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WEIGHTED RICCI CURVATURE ESTIMATES
FOR HILBERT AND FUNK GEOMETRIES

SHIN-ICHI OHTA

We consider Hilbert and Funk geometries on a strongly convex domain in
Euclidean space. We show that, with respect to the Lebesgue measure on the
domain, the Hilbert and Funk metrics have bounded and constant negative
weighted Ricci curvature, respectively. As a corollary, these metric measure
spaces satisfy the curvature-dimension condition in the sense of Lott, Sturm
and Villani.

1. Introduction

Hilbert [1895] introduced the distance function dH on a bounded convex domain
D ⊂ Rn , related to his fourth problem. Given distinct points x, y ∈ D, denoting by
x ′ = x + s(y− x) and y′ = x + t (y− x) the intersections of the boundary ∂D and
the line passing through x and y with s < 0< t (see figure), Hilbert’s distance dH

is given by

dH(x, y)= 1
2 log
|x ′− y| · |x − y′|
|x ′− x | · |y− y′|

,

where | · | stands for the Euclidean norm. This is indeed a distance function on
D, and satisfies the interesting property that line segments between any points are
minimizing. In the particular case where D is the unit ball, (D, dH) coincides with
the Klein model of hyperbolic space. The structure of (D, dH) has been investigated
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from geometric and dynamical aspects; see, for example, [Egloff 1997; Benoist
2003; Colbois and Verovic 2004]. For instance, (D, dH) is known to be Gromov
hyperbolic under mild smoothness and convexity assumptions on D.

Funk [1929] introduced a nonsymmetrization of dH, namely

dF(x, y)= log
|x − y′|
|y− y′|

.

Note that dF(x, y) 6= dF(y, x), while the triangle inequality

dF(x, z)≤ dF(x, y)+ dF(y, z)

still holds. Clearly we have 2dH(x, y) = dF(x, y)+ dF(y, x), and line segments
are minimizing also with respect to Funk’s distance.

If ∂D is smooth and D is strongly convex (in other words, ∂D is positively
curved; see Definition 2.1), then dH and dF are realized by the smooth Finsler
structures

(1-1)
FH(x, v)=

|v|

2

(
1
|x−a|

+
1
|x−b|

)
,

FF(x, v)=
|v|

|x − b|
for v ∈ Tx D = Rn,

respectively (cf. [Shen 2001a, §2.3]), where a = x + sv and b = x + tv denote
the intersections of ∂D and the line passing through x in the direction v with
s < 0< t (see figure on page 185). Note that 2FH(x, v)= FF(x, v)+ FF(x,−v).
A remarkable feature of these metrics is that they have the constant negative flag
curvatures −1 and −1

4 , respectively; see [Okada 1983, Theorem 1; Shen 2001a,
Theorem 12.2.11], provided that n ≥ 2 as a matter of course. The flag curvature is
a generalization of the sectional curvature in Riemannian geometry, so it is natural
that (D, dH) and (D, dF) enjoy properties of negatively curved spaces.

Recently, the theory of the weighted Ricci curvature (see Definition 2.2) for
Finsler manifolds equipped with arbitrary measures has been developed in connec-
tion with optimal transport theory. It turned out that the weighted Ricci curvature is
a natural quantity and quite useful in the study of geometry and analysis on Finsler
manifolds; see [Ohta 2009a; 2012; Ohta and Sturm 2009; 2011]. The aim of this
article is to show that the weighted Ricci curvature for Hilbert and Funk geometries
admits uniform bounds with respect to the Lebesgue measure m L restricted on D.

Theorem 1.1 (Funk case). Let D ⊂ Rn with n ≥ 2 be a strongly convex domain
such that ∂D is smooth. Then (D, FF,m L) has constant negative weighted Ricci
curvature: specifically, for any unit vector v ∈ T D,

Ric∞(v)=−
n− 1

4
, RicN (v)=−

n− 1
4
−
(n+ 1)2

4(N − n)
for N ∈ (n,∞).
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Theorem 1.2 (Hilbert case). Let D ⊂ Rn with n ≥ 2 be a strongly convex domain
such that ∂D is smooth. Then the weighted Ricci curvature of (D, FH,m L) is
bounded; specifically, for any unit vector v ∈ T D,

Ric∞(v)∈
(
−(n−1), 2

]
, RicN (v)∈

(
−(n−1)−

(n+1)2

N−n
, 2
]

for N ∈ (n,∞).

