,
we derived the mean-field bias generated from masking, inhomo-
geneous noise (and/or unresolved point sources) and polarization
angle systematics associated with the asymmetric beam shape, in
analogy to the temperature-only case. Then, we performed numeri-
cal tests to see how significantly the mean-field bias from masking
is mitigated with the bias-hardened estimator. We found that, for the
EE estimator, it is particularly useful for the reduction of the large-
scale component of the mean field. However, for the EB estimator,
we found that the amplitude of the mask mean field is negligible
compared to the lensing signal. The bias-hardened EB estimator is
useful for other potential sources of mean field, such as polariza-
tion angle systematics, and we have shown that the increase of the
noise level is only up to 1 per cent for n = 4 (E − B mixing), and
by a factor of ∼3 for n = 2 (temperature to polarization leakage),
compared to the conventional approach.
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APPENDI X A : BI AS-HARDENED ESTI MATO R
FOR LENSI NG POWER SPECTRU M

Here, we present an optimal estimator for the lensing angular power
spectrum, Ĉxx

� , motivated by the maximum likelihood estimator for
lensing trispectrum, as proposed in our previous work (Namikawa
et al. 2013a), where we considered the temperature anisotropies
alone.

A1 Formalism

A1.1 Likelihood for lensed CMB anisotropies

The Gaussian probability distribution function for temperature and
polarization fields, a = �, E or B, whose covariance matrices are
Ca�,b�′ = 〈a�b�′ 〉, is given by

Pg = 1√
(2π)N det C

exp

[
− 1

2

∑
ab

∑
�,�′

a�(C−1)a�,b�′ b�′

]
. (A1)

Because the lensed anisotropies, �̃, Ẽ and B̃, are no longer the
Gaussian fields, the perturbative expansion of the likelihood for the
lensed anisotropies at leading order is given as (Amendola 1996;
Regan, Shellard & Fergusson 2010)

P =
⎛⎝1 +

∑
abcd

∑
�i

〈a�1b�2c�3d�4 〉c
∂

∂a�1

∂

∂b�2

∂

∂c�3

∂

∂d�4

⎞⎠ Pg.

(A2)

Here, we ignore the three-point correlation because this is generated
due to the correlation between the integrated Sachs–Wolfe effect and
lensing. The cumulant is given by

〈a�1b�2c�3d�4 〉c � f ab
�12,�1

f cd
−�12,�3

C
φφ
|�12|δ�12,−�34

+f ac
�13,�1

f bd
−�13,�2

C
φφ
|�13|δ�13,−�24

+f ad
�14,�1

f bc
−�14,�2

C
φφ
|�14|δ�14,−�23 . (A3)

Substituting equation (A3) into equation (A2), we obtain the proba-
bility distribution function for lensed CMB anisotropies. Note here
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that we do not compute higher-order terms of C
φφ
� , because we use

an approximation that requires an expression only up to the first
order of C

φφ
� .

A1.2 Derivative of probability distribution function

To obtain the maximum likelihood point, we differentiate P with
respect to Cxx

� , and obtain

∂P

∂Cxx
�

=
∑
abcd

(
f̂ ab

� f̂ cd
−� + f̂ ac

� f̂ bd
−� + f̂ ad

� f̂ bc
−�

)
Pg, (A4)

where the operator is defined as

f̂ ab
� ≡

∑
�1

f ab
�,�1

∂

∂a�1

∂

∂b�−�1

. (A5)

We find that

f̂ ab
� Pg =

(
xab

� − 〈xab
� 〉
)
Pg, (A6)

where we define the unnormalized estimator as

xab
� =

∑
�1

f ab
�,�1

a�1b�−�1 , (A7)

with the inverse variance filtered multipoles as a� =∑
a′,�′ (C−1)a�a

′
�′ a′

�′ . Operating f̂ cd
−� again to equation (A6), we ob-

tain

1

Pg
f̂ cd

−� f̂
ab
� Pg = x

ab,(C)
� x

cd,(C)
−� − nab,cd

� , (A8)

where the mean-field corrected estimator and its reconstruction
noise bias are given by

x
ab,(C)
� ≡ xab

� − 〈xab
� 〉 (A9)

nab,cd
� ≡

〈[
xa(1)b

� + xab(1)

�

] [
xc(1)d

−� + xcd(1)

−�

]〉
(1)

−1

2

〈[
xa(1)b(2)

� + xa(2)b(1)

�

] [
xc(1)d(2)

−� + xc(2)d(1)

−�

]〉
(1),(2)

,

(A10)

where index (i) denotes the simulated maps obtained from ith set
of the Monte Carlo simulation, and 〈···〉(i) denotes the ensemble
average for the ith set of the Monte Carlo simulation. Note here that
〈nab,cd

� 〉 corresponds to the disconnected part of 〈xab,(C)
� x

cd,(C)
−� 〉. We

then obtain the derivative of a log-likelihood, L = ln P , as

∂L
∂Cxx

�

= 1

P

∂P

∂Cxx
�

� 1

Pg

∂P

∂Cxx
�

=
∑
abcd

[
x

ab,(C)
� x

cd,(C)
−� − nab,cd

� + (a ↔ c) + (a ↔ d)
]
.

