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We systematically examine the crustal torsional oscillations as varying the stellar mass and radius, where
we take into account the effect of electron screening due to the inhomogeneity of electron distribution.
In the examinations, we adopt two different equations of state (EOSs) for the inner crust region of neu-
tron stars. As a result, we find that the frequencies depend obviously on the EOS, even if the neutron
star models are almost independent of the EOS. That is, one could solve the degeneracy of the stellar
models with different EOS via the observations of shear oscillations frequencies. Additionally, we find
that the fundamental frequencies of the �-th order torsional oscillations can reduce 6% due to the ef-
fect of electron screening, which is independent of the adopted EOS and stellar models. This reduction
of frequencies can be crucial to make constraints on the density dependence of the nuclear symmetry
energy, L, i.e., the constraint on L can reduce ∼15% by the electron screening effect.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The structure of neutron stars is still not fixed exactly due to
the uncertainty of the equation of state (EOS) for neutron star mat-
ter. This is because the density inside the neutron star can reach
up to ∼1015 g/cm3 and the examinations of such properties are
quite difficult on the Earth. So, neutron stars may be considered as
a suitable laboratory to examine the physics in high density region.
In practice, it is suggested that the interior properties of neutron
stars can be understood through the observations of oscillations
and/or the emitted gravitational waves [1–7]. This is a unique tech-
nique known as (gravitational wave) asteroseismology, which is
similar to helioseismology for the Sun. Although we still have no
direct observations of gravitational waves, we have observational
evidences of neutron star oscillations. That is quasi-periodic oscil-
lations (QPOs) in the giant flares from the soft-gamma repeaters
(SGRs). SGR is considered as one of the promising candidates of
magnetar, which is a neutron star with the magnetic fields stronger
than ∼1014 gauss [8]. The extremely strong flare phenomena rarely
happen from the SGRs, which are called as the giant flares and dif-
ferent from the usual flare activities. Three giant flares have been
detected so far and the QPOs are found in the afterglow of such
flare activities. The frequencies of the QPOs in giant flares are in
the range from tens of hertz up to a few kilo-hertz [9].

The discovery of the QPOs in giant flares triggers many theoret-
ical attempts to explain such observations in terms of shear oscil-
lations in the neutron star crust and/or magnetic oscillations (e.g.,
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[10–18]). Through these attempts, it is found that either the crustal
torsional oscillations or magnetic oscillations dominate the excited
oscillations near the stellar surface, depending on the strength of
stellar magnetic fields [19–22]. The magnetic field strength of the
SGRs the giant flares arose, may not be so large that the magnetic
oscillations become the dominating oscillations, considering the
observations of spindown of central objects in the SGRs [23,24].
Then, assuming that the observed QPO frequencies would come
from the crustal torsional oscillations, one can obtain the informa-
tion about the neutron star matter in the crust region [25–30]. Fur-
thermore, one might see the properties about the density region
higher than the standard nuclear density through the torsional os-
cillations [31].

To calculate the torsional oscillations, one needs to prepare the
shear modulus describing the properties of elasticity, because the
restoring force of such oscillations is shear stress due to the elas-
ticity. The principal contribution in the shear modulus must come
from the Coulomb energy of the lattice structure composed of nu-
clei in the crust region. In this context, the shear modulus for bcc
lattice in the neutron star crust is derived by Ogata and Ichimaru
[32]. With this formula, many calculations of torsional oscillations
have been done as mentioned above. However, as the secondary
contribution in the shear modulus, one should also take into ac-
count the inhomogeneous electron distribution in the crust region,
i.e., effect of electron screening. In fact, such effects can reduce
the shear modulus around 10% compared to that without such
an effect [33,34]. In contrast to this simple estimation, the shear
modulus strongly depends on the nuclear properties in realistic
stellar models, such as the distributions of charge number and
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Wigner–Seitz radius, and the frequencies of crustal oscillations can
be determined by solving the eigenvalue problem in the crust re-
gion with the appropriate boundary conditions at the crust basis
and stellar surface. This means, it is still uncertain how the fre-
quencies of crustal torsional oscillations depend on the effect of
electron screening.

