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Identification of a separation wave number between weak and strong turbulence spectra
for a vibrating plate
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A weakly nonlinear spectrum and a strongly nonlinear spectrum coexist in a statistically steady state of elastic
wave turbulence. The analytical representation of the nonlinear frequency is obtained by evaluating the extended
self-nonlinear interactions. The critical wave numbers at which the nonlinear frequencies are comparable with
the linear frequencies agree with the separation wave numbers between the weak and strong turbulence spectra.
We also confirm the validity of our analytical representation of the separation wave numbers through comparison
with the results of direct numerical simulations by changing the material parameters of a vibrating plate.
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I. INTRODUCTION

The coexistence of weakly nonlinear and strongly nonlinear
spectra, which is often called critical balance, has been
predicted in several anisotropic wave turbulence systems [1].
The characteristic time of the linear regime is the wave period:
e.g., the Alfvén wave period in magnetohydrodynamics, axial
component of the rotation frequency in rotating turbulence, and
horizontal component of the buoyancy frequency in stratified
turbulence. The nonlinear time scale is the horizontal eddy
turnover time in these three types of turbulence. The critical
balance is a plausible conjecture that illustrates the energy
flux in an anisotropic wave turbulence, where the nonlinear
time is comparable with the linear dispersion time across a
wide range of wave numbers. Thus, it is of great importance
to understand the physics in the wave numbers at which the
linear and nonlinear time scales are comparable. Even if a
system is isotropic, the linear time scale may be comparable
with the nonlinear time scale. In this paper, the clarification
of the coexistence in an isotropic wave turbulence system is
addressed from the viewpoint of the time scales.

Various energy spectra have been observed for the wave
turbulence in a thin elastic plate. The possibility of the
Kolmogorov-Zakharov spectrum, which is predicted by the
weak turbulence theory [2], provides the motivation for
the studies in this wave turbulence system. In a numerical study
[3], the weak turbulence spectrum E(k) ∝ k[log(k∗/k)]1/3 is
obtained as a statistically steady spectrum, where k is the
magnitude of the two-dimensional wave-number vector k, i.e.,
k = |k|. Contrarily, energy spectra such as E(k) ∝ k−0.2 and
k0 are experimentally observed [4–6]. Moreover, the existence
of the spectra with the energy cascade E(k) ∝ k−1 and with
the wave action cascade E(k) ∝ k−1/3 is predicted by the
dimensional analysis [7]. The energy spectrum obtained by
the numerical simulation is the steady solution of the kinetic
equation of the weak turbulence theory, while the energy
spectra obtained in the experiments and by the dimensional
analysis are outside the scope of the weak turbulence theory.
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In our earlier study [8], we provided a unified perspective on
the variability of the spectra by performing direct numerical
simulations using the Föppl-von Kármán equation and found
that the strength of the nonlinearity causes the variability.

Recently, it was shown that the experimentally observed
spectrum may be explained by the strong dissipation in
the small frequencies [9]. The boundary conditions and
homogeneity of the plate may also affect the energy spectra,
as pointed out in Ref. [10]. We are interested in the universal
dynamics in the inertial subrange, in which the external
force and dissipation do not affect the dynamics. The subject
concerned in this manuscript is an extension of the research
in Ref. [3], whose attractive subtitle is “Can one hear a
Kolmogorov spectrum?”

In Ref. [8], the weak turbulence spectrum was obtained
at low-energy levels, while the strong turbulence spectrum,
which is similar to the spectrum of the wave action cascade,
was obtained at high-energy levels. Moreover, the coexistence
of the spectra, in which the weak and strong turbulence
spectra, respectively, appear in small and large wave numbers,
was obtained at intermediate energy levels. The numerical
simulations with larger mode numbers (Fig. 1) show that if
the inertial subrange is large enough, the coexistence state is
generally achieved. This generality was not clearly seen in
Fig. 2 of Ref. [8]. In Fig. 1, the separation wave numbers
between the two types of the spectra lie on a straight line,
which suggests that there exists a simple law.