We stress that our estimates are independent of the choice of the domain D.
There are several applications (Corollaries 5.1, 5.2) via the theory of the weighted
Ricci curvature.

The article is organized as follows. After preliminaries for Finsler geometry and
the weighted Ricci curvature, we prove Theorem 1.1 in Section 3 and Theorem 1.2
in Section 4. We finally discuss applications and remarks in Section 5.

2. Preliminaries

We very briefly review the necessary notions in Finsler geometry; we refer to
[Bao et al. 2000; Shen 2001a; 2001b] for further reading. Let M be a connected,
n-dimensional C∞-manifold without boundary such that n ≥ 2. Given a local
coordinate (x i )ni=1 on an open set�⊂M , we always use the coordinate (x i , v j )ni, j=1
of T� such that

v =

n∑
j=1

v j ∂

∂x j

∣∣∣
x
∈ Tx M for x ∈�.

Definition 2.1 (Finsler structures). A nonnegative function F : T M→ [0,∞) is
called a C∞-Finsler structure of M if the following three conditions hold.

(1) (Regularity) F is C∞ on T M \ 0, where 0 stands for the zero section.

(2) (Positive 1-homogeneity) It holds F(cv)= cF(v) for all v ∈ T M and c > 0.

(3) (Strong convexity) The n× n matrix

(2-1)
(
gi j (v)

)n
i, j=1 :=

(
1
2
∂2(F2)

∂vi∂v j (v)

)n

i, j=1

is positive definite for all v ∈ T M \ 0.

For x, y ∈ M , we can define the distance from x to y in a natural way by

d(x, y) := inf
η

∫ 1

0
F
(
η̇(t)

)
dt,

where the infimum is taken over all C1-curves η : [0, 1] → M with η(0)= x and
η(1)= y. This distance can be nonsymmetric (namely d(y, x) 6= d(x, y)), since F
is only positively homogeneous. A C∞-curve η on M is called a geodesic if it is
locally minimizing and has a constant speed (i.e., F(η̇) is constant).
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Given v ∈ Tx M , if there is a geodesic η : [0, 1] → M with η̇(0) = v, then we
define the exponential map by expx(v) := η(1). We say that (M, F) is forward
complete if the exponential map is defined on whole T M . If the reverse Finsler
manifold (M,

←−
F ) with

←−
F (v) := F(−v) is forward complete, then (M, F) is said

to be backward complete. We remark that (D, FH) is both forward and backward
complete (they are indeed equivalent since

←−
FH = FH), while (D, FF) is only

forward complete.
For each v ∈ Tx M \ 0, the positive definite matrix (gi j (v))

n
i, j=1 in (2-1) induces

the Riemannian structure gv of Tx M as

(2-2) gv

( n∑
i=1

ai
∂

∂x i

∣∣∣
x
,

n∑
j=1

b j
∂

∂x j

∣∣∣
x

)
:=

n∑
i, j=1

ai b j gi j (v).

Note that gcv = gv for c> 0. This inner product is regarded as the best Riemannian
approximation of F |Tx M in the direction v, in the sense that the unit sphere of gv
is tangent to that of F |Tx M at v/F(v) up to the second order. In particular, we
have gv(v, v)= F(v)2.

The Ricci curvature (as the trace of the flag curvature) for a Finsler manifold
is defined by using the Chern connection. Instead of giving the precise definition
in coordinates, we explain a useful interpretation due to Shen [2001b, §6.2; 1997,
Lemma 2.4]. Given a unit vector v ∈ Tx M∩F−1(1), we extend it to a nonvanishing
C∞-vector field V on a neighborhood of x in such a way that every integral curve of
V is geodesic, and consider the Riemannian structure gV induced from (2-2). Then
the Ricci curvature Ric(v) of v with respect to F coincides with the Ricci curvature
of v with respect to gV (in particular, it is independent of the choice of V ).

Let us fix a positive C∞-measure m on M . Inspired by the above interpretation
of the Finsler Ricci curvature and the theory of weighted Riemannian manifolds, the
weighted Ricci curvature for the triple (M, F,m) was introduced in [Ohta 2009a]
as follows.

