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Nonequilibrium topological phase transitions in two-dimensional optical lattices
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Recently, concepts of topological phases of matter are extended to nonequilibrium systems, especially
periodically driven systems. In this paper, we construct an example which shows nonequilibrium topological phase
transitions using ultracold fermions in optical lattices. We show that the Rabi oscillation has the possibility to
induce nonequilibrium topological phases which are classified into time-reversal-invariant topological insulators
for a two-orbital model of alkaline-earth-metal atoms. Furthermore, we study the nonequilibrium topological
phases using time-dependent Schrieffer–Wolff-type perturbation theory, and we obtain an analytical expression
to describe the topological phase transitions from a high-frequency limit of external driving fields.
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I. INTRODUCTION

Topological properties inherent in quantum states of matter
are one of the significant issues in quantum many-body
physics. Starting from the studies of the quantum Hall effect,
many topological phases such as topological insulators and
topological superconductors [1,2] are found in solid-state
systems. As well as solid-state systems, ultracold atoms
in optical lattices [3–5] provide another fascinating stage
to investigate various quantum phenomena of bosons and
fermions, such as superfluidity, Mott insulators, artificially
generated gauge fields, and even nonequilibrium dynamics.
Some setups to realize topological phases are also proposed by
using ultracold bosons and fermions [6–15], and experimental
realization of those phases is a challenging issue in ultracold
atomic physics. As a physical consequence of the topologically
nontrivial nature of the quantum states, gapless edge states
appear on the boundary between topologically distinct regions
while the bulk energy spectrum is always gapful. These edge
states yield many intriguing quantum phenomena including
quantized responses, such as the quantum Hall and quantum
spin Hall effect [1].

Although the studies of topological phases have mostly
progressed in equilibrium states, it was pointed out recently
that one can investigate the topological nature of matter also
in nonequilibrium quantum states, especially in periodically
driven systems [16–25]. For example, graphene irradiated
under circularly polarized light opens its band gap and
shows the quantum Hall effect accompanied by gapless edge
states [16,17]. Photonic quantum walks are also investigated
from this viewpoint, and it is clarified that the systems can show
topological phases with topologically protected zero-energy
states, which is verified both theoretically and experimen-
tally [18,19]. After these works, there come new possibilities
to manipulate topological properties of matter using time-
dependent external fields and also to trigger topological
phase transitions in nonequilibrium situations. Thus, it is a
stimulating issue to understand how various time-dependent
fields change the topological properties of systems, and also
to explore new setups to induce nonequilibrium topological
phase transitions. In addition, while there are some works on
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nonequilibrium topological phases, few proposals exist for
realization of time-reversal-invariant topological insulators,
which include quantum spin Hall insulators and Z2 topological
insulators, in nonequilibrium (except for Ref. [21,22]). From
a fundamental interest in the nonequilibrium topological
quantum phenomena and for the realization of time-reversal-
invariant topological insulators, it is valuable to construct a
new example of nonequilibrium realization of time-reversal-
invariant topological insulating phases.

In this paper, we investigate the possibilities to realize
nonequilibrium topological phases using ultracold atoms. Here
we demonstrate that the Rabi oscillation driven by external
light can trigger topological phase transitions in a two-orbital
optical lattice model of alkaline-earth-metal atoms. It is also
shown that the Rabi oscillation preserves (effective) time-
reversal symmetry, and therefore we can discuss nonequilib-
rium topological phases which belong to the class of time-
reversal-invariant topological insulators (class AII [26,27],
although we restrict our analyses to two-dimensional cases in
this article). Furthermore, we formulate the perturbation theory
for the effective Hamiltonian of periodically driven systems,
and we obtain an analytical expression for the effective
Hamiltonian which describes the nonequilibrium topological
phase transitions.

This paper is organized as follows. In Sec. II, we summarize
the formalism to describe nonequilibrium topological phases
based on Floquet theory for periodically driven quantum
systems. In Sec. III, we show the connection between the Rabi
oscillation phenomena and topological phase transitions from
analytical and numerical calculations of the time-dependent
Schrödinger equation. From the (quasi-)energy spectrum, we
directly confirm that the Rabi oscillation drives topological
phase transitions in time-reversal-invariant two-orbital optical
lattices. In Sec. IV, we analyze the nonequilibrium topological
phase transitions from a perturbation-theoretical viewpoint to
obtain more comprehensive understanding of these phenom-
ena. In Sec. V, we summarize our results and comment on
experimental realization.