A similar bending structure of the energy spectra is
numerically observed using another type of external force and
dissipation [11]. This fact suggests that the bending structure is
universal. The weak turbulence spectra in large wave numbers
are commonly observed in the numerical simulations [3,8,11].
It should be possible to estimate the separation wave numbers
by balancing the linear and nonlinear time scales owing to the
following reason: the weak turbulence theory is not applicable
in the wave-number range in which the nonlinear time scales
of the energy transfer are comparable with or shorter than the
linear time scales [12,13]. Note that the linear time scale is
comparable with the nonlinear time scale at a certain scale in
the statistically isotropic system of the elastic waves; this is
distinct from the comparability of the time scales over a wide
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FIG. 1. (Color online) Energy spectra at various energy levels,
EL0 to EL5, in statistically steady states. The solid line indicates
the separation between the weak and strong turbulence spectra. The
weak turbulence spectrum k[log(k∗/k)]1/3, where k∗ = 144π , and a
power-law spectrum k−1/3 are shown for reference.

range of wave numbers in the systems reported as the critical
balance.

In the experiment of a thin elastic plate [14], the nonlinear
dispersion relation obtained from the space-time Fourier
spectra indicates a scaling law that is a function of the
energy flux. However, the coexistence of the weak and
strong turbulence spectra as well as the balance between the
linear and nonlinear time scales was not investigated. The
nonlinear time scales are usually estimated by the nonlinear-
interaction times according to the weak turbulence theory
in Refs. [12,15,16]. However, because the unsteadiness of a
system is required for the finiteness of the nonlinear-interaction
times, the nonlinear-interaction times cannot be used in
statistically steady states. Therefore, in the present analysis,
the nonlinear time scales are evaluated using the nonlinear
frequency shifts, which are the difference between the linear
and nonlinear frequencies, instead of the nonlinear-interaction
times. The nonlinear frequencies are derived by considering
self-nonlinear interactions in Refs. [12,15,16]. The present
system, however, requires an extension of this derivation since
it has the 1 ↔ 3 and 3 ↔ 1 interactions as well as the 2 ↔ 2
interactions. The companion elementary wave, which has the
wave number with the opposite sign, should be taken into
account for the weakly nonlinear expansion to be consistent
in our derivation. The interactions are referred to as “extended
self-nonlinear interactions” in this paper.

In this paper, we propose the analytical representation to
evaluate the separation wave numbers from the viewpoint of

the time scales. First, we show that the nonlinear frequencies
estimated by the extended self-nonlinear interactions agree
well with the representative nonlinear frequencies obtained
from the time series in our simulations. Then, we show that
the critical wave numbers at which the frequency shift in the
nonlinear frequency is comparable with the linear frequency
agree well with the separation wave numbers. The validity
of our analytical representation is confirmed by other series
of numerical simulations in which the material parameters of
elastic plates are changed.

II. FORMULATION OF ELASTIC WAVES

A. Fourier representation

The dynamics of the elastic waves propagating in a thin
plate is described by the Föppl-von Kármán (FvK) equation
[17]. Under the periodic boundary condition, the FvK equation
is written using the Fourier coefficient of the displacement
ζk(t) and that of the momentum pk(t) as follows:

dpk

dt
= − Eh2

12(1 − σ 2)
k4ζk

− E

2

∑
k=k1+k2+k3

|k × k1|2|k2 × k3|2
|k2 + k3|4 ζk1ζk2ζk3 , (1a)

dζk

dt
= pk

ρ
, (1b)

where E, σ , ρ, and h are the Young’s modulus, Poisson ratio,
density, and thickness of an elastic plate, respectively.

The FvK equation (1) can be rewritten for the complex
amplitude

ak(t) = ρωkζk(t) + ipk(t)√
2ρωk

, (2)

as

dak

dt
= −iωkak

− iE

8ρ2

∑
k=k1+k2+k3

|k × k1|2|k2 × k3|2
|k2 + k3|4

×
(
ak1 + a∗

−k1

)(
ak2 + a∗

−k2

)(
ak3 + a∗

−k3

)
√

ωkωk1ωk2ωk3

. (3)

If the nonlinear terms were absent, ak would rotate clockwise
in the phase space with the linear frequency

ωk =
√

Eh2

12(1 − σ 2)ρ
k2. (4)

Thus, the complex amplitude ak represents the elementary
wave with the wavevector k and plays a central role in the weak
turbulence theory. The azimuthally integrated energy spec-
trum is defined as E(k) = (�k)−1 ∑

k−�k/2�|k|<k+�k/2 ωk|ak|2,
where �k is the bin width used to obtain the spectrum.