In this article, we examine the frequencies of torsional oscilla-
tions with and without the effect of electron screening, as varying
the stellar models systematically. Then, we quantitatively evalu-
ate the reduction of frequencies due to such effect, and discuss
the possibility how the previous results should be modified. Prob-
ably, these are the first calculations of the frequencies of torsional
oscillations in the crust region with the effect of electron screen-
ing and we will show the importance of such effect. In particular,
we adopt two different EOSs for the inner crust region to see the
dependence of EOS [34,35], where the difference in the adopted
EOSs is whether the neutron skin is taken into account or not
to produce the crust properties. Identifying the observed QPO fre-
quencies with the crustal torsional oscillations, one may be able
to get the insight about the neutron skin, which is one of the im-
portant properties describing the structure of nucleus in the crust
region. We remark that, according to the macroscopic neutron-star
crust models, the non-uniform nuclear structures, the so-called
pasta structures, could exist between the crustal region composed
of the spherical nuclei and the core region [36,37], which may play
an important role in the crustal torsional oscillations [26,27], al-
though the adopted EOSs in this article are not taken into account
such properties.

This article is organized as follows. In the next section, we de-
scribe the equilibrium configuration of neutron star crust together
with the adopted EOSs. In Section 3, we show the equation gov-
erning the torsional oscillations and the boundary conditions to
determine the eigenfrequencies. Additionally, we also show the ob-
tained spectra of such oscillations. Before concluding, we briefly
discuss the importance on the crustal torsional oscillations due to
the pasta structures in Section 4. At the end, we make a conclusion
in Section 5. We adopt the geometric unit of c = G = 1 in this arti-
cle, where c and G denote the speed of light and the gravitational
constant, respectively, and the metric signature is (−,+,+,+).

2. Crust equilibrium models

We can neglect the magnetic and rotational effects to construct
the equilibrium stellar models, because the magnetic energy is
much smaller than the gravitational binding energy and the ob-
served magnetars rotate quite slowly. So, we consider spherically
symmetric neutron stars in this article, which are given by the so-
lution of the Tolman–Oppenheimer–Volkoff (TOV) equations. The
metric of the spherically symmetric spacetime can be written as

ds2 = −e2Φ dt2 + e2Λ dr2 + r2 dθ2 + r2 sin2 θ dφ2, (1)

where Φ and Λ are functions of r. The function Λ(r) is associ-
ated with the mass function m(r), such as e−2Λ = 1 − 2m(r)/r. In
order to close the equation system, one needs to prepare the re-
lation between the pressure p and the energy density ρ , i.e., EOS,
in addition to the TOV equations. In this article, we adopt the EOS
derived by Haensel and Pichon [38] for the outer crust region. For
the inner crust region, we adopt two different EOSs; one is the
EOS derived by Kobyakov and Pethick [34], which is based on Lat-
timer and Swesty’s microscopic calculations [39], and the other is
the EOS derived by Douchin and Haensel [35]. Both EOSs for the
inner crust region are derived with the compressible liquid drop
model (CLDM) based on the Skyrme-type effective nuclear interac-
tion, but the EOS by Douchin and Haensel also takes into account
the effect of thickness of neutron skin [35]. Due to the different
Table 1
Comparison between the EOSs derived by Kobyakov and Pethick (2013) and by Dou-
chin and Haensel (2001). nbc and ρc denote the baryon number density and energy
density at the basis of crust.

KP2013 DH2001

model CLDM CLDM
neutron skin × ©
effective interaction SI SLy4
nbc [1/fm3] 8.913 × 10−2 7.596 × 10−2

ρc [g/cm3] 1.504 × 1014 1.285 × 1014

Fig. 1. EOS for the inner crust of neutron star, where the solid and broken lines
correspond to the EOS derived by Douchin and Haensel (2001) and by Kobyakov
and Pethick (2013), respectively.

Fig. 2. Crust thickness, �R , with different stellar models as a function of the stellar
mass, M/M� , where the solid lines with circles correspond to the stellar mod-
els with DH2001, while the broken lines with squares correspond to those with
KP2013. The labels denote the corresponding stellar radius.

treatment of the neutron skin, the density at the basis of crust is
different from each other. Hereafter, these two EOSs for the inner
crust region are referred to as KP2013 and DH2001, and the com-
parison of two EOSs is shown in Table 1. We remark again that
the adopted EOSs, KP2013 and DH2001, do not include the pasta
structures at the basis of crust region.

Fig. 1 shows the pressure as a function of the density with two
different EOSs for the inner crust region, where one can hardly ob-
serve a difference between KP2013 and DH2001. The stellar prop-
erties constructed with such EOSs are shown in Fig. 2. From this
figure, one can see the degeneracy of stellar models with differ-
ent EOSs, i.e., it may be impossible to distinguish the crust EOS
by only using the direct observations of neutron star itself. How-
ever, one can see the difference in the microscopic properties of
neutron star matter, such as the charge number, Z (left panel in
Fig. 3), and in the radius of a Wigner–Seitz cell, a (right panel in
Fig. 3), especially close to the basis of crust. These properties af-
fect on the shear modulus μ, as will be shown later. Consequently,
one expects the possibility to distinguish the crust EOS via the ob-
servations of the crustal torsional oscillations.