Definition 2.2 (weighted Ricci curvature). Given a unit vector v ∈ Tx M ∩ F−1(1),
let η : (−ε, ε) → M be the geodesic such that η̇(0) = v. We decompose m
along η using the Riemannian volume measure volη̇ of gη̇ as m = e−9 volη̇, where
9 : (−ε, ε)→R. Then we define the weighted Ricci curvature involving a parameter
N ∈ [n,∞] by

(1) Ricn(v) :=

{
Ric(v)+9 ′′(0) if 9 ′(0)= 0,
−∞ if 9 ′(0) 6= 0,

(2) RicN (v) := Ric(v)+9 ′′(0)−
9 ′(0)2

N − n
for N ∈ (n,∞),

(3) Ric∞(v) := Ric(v)+9 ′′(0).
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We also set RicN (cv) := c2 RicN (v) for c ≥ 0.

We will say that RicN ≥ K holds for some K ∈ R if RicN (v) ≥ K F(v)2 for
all v ∈ T M . Observe that RicN (v) ≤ RicN ′(v) for N < N ′, and that for the
scaled space M ′ = (M, F, am) with a > 0 we have RicM ′

N (v) = RicM
N (v). It was

shown in [Ohta 2009a, Theorem 1.2] that RicN ≥ K is equivalent to Lott, Sturm
and Villani’s curvature-dimension condition CD(K , N ). (Roughly speaking, the
curvature-dimension condition is a convexity condition of an entropy functional
on the space of probability measures; we refer to [Sturm 2006a; 2006b; Lott and
Villani 2007; 2009; Villani 2009, Part III] for details and further theories.) This
equivalence extends the corresponding result on (weighted) Riemannian manifolds,
and has many analytic and geometric applications; see [Ohta 2009a].

3. The Funk case

We turn to the proof of Theorem 1.1. For brevity, we denote the Funk metric simply
by F , and we consider the standard coordinate of D ⊂ Rn . The following lemma
enables us to translate all the vertical derivatives (∂/∂vi ) into horizontal derivatives
(∂/∂x i ).

Lemma 3.1 [Okada 1983, Proposition 1; Shen 2001a, Lemma 2.3.1]. For any
v ∈ T D \ 0 and i = 1, 2, . . . , n, we have

∂F
∂x i (v)= F(v)

∂F
∂vi (v).

Proof of Theorem 1.1. On T D \ 0,

(3-1) 1
2
∂2(F2)

∂vi∂v j =
∂

∂vi

(
∂F
∂x j

)
=

∂

∂x j

(
1
F
∂F
∂x i

)
=

1
F

∂2 F
∂x i∂x j −

1
F2

∂F
∂x i

∂F
∂x j .

Now, we fix a unit vector v ∈ Tx D∩ F−1(1) and choose a coordinate such that x is
the origin, v = ∂/∂xn and gin(v)= 0 for all i = 1, 2, . . . , n− 1. Such a coordinate
exchange multiplies the Lebesgue measure merely by a positive constant, so the
weighted Ricci curvature does not change. Put V := ∂/∂xn on D and recall that the
all integral curves of V are minimizing (and hence reparametrizations of geodesics).
Therefore it suffices to calculate the weighted Ricci curvature of (D, gV ,m L).

We can represent ∂D∩{x ∈Rn
| xn > 0} as the graph of a C∞-function h :U→

(0,∞) for a sufficiently small neighborhood U ⊂ Rn−1 of 0, namely

(3-2) ∂D ∩ {(z, t) ∈ Rn−1
×R | z ∈U, t > 0} = {(z, h(z)) | z ∈U }.

Then (1-1) yields

F(V (z, t))= 1
h(z)−t

for (z, t) ∈ D ⊂ Rn−1
×R.
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Putting ∂i := ∂/∂x i for simplicity, we deduce from (3-1) that

gi j (V )= (h− t)∂i∂ j

( 1
h−t

)
− (h− t)2∂i

( 1
h−t

)
∂ j

( 1
h−t

)
= (h− t)

(
−
∂i∂ j (h− t)
(h− t)2

+
2∂i (h− t)∂ j (h− t)

(h− t)3

)
−
∂i (h− t)∂ j (h− t)

(h− t)2

=−
∂i∂ j (h− t)

h− t
+
∂i (h− t)∂ j (h− t)

(h− t)2
,

where the evaluations at (z, t) ∈ D were omitted. We remark that, for i, j 6= n,

gi j (V )=−
∂i∂ j h
h− t

+
∂i h∂ j h
(h− t)2

, gin(V )=−
∂i h

(h− t)2
, gnn(V )=

1
(h− t)2

.