B. Formulation of simulation

Direct numerical simulations (DNS) were performed using
the Fourier-spectral method according to Eq. (3). To obtain
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statistically steady states, we added the external force Fk,
which is effective at small wave numbers, and dissipation Dk,
which is effective at large wave numbers, and the governing
equation can be rewritten as

dak

dt
= −iωkak + Nk + Fk + Dk. (5)

Here, Nk symbolically expresses the four-wave nonlinear
interactions in Eq. (3).

The external force Fk is provided so that the absolute
values of the complex amplitudes in the forced wave numbers
|k| � 8π are kept constant. The dissipation Dk is provided
as the eighth-order hyperviscosity to achieve larger inertial
subranges. The pseudospectral method with the aliasing
removal by the 4/2 law is used to obtain Nk under the periodic
boundary condition. The numbers of the Fourier modes are
N2

mode = 5122 (2562 alias-free) for EL0, N2
mode = 10242 (5122

alias-free) for EL1–EL3, and N2
mode = 20482 (10242 alias-

free) for EL4 and EL5. The fourth-order Runge-Kutta method
with a time step of 10−7 s is used for the time integration. The
time step should be small enough to resolve the fast dynamics
of ak at the large wave numbers, which is governed by the
linear dispersion relation [Eq. (4)], to reproduce the energy
transfer due to the resonant interactions. The parameters of
the steel plate which are shown in Ref. [4] were adopted as
the standard values. The details of the numerical method are
explained in Ref. [8].

By changing the magnitude of the external force Fk, the
total energy in the system can be controlled. The energy
spectra are shown in Fig. 1. Three energy levels, EL1, EL2, and
EL3, were selected as the representatives of the simulations to
support our analytical results because of the limited amount of
computational time. The ratio of the largest time scale to the
smallest one is of the order N2

mode ∼ 106 because of the linear
frequency [Eq. (4)].

III. STRATEGY FOR IDENTIFYING SEPARATION
WAVE NUMBER

Let us find an analytical representation to identify the sep-
aration wave number between the weak and strong turbulence
spectra. Our analysis begins with the fact that the spectra in
large wave numbers represent the weak turbulence spectra,
which are consistent with the weak turbulence theory. For
the weak turbulence theory to be applicable, the linear time
scale should be much smaller than the nonlinear time scale.
Therefore, the separation wave number is expected to be the
critical wave number at which the nonlinear time scale is
comparable with the linear time scale.

In the studies of unsteady wave turbulence, the nonlinear
time scale is often estimated using the nonlinear-interaction
time nk/(dnk/dt), where nk is the wave action defined as
nkδk,k′ = 〈aka

∗
k′ 〉. (See, for example, Refs. [12,15].) It should

be noted that nk/(dnk/dt) has a finite value only in a
statistically unsteady state, although it describes the time
scale of the net energy transfer. One might think that the
self-similarity and the dimensional analysis can be used for
the applicability-limit scale for the weak turbulence theory as
is conventionally done [e.g. 12,15,18]. This idea is based on the
fact that nk/(dnk/dt), whose power-law dependence on wave

numbers is different from that of the linear dispersion, must
cross over the linear time scale. However, the crossover scale
depends not only on the power-law exponents of the time scales
with respect to the wave numbers but also on their coefficients.
Although the power-law dependence of nk/(dnk/dt) on the
wave numbers can be obtained by using the self-similarity
and/or the dimensional analysis, the coefficient cannot be
found within this framework. Furthermore, it cannot remain
finite in the statistically steady states.

The energy flux P is generally used by employing the
relation dE(k)/dt = −dP/dk for steady states of single turbu-
lence [18]. However, it is not appropriate to use P in our present
purpose to estimate the separation scale between the two types
of turbulence, although P is used in Ref. [5]. It is difficult
to expect that a single value of P can represent the energy
flux over the entire range of wave numbers in the present
system since the turbulence shows different characteristics
on both sides of the separation wave number. Furthermore,
since the Kolmogorov-Zakharov spectrum has the same self-
similarity as the Rayleigh-Jeans equilibrium spectrum, which
corresponds to the energy equipartition, the energy flux is zero
at the first-order analysis of the weak turbulence theory [3].