(A11)

A1.3 Temperature

Here, we consider the case of temperature alone (or a = b = c =
d ≡ X). With equation (A11), the derivative of a log-likelihood,
L = ln P , is

∂L
∂Cxx

�

= 3
[
|x(C)

� |2 − n�

]
, (A12)

where we drop the index, X, in the unnormalized estimator and
disconnected bias. Equation (A12) motivates an unbiased estimator

Ĉxx
� =

(
A�

2

)2 [
|x(C)

� |2 − n�

]
= |x̂(C)

� |2 − n̂�, (A13)

where

x̂
(C)
� = A�

2

∑
�1

f�,�1��1��−�1 (A14)

n̂� = 2
[
2
〈
x̂�(1)�

� x̂�(1)�
−�

〉
(1)

−
〈
x̂�(1)�(2)

� x̂�(1)�(2)

−�

〉
(1),(2)

]
. (A15)

The above equation coincides with Namikawa et al. (2013a), and is
generalized for the cases using only lensed E/B modes alone.

A1.4 Temperature and polarizations

We now generalize the case including polarizations. Equation (A11)
implies that, for each combination of (a, b) and (c, d), we can
construct the lensing power spectrum estimator as

Ĉab,cd
� = x̂

ab,(C)
� x̂

cd,(C)
−� − n̂ab,cd

� , (A16)

where the first term is the power spectrum of the usual quadratic
estimator but the second term is the estimator for the disconnected
bias, n̂ab,cd , defined as

n̂ab,cd
� =

〈[
x̂a(1)b

� + x̂ab(1)

�

][
x̂c(1)d

−� + x̂cd(1)

−�

]〉
(1)

−1

2

〈[
x̂a(1)b(2)

� + x̂a(2)b(1)

�

][
x̂c(1)d(2)

−� + x̂c(2)d(1)

−�

]〉
(1),(2)

.

(A17)

Denoting α, β = abcd, an optimal estimator would be obtained by
combining all combinations of abcd as

Ĉxx
� = Nxx

�

∑
α,β

{
(Nxx

� )−1
}α,β

Ĉα
� , (A18)

where the optimal noise level and noise covariance matrix are given
by

Nxx
� ≡

∑
β,β ′

{(Nxx
� )−1}β,β ′ ; {N�}α,β =

〈
Ĉα

� Ĉ
β
�

〉
. (A19)

A P P E N D I X B : N U M E R I C A L S I M U L AT I O N
OF LENSED C MB MAPS

In this section, we briefly present our procedure to prepare lensed
CMB maps. Our procedure is the same as for the lensed CMB
temperature maps in our previous paper (Namikawa et al. 2013a,
appendix), but including polarization fluctuations. We prepared the
lensed CMB maps as follows.

(i) We obtain unlensed CMB temperature and polarization power
spectra, C��

� , C�E
� and CEE

� , with the Code for Anisotropies in the
Microwave Background (CAMB; Lewis, Challinor & Lasenby 2000).

(ii) We generate Gaussian temperature fluctuations �� in Fourier
space, based on the input power spectrum C��

� . Then, we also gen-
erate polarization fluctuations E� =

√
CEE

� − (C�E
� )2/C��

� R� +
(C�E

� /C��
� )��, where R� is the normalized Gaussian field (with

zero mean and unit variance). Then, the fluctuations of �� and E�

satisfy the input power spectra. Here, we assume that the primordial
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Figure B1. Lensed CMB power spectra for TE (upper), EE (middle) and BB
(lower). The red (black) symbols are the lensed (unlensed) power spectra.
The dots with error bars are our simulation results calculated from the 100
realizations of 10 × 10 deg2 maps. The solid curves are the theoretical
predictions of CAMB.

B-mode is zero. By performing a Fourier transform on the fluctu-
ations (�� and E�), we generate an unlensed CMB map. The map
is a square of

√
4π rad (�203 deg) on a side. We prepare 100 such

unlensed maps.

(iii) We make a lensed CMB map by remapping the unlensed
map according to equation (1). Here, we perform the ray-tracing
simulations to obtain the deflection angles. We used a publicly
available code RAYTRIX (Hamana & Mellier 2001) that follows the
multiple scattering. In the standard multiple lens plane algorithm,
we divide the distance from the observer to the last scattering surface
(LSS) into several equal intervals and then put lens planes in every
interval. The light rays emitted from the observer are deflected in
every lens plane before reaching the LSS. We numerically solve the
light-ray positions by solving the multilens equation and we finally
obtain the angular position shifts on the LSS [see Namikawa et al.
(2013), Appendix A, for a detailed discussion]. We have checked
that the power spectrum of the lensing potential agrees with the
expectation from CAMB.

(iv) By repeating procedures (i)–(iii), we prepared 100 lensed
CMB maps. Each map has an area of 10 × 10 deg2 with 1024 × 1024
grids, and hence the resulting angular resolution is 10 deg/1024 �
0.6 arcmin. Note that, in our analysis of lensing reconstruction, we
further cut the maps into 5 × 5 deg2.

Fig. B1 shows the CMB power spectra calculated from the 100
lensed CMB maps. The upper, middle and lower panels are for the
TE, EE and BB power spectra, respectively. The dots with error bars
are the mean and the dispersion calculated from the 100 realizations.
We use s0 = 0.5 for the apodization given in equation (43). Note
that, in order to mitigate the effect of E − B mixing due to the
survey boundary effect, we estimate the lensed E and B modes
using pure E and B estimators (Smith & Zaldarriaga 2007). The red
(black) symbols are the results for the lensed (unlensed) case. The
solid curves are the theoretical predictions of CAMB. Our simulation
results agree with the theoretical prediction very well.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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