Hence, when differentiating gi j (V (z, t)) by t , we need to take only the denominators
into account. Thus we find

∂[gi j (V )]
∂t

=−
∂i∂ j (h− t)
(h− t)2

+
2∂i (h− t)∂ j (h− t)

(h− t)3

=
1

h−t

(
gi j (V )+

∂i (h− t)∂ j (h− t)
(h− t)2

)
.

Decomposing m L as

m L = e−9
√

det(gi j (V )) dx1dx2
· · · dxn

along the curve η(t)= (0, t) ∈ D, we observe

9(t)= 1
2 log det(gi j (t)), 9 ′(t)= 1

2 trace
[
(gi j (t)) · (g′i j (t))

]
,

where we abbreviated as gi j (t) := gi j (V (0, t)) and (gi j (t)) stands for the inverse
matrix of (gi j (t)). Dividing9 ′(t) by the speed F(η̇(t))= F(V (0, t))= (h(0)−t)−1,
we obtain(
h(0)− t

)
9 ′(t)= 1

2 trace
[
(gi j (t)) ·

(
gi j (t)+

∂i (h(0)− t)∂ j (h(0)− t)
(h(0)− t)2

)]
≡

n+1
2
,

where the second equality follows from the fact that gin(t)=−∂i h(0)/(h(0)−t)2=0
for i 6= n, guaranteed by gin(v)= 0. As (D, F) has constant flag curvature −1

4 , we
therefore conclude that

Ric∞(v)=−
n− 1

4
, RicN (v)=−

n− 1
4
−
(n+ 1)2

4(N − n)
. �

4. The Hilbert case

We next consider the Hilbert case, where the calculation is similar but more involved.
Now F will denote the Hilbert metric of D.
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Proof of Theorem 1.2. Given a unit vector v ∈ Tx D ∩ F−1(1), similarly to the
previous section, we choose a coordinate such that x is the origin, v = ∂/∂xn and
that gin(v) = 0 for all i = 1, 2, . . . , n− 1. Put V := ∂/∂xn again. In addition to
h :U → (0,∞) as in (3-2), we introduce the function b :U → (−∞, 0) such that

∂D ∩ {(z, t) ∈ Rn−1
×R | z ∈U, t < 0} = {(z, b(z)) | z ∈U }.

Using the Funk metric F+ of D and its reverse F−(v) := F+(−v), and recalling
(1-1), we can write F(V ) as

F(V (z, t))=
F+(V (z, t))+ F−(V (z, t))

2
=

1
2

(
1

h(z)−t
+

1
t−b(z)

)
.

It follows from Lemma 3.1 and F−(v)= F+(−v) that

∂F−
∂x i =−F−

∂F−
∂vi .

This yields

2
∂2(F2)

∂vi∂v j =
1
2

∂2

∂vi∂v j (F
2
+
+ 2F+F−+ F2

−
)

=
1
2
∂2(F2

+
)

∂vi∂v j +
1
2
∂2(F2

−
)

∂vi∂v j −
∂i F+
F+

∂ j F−
F−
−
∂ j F+

F+

∂i F−
F−

+

(
∂i∂ j F+

F2
+

−
2∂i F+∂ j F+

F3
+

)
F−+

(
∂i∂ j F−

F2
−

−
2∂i F−∂ j F−

F3
−

)
F+.

By (3-1) we have, omitting the evaluations at (z, t) ∈ D,

4gi j (V )=−
∂i∂ j (h− t)

h− t
+
∂i (h− t)∂ j (h− t)

(h− t)2
−
∂i∂ j (t − b)

t − b
+
∂i (t − b)∂ j (t − b)

(t − b)2

−

(
∂i (h− t)

h− t
∂ j (t − b)

t − b
+
∂ j (h− t)

h− t
∂i (t − b)

t − b

)
−
∂i∂ j (h− t)

t − b
−
∂i∂ j (t − b)

h− t

=−(∂i∂ j (h− t)+ ∂i∂ j (t − b))
(

1
h−t
+

1
t−b

)
+

(
∂i (h− t)

h− t
−
∂i (t − b)

t − b

)(
∂ j (h− t)

h− t
−
∂ j (t − b)

t − b

)
.

Note that the assumption gin(v)= 0 implies

(4-1)
∂i h(0)
h(0)

−
∂i b(0)
b(0)

= 0 for i = 1, 2, . . . , n− 1.
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We also observe for later convenience that, for i, j 6= n,

4gi j (v)=−(∂i∂ j h(0)− ∂i∂ j b(0))
(

1
h(0)
−

1
b(0)

)
, 4gnn(v)=

(
1

h(0)
−

1
b(0)

)2

.