Our strategy adopted here is that the nonlinear time
scales are evaluated not by the energy transfer but instead
by the frequency shift due to the extended self-nonlinear
interactions. This implies that it is independent of the weak
turbulence theory, which is a statistical theory; however, it
depends on the weakly nonlinear expansion. In this sense,
our estimation for the nonlinear time scale is different from
that in Refs. [12,16,18], which is estimated by the resonant
interactions. Then, the frequency shift is balanced to the linear
frequency to estimate the separation wave number. In fact, this
balance corresponds to equating the magnitudes of the linear
and nonlinear terms on the right-hand side of Eq. (3).

IV. NONLINEAR FREQUENCY

A. Estimation by extended self-nonlinear interactions

Let us estimate the nonlinear frequencies to evaluate the
nonlinear time scales. Among the nonlinear interactions, the
combination of the wave numbers, including the self-nonlinear
interactions in which one of k1, k2, and k3 appearing in Eq. (3)
is k, is confined to (k,k1,k2,k3) = (k,k′,k, − k′) or (k,k′,
− k′,k). These self-nonlinear interactions are dominant if
the nonlinearity is weak. Then, the FvK equation (3) can be
rewritten as

dak

dt
= −iωkak − iωs

k(ak + a∗
−k) + N nn

k , (6)

where

ωs
k = E

4ρ2

∑
k′

|k × k′|4
|k − k′|4

× |ak′ |2 + |a−k′ |2 + ak′a−k′ + a∗
k′a

∗
−k′

ωkωk′

= E

2ρωk

∑
k′

|k × k′|4
|k − k′|4 |ζk′ |2. (7)
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Equation (7) represents the frequency increment from ωk due
to the self-nonlinear interactions. Note that ωs

k is nonnegative
by definition. The nonself-nonlinear interactive term N nn

k is
defined as

N nn
k = − iE

8ρ2

∑
k=k1+k2+k3,k1,k2,k3 
=k

|k × k1|2|k2 × k3|2
|k2 + k3|4

×
(
ak1 + a∗

−k1

)(
ak2 + a∗

−k2

)(
ak3 + a∗

−k3

)
√

ωkωk1ωk2ωk3

.

It should be noted that the companion mode for ak, which
has the wave number with the opposite sign a∗

−k, in the self-
nonlinear interaction term of Eq. (6) appears in the first order
for consistency in the weakly nonlinear expansion. In the weak
turbulence systems that contain only the 2 ↔ 2 interactions,
ωk + ωs

k is the nonlinear frequency [12,15,16]. However, the
companion mode must be taken into account owing to the
1 ↔ 3 and 3 ↔ 1 interactions in the nonlinear term in Eq. (3).

Equation (6) can be rewritten in the following simultaneous
equations:

d

dt

(
ak

a∗
−k

)
=

(
−i

(
ωk + ωs

k

) −iωs
k

iωs
−k i

(
ω−k + ωs

−k

))(
ak

a∗
−k

)

+
(
N nn

k

N nn
−k

∗

)
. (8)

Because the extended self-nonlinear interactions preserve the
inversion symmetry of the system, the frequency increment
satisfies the relation ωs

k = ωs
−k. The eigenvalues of the matrix

in the right-hand side of Eq. (8) are

±ωNL
k = ±ωk

√
1 + 2ωs

k

ωk
. (9)

If the remnant interaction term (N nn
k N nn

−k
∗) in Eq. (8) can be

neglected, the solution is

ak(t) = ak(0)

(
cos ωNL

k t − i
ωk + ωs

k

ωNL
k

sin ωNL
k t

)
− ia∗

−k(0)
ωs

k

ωNL
k

sin ωNL
k t, (10)

which results in

ζk(t) = ζk(0) cos ωNL
k t. (11)

In other words, although ωNL
k ≈ ωk + ωs

k for ωs
k � ωk, ωNL

k
is preferable to ωk + ωs

k, which is considered as the nonlinear
frequency in Refs. [12,15,16]. The difference in the derivation
of the nonlinear frequencies in these references and in this
paper is whether the companion mode is taken into account.

It should be noted that the evaluation of ωs
k using Eq. (7)

requires each Fourier component of the displacement |ζk|2,
which is time-dependent in general. However, because the
frequencies must be constant in time to be meaningful, the
spectrum of the displacement should be replaced by its
ensemble- or time-average 〈|ζk|2〉. In the statistically steady
state, the averaged ωNL

k (�ωk) is expected to be a good
approximation of the nonlinear frequency.