II. FLOQUET THEORY

In this section, we briefly review the theoretical framework
to describe topological phenomena in periodically driven
systems, based on Floquet theory [28–30]. In the context
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of optical lattices, Floquet theory is also applied to atoms
driven by periodic optical lattice shaking, which was proposed
theoretically and then realized experimentally [31–33]. Let us
consider a system driven by a time-periodic external field. The
time evolution of this system is governed by a time-dependent
Hamiltonian H(t), which has periodicity in time: H(t + T ) =
H(t) (T is a period of the external field). Starting from the
Schrödinger equation i∂t |ψ(t)〉 = H(t) |ψ(t)〉 (we set � = 1
in this paper), we can prove the following theorem (Floquet
theorem): solutions of the Schrödinger equation |ψ(t)〉 can be
expressed as

|ψ(t)〉 = e−iεα t |φα(t)〉 , (1)

|φα(t + T )〉 = |φα(t)〉 . (2)

εα is called quasienergy, where the index α labels the solution.
Remarkably, the quasienergy εα and the corresponding state
|φα(t)〉 have the following properties. Let us define an
“effective Hamiltonian” Heff of this system:

U (T ,0) ≡ e−iHeffT , (3)

where U (t,0) = T exp
[−i

∫ t

0 dt ′H(t ′)
]

is a time-evolution op-
erator of the system. We note that Heff is a static Hamiltonian,
not depending on time. Then, it can be shown that

Heff |α〉 = εα |α〉 , (4)

|φα(t)〉 = P (t) |α〉 , (5)

where P (t) ≡ U (t,0)eiHeff t . In other words, εα is an eigenvalue
of the effective Hamiltonian Heff , and |φα(t)〉 is a “time-
evolved” state of the corresponding eigenstate of Heff . These
facts enable us to study the time-dependent system using a
static effective Hamiltonian. In a special case, if Heff has a
topologically nontrivial structure in the same sense as topo-
logical insulators and topological superconductors in static
systems, the system shows topological quantum phenomena.
For example, the system shows topologically protected gapless
states on the boundary of the system (in this formulation,
“gapless” is used in the sense of the quasienergy spectrum).
Notably, these phenomena occur in genuinely time-dependent
and nonequilibrium situations. When the external field causes
a nonequilibrium topological phase transition, we can drive
the system into topologically nontrivial states, starting from
topologically trivial states.

A. Symmetries

Symmetries play a significant role for topological structures
of Hamiltonians. To study topological quantum phenomena in
periodically driven systems, we have to study symmetries of
the effective Hamiltonian Heff . However, from the definition
Eq. (3), we can connect symmetries of the effective Hamilto-
nian to those of the time-dependent Hamiltonian H(t) [21,30].
For example, the time-reversal symmetry of the effective
Hamiltonian is expressed as QH∗

effQ
† = Heff , where Q is a

unitary operator. It can be shown that the effective Hamiltonian
satisfies such symmetry when H(t) satisfies

Q̃H(−t + t0)∗Q̃† = H(t + t0), (6)

where Q = U †(2t0,0)Q̃ and t0 is some reference time. We can
derive similar formulas for other symmetries, e.g., particle-
hole symmetry and inversion symmetry. In the following
section, we use these properties to study the symmetries of
the time-dependent external fields.

III. TOPOLOGICAL PHASE TRANSITIONS INDUCED BY
RABI OSCILLATION

In this section, we show that the Rabi oscillation has the
potential to change topological properties of systems and
can cause topological phase transitions in ultracold atomic
systems. First, we describe the Rabi oscillation phenomena
from a viewpoint of Floquet theory using a two-level system.
We then demonstrate explicitly that the Rabi oscillation
actually causes topological phase transitions in a model of
two-orbital optical lattices.