By the same reasoning as the Funk case, the numerators can be neglected when
one differentiates gi j (V ) with respect to t . Thus we find

4
∂gi j (V )
∂t

=−(∂i∂ j (h− t)+ ∂i∂ j (t − b))
(

1
(h−t)2

−
1

(t−b)2

)
+

(
∂i (h− t)
(h− t)2

+
∂i (t − b)
(t − b)2

)(
∂ j (h− t)

h− t
−
∂ j (t − b)

t − b

)
+

(
∂i (h− t)

h− t
−
∂i (t − b)

t − b

)(
∂ j (h− t)
(h− t)2

+
∂ j (t − b)
(t − b)2

)
.

We further calculate

4
∂2
[gi j (V )]
∂t2 =−(∂i∂ j (h− t)+ ∂i∂ j (t − b))

(
2

(h−t)3
+

2
(t−b)3

)
+

(
2∂i (h− t)
(h− t)3

−
2∂i (t − b)
(t − b)3

)(
∂ j (h− t)

h− t
−
∂ j (t − b)

t − b

)
+

(
∂i (h− t)

h− t
−
∂i (t − b)

t − b

)(
2∂ j (h− t)
(h− t)3

−
2∂ j (t − b)
(t − b)3

)
+ 2

(
∂i (h− t)
(h− t)2

+
∂i (t − b)
(t − b)2

)(
∂ j (h− t)
(h− t)2

+
∂ j (t − b)
(t − b)2

)
.

We abbreviate as gi j (t) := gi j (V (0, t)) and deduce from (4-1) that, for i, j 6= n,

4g′i j (0)= 4gi j (0)
(

1
h(0)
+

1
b(0)

)
,

4g′in(0)=−
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
1

h(0)
−

1
b(0)

)
,

4g′nn(0)= 8gnn(0)
(

1
h(0)
+

1
b(0)

)
.

We also obtain, for i, j 6= n,

4g′′i j (0)= 8gi j (0)
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+ 2

(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)
,

4g′′nn(0)= 8gnn(0)
(

2
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+

(
1

h(0)
+

1
b(0)

)2)
.
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Put 9(t)= 2−1 log(det(gi j (t))) and observe

9 ′(t)= 1
2 trace

[
(gi j (t)) · (g′i j (t))

]
,

9 ′′(t)= 1
2 trace

[
(gi j (t)) · (g′′i j (t))−

(
(gi j (t)) · (g′i j (t))

)2]
.

Comparing gi j (0) and g′i j (0), we have

9 ′(0)= 1
2

(
(n−1)

(
1

h(0)
+

1
b(0)

)
+2

(
1

h(0)
+

1
b(0)

))
=

n+ 1
2

(
1

h(0)
+

1
b(0)

)
.

Similarly,

1
2 trace

[
(gi j (0)) · (g′′i j (0))

]
= (n− 1)

(
1

h(0)2
+

1
h(0)b(0)

+
1

b(0)2

)
+

1
4

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)

+2
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+

(
1

h(0)
+

1
b(0)

)2

= (n+ 1)
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+

(
1

h(0)
+

1
b(0)

)2

+
1
4

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)
.

Combining this with

trace
[
((gi j (0)) · (g′i j (0)))

2]
= (n− 1)

(
1

h(0)
+

1
b(0)

)2

+ 4
(

1
h(0)
+

1
b(0)

)2

+
gnn(0)

8

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)(
1

h(0)
−

1
b(0)

)2

= (n+3)
(

1
h(0)
+

1
b(0)

)2

+
1
2

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)
,

we obtain
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9 ′′(0)= (n+ 1)
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
−

n+ 1
2

(
1

h(0)
+

1
b(0)

)2

=
n+ 1

2

(
1

h(0)2
+

1
b(0)2

)
.

Therefore we have, as F(v)= (h(0)−1
− b(0)−1)/2= 1,

d
dt

[
9 ′(t)

F(V (0, t))

]
t=0
=9 ′′(0)−

9 ′(0)
2

(
1

h(0)2
−

1
b(0)2

)
=−

n+ 1
h(0)b(0)

.