B. Comparison with numerically obtained
representative frequency

The frequency spectrum |̃ak(	)|2 is obtained from the
Fourier transforms of the time series of ak(t). Note that
|̃ak(	)|2 lacks the symmetry with respect to the sign of 	,
since ak(t) is a complex number. Figure 2 shows the contours
of the frequency spectra |̃ak(	)|2. The horizontal and vertical
axes, which are scaled logarithmically, show the wave number
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FIG. 2. (Color online) Contours of frequency spectra |̃ak(	)|2 for three energy levels: (a) EL1, (b) EL2, and (c) EL3. The contours are
drawn with the (red) solid curves. The representative frequencies 	k, nonlinear frequencies ωNL

k , and linear frequencies ωk are, respectively,
indicated by the (blue) broken, (green) dashed-dotted, and (purple) dotted curves.

012909-4



IDENTIFICATION OF A SEPARATION WAVE NUMBER . . . PHYSICAL REVIEW E 89, 012909 (2014)

and frequency, respectively. Note that the negative frequency
is also scaled logarithmically, and the figures for the positive
and negative frequencies are arranged vertically with gaps. The
contours (red curves) are drawn only in the inertial subrange
8π < k < 256π . The cross-sections of these contours will
exhibit a similar structure to those in Fig. 3 of Ref. [8]. (See
Appendix A for the structure of the frequency spectrum.)

The representative nonlinear frequency 	k for each k
is defined such that |̃ak(−	k)|2 is maximal. The negative
sign is introduced in the argument because the maxima
of |̃ak(	)|2 always appear in the negative region of 	.
Therefore, 	 = −	k corresponds to the ridge curve of the
contours of |̃ak(	)|2. Note that |̃ak(	)|2 ∝ δ(	 + ωk) and
	k = ωNL

k = ωk if the nonlinear interactions were zero. In
Fig. 2, the ridges of the frequency spectra are drawn only
in the inertial subrange with the (blue) broken curves. The
nonlinear frequencies ωNL

k , which are obtained from Eqs. (7)
and (9) by averaging ten sets of data of ζk, as well as the linear
frequencies [Eq. (4)] are drawn over the entire range of wave
numbers.

The structure of the contour curves drastically changes near
the linear dispersion line 	 = ±ωk. The asymptotic behavior
of the contour curves in |	| < ωk (|	| > ωk) is vertical
(horizontal), which means that the spectral amplitude |̃ak(	)|2
is nearly constant along the constant wave number (frequency)
lines. The hornlike extensions of the contour curves to the
upper right along ωNL

k and to the lower right along −ωNL
k

correspond to the humps of |̃ak(	)|2, whereas the extension
to the lower left along ωk corresponds to the depressions.
From the angles of the curves in Figs. 2(a)–2(c), one can see
that the humps and depressions broaden for higher energy
levels. The widths between the contour curves in Figs. 2(a)–
2(c) are also larger as the energy levels increase, and it
corresponds to a broadening of the frequency spectrum.

The negative frequency region is a primary interest to
evaluate the nonlinear time scales. For the large wave numbers
in the negative frequency region, where the nonlinearity is
weak [8], the representative nonlinear frequencies 	k are close
to the linear frequencies ωk and the nonlinear frequencies ωNL

k .
Owing to the weak nonlinearity, the frequency spectra are
sharp around the maximum frequency, and 	k and ωNL

k are
barely distinguishable from ωk.

For the small wave numbers in the negative frequency re-
gion, where the nonlinearity is relatively strong, the frequency
spectra are broad, and the nonlinear frequencies ωNL

k deviate
from the linear frequencies ωk to the higher frequencies. The
representative nonlinear frequencies 	k lie between ωNL

k and
ωk. Comparing the three figures, Figs. 2(a)–2(c), we observe
that the difference among these three frequencies, 	k, ωk,
and ωNL

k , is larger for a wave number k as the energy levels
increase.