Furthermore, as mentioned before, we focus on how the ef-
fect of electron screening affects on the torsional oscillations in
the crust region of neutron stars. Thus, we should remove an un-
certainty coming from the other factors. In particular, to avoid
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Fig. 3. Charge number inside the spherical nuclei, Z , in the left panel and the radius of a Wigner–Seitz cell, a, in the right panel as a function of the energy density, ρ ,
for the inner crust of neutron star, where the solid and broken lines correspond to the EOS derived by Douchin and Haensel (2001) and by Kobyakov and Pethick (2013),
respectively.
the uncertainty associated with the EOS for inner core region, we
construct the crust equilibrium configuration by integrating the
TOV equations from the stellar surface inward up to the basis
of crust, as in Refs. [40,28–30], with the above EOS for crust re-
gion. Then, we will consider the typical neutron star models with
M = 1.4–1.8M� and R = 10–14 km.

The shear stress due to the elasticity in the crust region be-
comes a restoring force for the torsional oscillations, where the
shear stress is characterized by the shear modulus μ. The shear
modulus in the crust region is mainly determined by the lattice
energy due to the Coulomb interaction. In fact, the shear modu-
lus for the bcc lattice is derived by the Monte Carlo calculations
averaged over all direction as

μ = 0.1194 × ni(Ze)2

a
, (2)

where ni , Z , and a are the ion number density, charge number
inside the nucleus, and the radius of a Wigner–Seitz cell, respec-
tively [32,41]. Most of the previous calculations for torsional os-
cillations in the crust region have been done with this formula
of shear modulus. However, one may have to consider the contri-
bution due to the inhomogeneity of electron distribution, i.e., the
effect of electron screening, in the shear modulus. In practice, due
to the effect of electron screening, the shear modulus can reduce
about 10% compared to that without such an effect [33]. Recently,
the formula of the shear modulus including the effect of electron
screening is also suggested as

μ = 0.1194
[
1 − 0.010Z 2/3]ni(Ze)2

a
, (3)

where the term with Z 2/3 corresponds to the contribution of the
effect of electron screening [34]. With this formula, one can see
that the shear modulus reduces ∼11.7% for Z = 40 compared to
that without such an effect, which is consistent with the previous
suggestion by Horowitz and Hughto [33]. Furthermore, one might
consider the phonon contribution in the shear modulus. But, since
such a contribution is much smaller than that coming from a static
lattice [42], one can neglect it. Thus, we will calculate the frequen-
cies of torsional oscillations in the crust region with Eqs. (2) and
(3) to examine how important the effect of electron screening is.

3. Crustal torsional oscillations

We consider the torsional oscillations on the crust equilibrium
configuration mentioned in the previous section. In general, to ex-
amine oscillations of neutron stars, one should consider not only
the fluid oscillations but also the spacetime oscillations. However,
the torsional oscillations are the oscillations with axial parity and
do not involve the density variation during the oscillations. Owing
to such a feature, one can accurately examine the frequencies of
torsional oscillations with the assumption that the metric is fixed
during the oscillations, i.e., one can neglect the metric perturba-
tions by setting δgμν = 0. This treatment is well-known as the rel-
ativistic Cowling approximation. Additionally, since the background
configuration is spherically symmetric, the non-axisymmetric oscil-
lations degenerate into the axisymmetric oscillations. So, we con-
sider only axisymmetric oscillations in this article. In this case,
the non-zero perturbed quantity is the φ-component of perturbed
four-velocity, δuφ , which can be expressed as

δuφ = e−Φ∂tY(t, r)
1

sin θ
∂θ P�(cos θ). (4)

In this expression, ∂t and ∂θ denote the partial derivatives with
respect to t and θ , while P� is the �-th order Legendre polynomial.
Variable Y is corresponding to the Lagrangian displacement for the
angular direction. Then, the perturbation equation governing the
torsional oscillations can be derived from the linearized equation
of motion [43] as

Y ′′ +
[(

4

r
+ Φ ′ − Λ′

)
+ μ′

μ

]
Y ′

+
[
ρ + p

μ
ω2e−2Φ − (� + 2)(� − 1)

r2

]
e2ΛY = 0, (5)

where we assume that the perturbation variable has a harmonic
time dependence as Y(t, r) = eiωtY(r) with eigenfrequency ω.