Since

0<−
1

h(0)b(0)
≤

1
4

(
1

h(0)
−

1
b(0)

)2

= 1,

this yields Ric∞(v) ∈ (−(n− 1), 2]. Moreover,

9 ′(0)2 =
(n+ 1)2

4

(
1

h(0)
+

1
b(0)

)2

= (n+ 1)2
(

1+
1

h(0)b(0)

)
∈ [0, (n+ 1)2)

shows that

RicN (v) ∈

(
−(n− 1)−

(n+ 1)2

N − n
, 2
]
. �

5. Applications and remarks

As mentioned in Section 2, RicN ≥ K is equivalent to the curvature-dimension
condition CD(K , N ). Spaces satisfying CD(K , N ) enjoy a number of properties
similar to Riemannian manifolds of Ric ≥ K and dim ≤ N . Since CD(K , N )
(between compactly supported measures) is preserved under the pointed measured
Gromov–Hausdorff convergence of locally compact, complete metric measure
spaces [Villani 2009, Theorem 29.25], we can deal with merely bounded, convex
domains D.

Corollary 5.1. Let D ⊂ Rn be a bounded convex domain with n ≥ 2. Then
the metric measure spaces (D, dF,m L) and (D, dH,m L) satisfy CD(K , N ) for
N ∈ (n,∞] with

K =−n−1
4
−
(n+1)2

4(N−n)
, K =−(n− 1)− (n+1)2

N−n
,

respectively, where we read K =−(n− 1)/4 and K =−(n− 1) when N =∞. In
particular, they satisfy

• the Brunn–Minkowski inequality by CD(K , N ) with N ∈ (n,∞],

• the Bishop–Gromov volume comparison by CD(K , N ) with N ∈ (n,∞).
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See [Sturm 2006b, Proposition 2.1, Theorem 2.3] (and, for N =∞, also [Villani
2009, Theorem 30.7; Ohta 2010, Theorem 6.1]) for the precise statements of
the Brunn–Minkowski inequality and the Bishop–Gromov volume comparison.
Beyond the general theory of the curvature-dimension condition, the weighted Ricci
curvature bound implies the following.

Corollary 5.2. Let D ⊂ Rn with n ≥ 2 be a strongly convex domain such that ∂D
is smooth. For K as in Corollary 5.1, (D, FF,m L) and (D, FH,m L) satisfy

• the Laplacian comparison for N ∈ (n,∞),

• the Bochner–Weitzenböck inequality for N ∈ (n,∞].

See [Ohta and Sturm 2009, Theorem 5.2] for the Laplacian comparison, and
[Ohta and Sturm 2011, Theorems 3.3, 3.6] for the Bochner–Weitzenböck formula
(by the Bochner–Weitzenböck inequality we meant the inequality given by plugging
the weighted Ricci curvature bound into the Bochner–Weitzenböck formula).

We conclude the article with remarks on possible improvements of the estimates
in Theorems 1.1, 1.2. Our estimates on RicN with respect to m L are independent
of the shape of D. In particular, Theorem 1.2 provides the same (far from optimal)
estimates even for the Klein model of the hyperbolic spaces. Thus there would be
a better choice of a measure depending on the shape of D. Then, as an arbitrary
measure is represented by e−ψm L , its weighted Ricci curvature is calculated by
combining Theorems 1.1, 1.2 and the convexity of ψ . One may think of the squared
distance function from some point as a candidate of ψ , however, in order to estimate
its convexity along geodesics, we need to bound not only the flag curvature but also
the uniform convexity as well as the tangent curvature (also called the S-curvature;
see [Ohta 2009b, Theorem 5.1]). The uniform convexity is measured by the constant

C= sup
x∈M

sup
v,w∈Tx M\0

F(w)
gv(w,w)1/2

,

and it is infinite for Funk metrics. As for Hilbert geometry, one could bound C by
the convexity of ∂D (but this seems unclear; see [Egloff 1997, Remark 2.1]). The
author has no idea about the tangent curvature, which measures how the tangent
spaces are distorted as one moves in M .

There are several natural constructive measures m on D, and it is interesting
to consider the corresponding weighted Ricci curvature Ricm

N (V ). Then, however,
it seems not easy (at least more difficult than m L) to calculate Ricm

N (V ) because
m should depend on the shape of whole ∂D, while gV is induced only from the
behavior of FF or FH near the direction V .

We also remark that, in Hilbert geometry (which is both forward and backward
complete), RicN with N <∞ cannot be nonnegative for any measure. Otherwise,
gV splits isometrically, which is a contradiction [Ohta 2012, Proposition 4.3]. Due
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to the same reasoning, Ric∞ can be nonnegative only when sup9 =∞.
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