In the positive frequency regions shown in Fig. 2, we
found the secondary maxima of the frequency spectra near
the nonlinear frequencies ωNL

k (see Appendix A). Our results
show the two eigenvalues [Eq. (9)] agree quite well with the
primary maximum frequencies and the secondary maximum
frequencies in the large wave numbers. The secondary maxima
of the frequency spectra can be observed even in the weakly
nonlinear regime, which can be accounted for by the cou-
pling with the companion mode via the 1 ↔ 3 and 3 ↔ 1
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FIG. 3. (Color online) Nonlinear frequency shifts normalized by
the linear frequencies for three energy levels. The two horizontal lines
represent the normalized frequency shifts equal to 10−1 and 1.

interactions. It is a different mechanism from the strong
nonlinearity [19] to make the secondary maxima.

To observe the nonlinear frequency shifts more clearly,
the nonlinear frequency shifts normalized by the linear
frequencies are illustrated in Fig. 3. The frequency shifts
due to the extended self-nonlinear interactions and those of
the representative frequency are, respectively, obtained as
�ωk = ωNL

k − ωk and �	k = 	k − ωk. The frequency shifts
�ωk agree quite well with �	k at low energies and large
wave numbers, where the nonlinearity is weak. Conversely,
at high energies and small wave numbers, the frequency
shifts �ωk overestimate the actual frequency shifts since the
remnant interactions absorb the frequency shift due to the
extended self-nonlinear interactions. The nonlinear frequency
ωNL

k = ωk
√

1 + 2ωs
k/ωk agrees with 	k better than ωk + ωs

k
at small wave numbers, at which ωs

k is large.
The deviation of �	k/ωk from �ωk/ωk appears in the

wave numbers where �	k/ωk and �ωk/ωk are between 10−1

and 1. Since �ωk is derived from the extended self-nonlinear
interactions, the deviation of �	k/ωk from �ωk/ωk is caused
by the broad-mode interactions, including strongly nonlinear
interactions. Namely, the deviation between 10−1 and 1
indicates that the strongly nonlinear effects are no longer
negligible in this region. Therefore, the ratio �ωk/ωk can be
understood as the measure of the nonlinearity for each wave
number. In other words, the separation wave number between
the weak and strong turbulence, which is expected to be the
application limit of the weak turbulence theory, is determined
by the critical wave number where the ratio of the frequencies
is between 10−1 and 1.

C. Identification of boundary wave number

The weak turbulence theory is not applicable when the
nonlinear time scale is comparable with the linear time
scale. Therefore, the critical wave number kc = |kc| can be
defined as

�ωkc = εωkc , (12)

where ε is a constant between 10−1 and 1, as shown in Fig. 3.
To find the analytical representation of the critical wave

number kc for arbitrary energy levels, it is convenient to use
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FIG. 4. (Color online) Energy spectra (thick curves) and doubled
linear potential energy spectra (thin curves) for three energy levels.
The left and right inclined parallel lines represent 2V̌(kc; 1) and
2V̌(kc; 10−1), respectively. The circles indicate the position of the
energy spectra at the wave numbers at which the linear potential
energy spectra intersect with 2V̌(kc; 1) and with 2V̌(kc; 10−1).

the linear potential energy V(k). As shown in the previous two
subsections, a good estimation of ωNL

k as well as ωs
k is obtained

by its ensemble- or time-average 〈|ζk|2〉. Furthermore, as
derived in Appendix B, 〈|ζk|2〉 ≈ 4πV(k)/(ρkω2

k) in isotropic
fields. Therefore, the averaged ωNL

k is obtained from V(k).
It is assumed that the linear potential energy has the

self-similar form V(k) = Ck. The self-similarity of V(k) over
the entire inertial subrange for all the energy levels will be
seen in Fig. 4, which is a distinctive feature from the energy
spectra E(k). Equations (7), (9), and (12) give the analytical
representation of the critical wave number with the parameter
C corresponding to the energy level as

kc = 6(1 − σ 2)

h2

√
3C

ε(ε + 2)E
(13)

(see Appendix C for the derivation).
There exists a more convenient representation to graphi-

cally find the value of kc. Equation (13) can be rewritten as

V(kc) = ε(ε + 2)Eh4

108(1 − σ 2)2
k3

c ≡ V̌(kc; ε). (14)

To illustrate the validity of Eq. (14), the energy spectra E(k)
and twice the linear potential energy spectra 2V(k) are drawn
in Fig. 4. The two inclined parallel lines in Fig. 4 represent
2V̌(kc; 10−1) and 2V̌(kc; 1). The critical wave number kc for
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)

8E0

E0/8
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FIG. 5. (Color online) Energy spectra for different values of the
Young’s modulus. The straight lines show 2V̌(kc; 10−1) for each
Young’s modulus. The energy spectra between kc for ε = 10−1 and
that for ε = 1 are indicated by the thick curves, and the circles indicate
E(kc), where kc is determined by V(kc) = V̌(kc; 1).