To determine the frequencies of torsional oscillations, one
should impose the appropriate boundary conditions, i.e., the zero-
torque condition at the stellar surface (r = R) and the zero-traction
condition at the basis of crust (r = R − �R), because the exterior
region of the neutron star is vacuum and the shear modulus in
the core region is zero. In practice, since both conditions can be
reduced to Y ′ = 0 [43,14], we impose such conditions at r = R
and R − �R . At last, the problem to solve becomes the eigenvalue
problem.

In Fig. 4, we show the fundamental frequencies of the � = 2 tor-
sional oscillations as a function of the stellar mass with R = 12 km.
In this figure, the solid and broken lines denote the results with-
out and with the effect of electron screening, while the lines with
squares and circles denote the results with KP2013 and DH2001,
respectively. Comparing the solid lines to the broken lines, one can
see that the frequencies can reduce 6% due to the effect of elec-
tron screening, which is independent of the adopted crust EOSs
and the stellar models. Considering that the lower QPO frequen-
cies observed in SGRs are tens of hertz, this difference due to the
effect of electron screening is important to determine the stellar
model and/or to obtain the interior information via the QPO fre-
quencies. Additionally, comparing the lines with squares to those
with circles in this figure, one can observe that the frequencies
calculated with DH2001 (lines with circles) become smaller than
those with KP2013 (lines with squares), where the deviation is
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Fig. 4. Fundamental frequency of the � = 2 torsional oscillations, 0t2, as function
of the stellar mass, M/M� , for R = 12 km, where the solid lines correspond to the
results without the effect of electron screening, while the broken lines to those with
such an effect. The lines with circles are the frequencies with DH2001, while those
with squares are with KP2013.

Fig. 5. With the effect of electron screening, the expected fundamental frequencies
of the � = 2 torsional oscillations are shown as a function of stellar mass, where
the region between two solid lines corresponds to the expected frequencies for the
stellar model with R = 10–14 km using KP2013, while the region between two
broken lines corresponds to those using DH2001. In this figure, one of the QPO
frequencies observed in SGR 1806-20, i.e., 26 Hz, is also shown for the comparison.

around 7% independent of the stellar models. This is a possible
chance to distinguish the crust EOS via the observations of the
crustal torsional oscillations, despite a fact that the crust configu-
ration with DH2001 is almost same as that with KP2013 as shown
in Fig. 2. Since this difference in frequencies comes from the differ-
ent treatment of neutron skin for preparing each EOS, one might
be possible to get the information about neutron skin via the
QPO frequencies from SGRs. In practice, the expected fundamen-
tal frequencies of the � = 2 torsional oscillations with the effect of
electron screening for the stellar models with R = 10–14 km can
be shown as in Fig. 5, where the region between two solid lines
(shaded with horizontal lines) corresponds to the expected fre-
quencies with KP2013, while the region between two broken lines
(shaded with vertical lines) corresponds to those with DH2001.
From this figure, with the help of the other observations of stellar
mass and/or radius for central object in SGR, one could be possi-
ble to verify the difference of the EOS in the crust region via the
QPO frequencies observed in SGRs.

Additionally, we find that the frequencies even for the � = 3
and 4 oscillations reduce 6% due to the effect of electron screen-
ing, which is independent of the adopted crust EOSs and the stellar
models as well as the � = 2 oscillations. We also find that the de-
viation depending on the crust EOS in the frequencies is around
7% independent of the stellar models even for the � = 3 and 4
oscillations, which is exactly same ratio of the frequency shift as
the results for � = 2 oscillations. In other words, one can say that
the fundamental frequencies of the �-th order torsional oscillations
can reduce 6% due to the effect of electron screening independent
of the adopted crust EOSs and the stellar models, while the devi-
ation depending on the crust EOS in the frequencies of the �-th
order torsional oscillations is around 7% independent of the stellar
models.
Fig. 6. Same as Fig. 4, but for the frequencies of the 1-st overtones of the �-th order
torsional oscillations, 1t� .

This statement may be powerful to consider the effect of elec-
tron screening in the previous results without such effect. For ex-
ample, the constraints on the density dependence of the nuclear
symmetry energy, L, with using the QPO frequencies observed in
the SGRs suggested in Refs. [29,30] can be shifted to the region
with small value of L owing to the reduction of fundamental fre-
quencies. In practice, the allowed value of L from QPO frequencies
can reduce ∼15%, which is quite large modification. This shift may
be favorable correction compared to the other experimental results
for L, which predict a smaller value of L [44].