A. Rabi oscillation from the viewpoint of Floquet theory

Let us start from a two-level system coupled with external
light. The Hamiltonian is expressed as

H(t) =
(

� −�R

2 e−iφe−iωt

−�R

2 eiφeiωt −�

)
(7)

within rotating-wave approximation. Here each level has
energy +� and −�, and �R is a Rabi frequency. ω is the
frequency of the light and φ is a phase factor. This Hamiltonian
is a fundamental model for Rabi oscillation, and we can
solve the time-dependent Schrödinger equation easily in a
textbook manner [34]. Moreover, due to time periodicity of
this Hamiltonian H(t + T ) = H(t) (where T = 2π/ω is a
period), we can apply Floquet theory to this system. From the
definition Eq. (3), we can calculate the effective Hamiltonian
of this system, and the result is

Heff =
(

1 − ω

2εR

)(
� − ω

2 −�R

2 e−iφ

−�R

2 eiφ −(
� − ω

2

)
)

, (8)

where εR =
√

(� − ω/2)2 + (�R/2)2. The quasienergy of
this Hamiltonian is ±(εR − ω/2) (which can be interpreted
as the energy of “dressed states”). We note that we can read
“effective levels” ±�eff from this effective Hamiltonian as

�eff =
(

1 − ω

2εR

)(
� − ω

2

)
. (9)

Naturally, �eff is reduced to � when �R = 0. An important
feature is that �eff reaches � − ω/2 as �R → ∞. Then, if
2� < ω (i.e., we apply blue-detuned external light to the
system), �eff = 0 when �R = 2

√
�(ω − �), and �eff < 0

for �R > 2
√

�(ω − �) as shown in Fig. 1. This is the key
property of the Rabi oscillation to control topological structure
in the following analyses.

B. Model and symmetries

Based on these features of an effective Hamiltonian of
the Rabi oscillation phenomena, we construct a model for
topological phase transitions induced by Rabi oscillation in
optical lattice systems. Let us consider a band insulator of
two-component fermionic atoms in an optical lattice which
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FIG. 1. The effective level �eff of the two-level system subject to
the Rabi oscillation. Here we set the parameters as � = 1 (the energy
unit) and ω = 3.

have two orbital degrees of freedom for each component. Two-
orbital optical lattices can be implemented in several ways, for
example by using alkaline-earth-metal atoms [35], or by using
higher band degrees of freedom in optical lattices [36]. In the
following, we focus on the former case. Alkaline-earth-metal
atoms have the electronic ground state (1S0) and the metastable
excited state (3P0), which has a long enough lifetime to
neglect spontaneous emission in the typical time scale of the
experiment. We can use these internal degrees of freedom
as orbitals. For realizing time-reversal-invariant topological
insulators, it is proper to use atoms with two spin states for each
orbital, such as 171Yb, which has the nuclear spin I = 1/2 [37].
These atoms are loaded in an optical lattice potential, and the
two orbitals are optically coupled with each other. We assume
that the laser setup to create the optical lattice has time-reversal
symmetry and spatial inversion symmetry. Then the 4 × 4 (two
orbitals and two spins) Hamiltonian in the rotating frame of the
interorbital optical coupling can be expressed as the following
general form (see also similar setups considered in Ref. [10] to
realize time-reversal-invariant topological insulators in optical
lattices using alkaline-earth-metal atoms):

H0(k) = ε(k)14 +
(

M(k)12 A(k) · σ

A(k) · σ −M(k)12

)
. (10)

Here σ are the Pauli matrices for spin and 1n denotes the n × n

identity matrix. ε(k) ± M(k) expresses band dispersion of the
upper (lower) orbital. A(k) represents the optical coupling be-
tween these orbitals. The time-reversal symmetry is expressed
as (−iσ2)H∗

0(−k)(−iσ2)† = H0(k), that is, ε(−k) = ε(k),
M(−k) = M(k), and A(−k) = −A(k). The spatial inversion
symmetry is PH0(−k)P † = H0(k), where P = diag(1,1, −
1, − 1). The Fermi energy is located between the two orbitals,
such that the lower bands are completely filled and the
upper bands are empty. The interorbital optical coupling
A(k) is necessary to keep the system in a gapful insulator
after the topological phase transition. The form A(k) · σ is a
consequence of the fact that the polarization of the light couples
with the atomic spin, and therefore this term is analogous to
(but not the same as) the spin-orbit coupling in solid-state
systems.