ε can be found at the intersection of 2V(k) and 2V̌(kc; ε).
Then, our estimation predicts the separation wave number is
located between the critical wave number for ε = 10−1 and
that for ε = 1. In other words, the wave numbers at which
E(k)’s bend are located between kc for ε = 10−1 and that for
ε = 1 for all the energy levels. In the larger wave-number
side of the line 2V̌(kc; 10−1), we find that E(k) ≈ 2V(k) and
that the system is weakly nonlinear. Conversely, in the smaller
wave-number side of the line 2V̌(kc; 1), we found that E(k)
is far from 2V(k) and that ak cannot be approximated by the
harmonic oscillation.

To verify Eq. (14), other series of DNS, in which the
material parameters such as the Young’s modulus E and
thickness h of the elastic plates are artificially changed, were
performed. The energy spectra for different values of the
Young’s modulus are shown in Fig. 5. Because we used 8E0

and E0/8 for the Young’s modulus, the critical wave numbers
should be 2kc0 and kc0/2 according to Eq. (14), where E0 is the
Young’s modulus of the originally used steel plate and kc0 is
the critical wave number for E = E0. Clearly, Fig. 5 supports
that the right-hand side in Eq. (14) is proportional to Ek3

c .
Similarly, the energy spectra for different values of the

thickness h are shown in Fig. 6. Because we used 23/4h0 and
h0/23/4 for the thickness, the critical wave numbers should
be 2kc0 and kc0/2 again, where h0 is the originally used
thickness. This also supports that the coefficient in Eq. (14) is
proportional to h4k3

c . We also confirmed that the critical wave
number does not depend on the density ρ, although the figures
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FIG. 6. (Color online) Energy spectra for different values of the
thickness of the plate. The straight lines show 2V̌(kc; 10−1) for each
thickness. The energy spectra between kc for ε = 10−1 and that for
ε = 1 are indicated by the thick curves, and the circles indicate E(kc),
where kc is determined by V(kc) = V̌(kc; 1).

are omitted here. Note that we do not examine the dependence
of the critical wave number on the Poisson ratio σ since the
variation of the Poisson ratio σ among elastic media is small. In
Figs. 4–6, we have demonstrated the validity of the estimation
of the separation wave number according to Eq. (14) including
its coefficients.

V. CONCLUSION

In this paper, we have obtained the analytical representation
of the critical wave numbers at which the nonlinear frequency
shifts are comparable with the linear frequencies. In the deriva-
tion of the nonlinear frequency, the extended self-nonlinear
interactions, including the coupling with the companion
elementary wave, are explicitly evaluated. The coupling with
the companion elementary wave must be taken into account
generally in the weak turbulence systems containing the 1 ↔ 3
and 3 ↔ 1 interactions as well as the 2 ↔ 2 interactions. The
nonlinear frequencies evaluated by the extended self-nonlinear
interactions agree well with the representative nonlinear
frequencies determined by the maxima of the frequency
spectra obtained in the direct numerical simulations. The
agreement is remarkable at large wave numbers, in which the
weak turbulence spectrum is observed.

The analytically obtained critical wave number successfully
reproduced the separation wave number between the weak and
strong turbulence spectra. It is consistent with the view that the
weak turbulence theory is not applicable for wave numbers at
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FIG. 7. (Color online) (a) Density plots and contours of the
frequency spectra |̃ak(	)|2 for EL2. The vertical straight lines show
k = 16π , 32π , 64π , and 128π . (b) Frequency spectra for k = 16π ,
32π , 64π , and 128π for EL2. The positive and negative frequencies
are arranged horizontally with the gap.

which the nonlinear time scales are comparable with the linear
time scales. The agreement between the critical wave numbers
and the separation wave numbers as well as the dependence
of the wave numbers on the material parameters were also
confirmed.