Next, we consider the overtones of the torsional oscillations.
First, we confirm that the frequencies of overtones of the torsional
oscillations including the effect of electron screening are almost in-
dependent of the value of �, as known in the previous calculations
without such effect, i.e., nt2 ∼= nt3 ∼= · · · ∼= nt� , where n denotes the
number of nodes in the radial direction. In Fig. 6, we show the
frequencies of the 1-st overtone of the �-th order torsional oscil-
lations as a function of the stellar mass with R = 12 km. In this
figure, as well as Fig. 4, the solid and broken lines correspond to
the results without and with the effect of electron screening, re-
spectively, while the lines with squares and circles correspond to
the results with KP2013 and with DH2001, respectively. From this
figure, one can obviously observe that the frequencies of overtones
more strongly depend on the crust EOS rather than the effect of
electron screening, unlike the case of fundamental oscillations. In
fact, if the stellar model is fixed, the frequencies can reduce 7% for
KP2013 and 6% for DH2001 due to the effect of electron screening,
which is independent of the stellar models. On the other hand, the
frequencies deviate around 20% due to difference of the adopted
crust EOS. Thus, by identifying the QPO frequencies observed in
SGRs with not only fundamental oscillations but also overtones of
the torsional oscillations, one could be possible to get an infor-
mation for stellar properties completely different from that via the
other observations, which would help us to understand the physics
of neutron stars.

4. Effect of pasta structures

Up to now, we consider the torsional oscillations in the crust
region composed of the bcc lattice with and without effect of
electron screening, where we omit the effect of pasta structures
[36,37]. In practice, as increasing the density, such structures can
appear at the basis of crust and the nuclei can form various struc-
tures [45,46], which strongly depend on the nuclear symmetry
energy [47]. Recently, it is also suggested that the maximum ob-
served spin period of isolated X-ray pulsars could be directly asso-
ciated with the existence of pasta structures [48]. Such structures
must modify the shear modulus and consequently the frequen-
cies of torsional oscillations. However, the understanding about the
shear modulus beyond Eqs. (2) and (3) is quite poor except for
the suggestion that the shear modulus could reduce in the liquid
crystal [49]. According to this suggestion, the existence of pasta



170 H. Sotani / Physics Letters B 730 (2014) 166–170
structures makes the same tendency of the electron screening as
shown in this article, i.e., the frequencies of torsional oscillations
would reduce due to the pasta structures. Unfortunately, it is diffi-
cult to quantitatively estimate the frequency reduction due to the
pasta structures, because we have no way how to deal with the
shear modulus in the pasta structures. Now, we should emphasize
that our finding in this article could be independent of the exis-
tence of the pasta structures, and we are groping how to take into
account such effects on the shear modulus to examine the oscilla-
tions in the more realistic situation.

5. Conclusion and discussion

The observations of the stellar oscillations of neutron stars are
very useful to understand the matter properties in the high den-
sity region. In this article, we systematically examine the torsional
oscillations in the crust region of neutron stars, where we take
into account the effect of electron screening due to the inhomo-
geneity of electron distribution. In the examinations, we adopt two
different EOSs for inner crust region to see the contribution of neu-
tron skin, which is one of the important properties describing the
structure of nucleus. As a result, we find that the fundamental fre-
quencies of �-th order torsional oscillations can reduce 6% due to
the electron screening independent of the adopted EOSs and the
stellar models. This uniform shift of fundamental frequencies for
all � allows us to modify the previous results. In particular, the
effect of electron screening can be crucial to constrain the den-
sity dependence of the nuclear symmetry energy, L, from the QPO
frequencies observed in SGRs. For example, the constraint of L in
Refs. [29,30] could be shifted to the region with ∼15% smaller val-
ues of L. We remark that we omit the effect of pasta structures
because such effect on the shear modulus is still unclear, which
should be taken into account somewhere.

The SGRs accompanying the QPO frequencies are only a few up
to now, but one will be able to understand more details of neutron
star matter after collecting the observational evidences and identi-
fying those with the torsional oscillations with different � together
with the additional observations for stellar mass and/or radius. In
particular, we emphasize that one can see the difference in the
frequencies of the torsional oscillations, even if the neutron star
models are almost independent of the EOS. That is, the informa-
tion obtained from the analysis of stellar oscillations will tell us
the “invisible” properties of neutron star matter.
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