The coexistence of the weak and strong turbulence spec-
tra implies that the large-scale strongly nonlinear coherent
structures coexist with a large number of small-scale weakly
nonlinear random waves in the real space. The characterization
of each structure is of great importance. The relations of this
real-space coexistence to the different properties between E(k)
and V(k) appearing in Fig. 4 are now under consideration.
We will also identify the energy transfer among waves in the
coexistence.
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APPENDIX A : STRUCTURES OF FREQUENCY SPECTRA

The density plots and contours of the frequency spectra for
EL2 are shown in Fig. 7(a). It corresponds to Fig. 2(b), where
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only the contours are drawn for the spectra. The ridge of the
frequency spectra in the negative frequencies corresponds to
the cusps of the contours which extend to the lower right.
Similarly, the ridge and trough in the positive frequencies
correspond to the cusps that extend to the upper right and
lower left, respectively. To see the ridges and trough more
clearly, the frequency spectra for k = 16π , 32π , 64π , and
128π on the line parallel to the vertical axis at each k are
shown in Fig. 7(b). Humps can be observed in the positive
and negative frequency regions of 	; the hump in the negative
frequency region is larger than that in the positive frequency
region. The null amplitude |̃ak(ωk)|2 = 0 produces a slit in
the right humps. This structure corresponds to the hornlike
extension of the contour curves to the lower right along ωk

in Fig. 2. The secondary maximum frequencies are located
near ωNL

k .
The |̃ak(ωk)|2 = 0 property is a direct consequence of

the definition of ak. The frequency-space representation of
Eq. (1b), p̃k(	) = iρ	ζ̃k(	), and the definition of the complex
amplitude, Eq. (2), lead to the relation |̃ak(	)|2 = ρ(ωk −
	)2 |̃ζk(	)|2/(2ωk). We have checked these relations in our
simulations, though the figures are omitted here.

APPENDIX B : SPECTRA OF LINEAR POTENTIAL
ENERGY AND OF DISPLACEMENT

In the present study, the periodic boundary condition with
a period of L = 1 m is used. The Fourier series is defined as

Fk = 1

L2

∫ L

0

∫ L

0
dxf (x) exp(−ik · x),

f (x) =
∑

k

Fk exp(ik · x),

where f (x) is a physical quantity such as the displacement
ζ (x) and momentum p(x) in the real space, and Fk is its
Fourier coefficient. The azimuthally integrated linear potential
energy spectrum is given as

V(k)�k =
∑

k−�k/2�|k|<k+�k/2

ρω2
k

2
|ζk|2,

where �k is the bin width used to obtain the spectrum; �k

is set to 2π/L in the present study. The summation in the
two-dimensional wave-number space can be replaced by the
integral as ∑

k

≈
∫ ∞

0
dk

∫ 2π

0
dθ

k

�kx�ky

.

In a statistically isotropic system, the ensemble- and/or
time-averaging 〈· · · 〉 is performed to evaluate the spectra:

V(k)�k ≈ 2πk�k

�kx�ky

ρω2
k

2
〈|ζk|2〉,

where �kx = �ky = 2π/L is the grid spacing.

APPENDIX C : FREQUENCY DUE TO
SELF-INTERACTIONS AND LINEAR POTENTIAL

ENERGY SPECTRA

In an isotropic system, the frequency due to the self-
interactions can be rewritten as

ωs
k = E

2πρ2ωk

∫ ∞

0
dk′

∫ 2π

0
dθ ′ |k × k′|4

|k − k′|4
V(k′)
ω2

k′

= 3Ek4

8ρ2ω3
k

[∫ k

0
dk′V(k′) + k4

∫ ∞

k

dk′k′−4V(k′)
]

, (C1)

where the integral over θ ′ is performed using the following
equation for a constant c:∫ 2π

0
dθ

sin4 θ

(1 + c2 + 2c cos θ )2
=

{
3π
4 for 0 � c � 1

3π
4c4 for c > 1

.

The self-similarity of the linear potential energy is assumed
as V(k) = Ckα . Then, the two integrals in Eq. (C1) converge
when −1 < α < 3, and Eq. (C1) is reduced to

ωs
k = 3

2(α + 1)(3 − α)

√
123(1 − σ 2)3

ρEh6

V(k)

k
. (C2)

Finally, Eqs. (9), (12), and (C2) yield Eqs. (13) and (14) for
α = 1.
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[9] T. Humbert, O. Cadot, G. Düring, C. Josserand, S. Rica, and
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