In the following, we consider (quasi-)two-dimensional
cases in which the confinement potential along the z direction
is sufficiently strong [38]. The detailed forms of ε(k),M(k),
and A(k) depend on concrete laser setups. Our strategy
described below can be applied to general two-orbital band
insulators in which the Hamiltonian has the form of Eq. (10),
e.g., the setup in Ref. [10]. But to make the calculation
simple we assume that one of the orbitals is s-like and the
other is px-like (or py-like) and we start from a tight-binding
description of these bands with only nearest-neighbor hopping.
Then we have

ε(k) = C1 cos k · a1 + C2(cos k · a2 + cos k · a3), (11)

M(k) = M − B1(1 − cos k · a1) (12)

−B2(2 − cos k · a2 − cos k · a3),

Aμ(k) =
3∑

ν=1

Aμν sin k · aν, (13)

where a1 = (1,0)a,a2 = (1/2,
√

3/2)a,a3 = (−1/2,
√

3/2)a,
and a is the lattice constant. Here we set the geometry of
the lattice triangular since it is rather difficult in optical
lattice systems to prepare px ± ipy orbitals on square lattice
geometry as in the case of semiconducting solids [1,2]. We set
the parameter Aμν appropriately to open a gap in the whole
Brillouin zone.

Thanks to the inversion symmetry, topological properties of
this system are determined by a product of parity eigenvalues
at time-reversal-invariant momenta in the Brillouin zone [39].
We note that the parity eigenvalues which determine the
topological properties of the system are directly connected to
the sign of the mass term M(k) at the time-reversal-invariant
momenta. This means that the system is in a topologically
nontrivial phase when 0 < M � 3.83B2 (or 3.83B2 � M < 0)
in static situations. In most cases, optical lattices in such a
topologically nontrivial regime are realized by strong synthetic
gauge-field coupling to the atoms [10]. However, in this article
we do not assume that the static system is in the nontrivial
parameter regime and try to realize the topological phase using
nonequilibrium driving (Rabi oscillation), instead of using
strong gauge fields.

To the Hamiltonian of atoms in an optical lattice, we
add external light as the time-dependent perturbation which
induces Rabi oscillation for each atom, in the form which
breaks the inversion symmetry:

H′(t) =
(

0 −i �R

2 e−iφe−iωtσμ

i �R

2 eiφeiωtσμ 0

)
, (14)

where μ = 1, 2, or 3 indicates the direction of the polarization
vector of the light, and we use the rotating-wave approxima-
tion. We note that this external perturbation is also expressed
in the rotating frame of the optical coupling in Eq. (10) and
therefore the frequency ω is the difference between that of
the optical coupling and the external light. For simplicity, we
neglect the k dependence of the Rabi frequency �R and set
the polarization of the external field in the direction of μ = 1.
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The whole system evolves in time under the Hamiltonian
H(k,t) = H0(k) + H′(t).

We note that this external perturbation term preserves the
time-reversal symmetry. From Eq. (6), it can be seen that H′(t)
satisfies the time-reversal symmetry for Q̃ = −iσ2 and t0 =
−φ/ω. In general, H(t) and Heff have different symmetry
operators, i.e., Q̃ and Q, but we can see that the symmetry
operators are identical for H(t) and Heff when φ = 0.

C. Topological phase transitions

Now we describe nonequilibrium topological phase transi-
tions induced by the Rabi oscillation. In the two-level system
discussed in Sec. III A, the time-dependent Schrödinger
equation can be exactly solved. In the present optical lattice
system, despite neglecting interactions between atoms, we
cannot solve the Schrödinger equation easily because of the
existence of the A(k) term. However, in time-reversal-invariant
insulators, their topological properties are determined by some
special points in the Brillouin zone, i.e., time-reversal-invariant
momenta K , which are equivalent to −K up to adding some
multiples of reciprocal vectors [39]. At those points, A(k)
vanishes because of time-reversal symmetry A(−k) = −A(k).
Then the Hamiltonian at time-reversal-invariant momenta is
block diagonalized, and it can be seen immediately that each
block is identical to the two-level systems in Eq. (7). Therefore
we can solve the Schrödinger equation at the special points,
and especially we obtain an “effective mass” (corresponding
to the aforementioned “effective levels”) Meff(K ) as

Meff(K ) =
(

1 − ω

2εR

)[
M(K ) − ω

2

]
, (15)

where εR =
√

(M(K ) − ω/2)2 + (�R/2)2. As mentioned be-
fore, if 2M(K ) < ω, the effective mass at the K point can
reverse its sign from positive to negative. Therefore, we can
expect topological phase transitions if we appropriately choose
the frequency ω and the amplitude �R of the external light [40].

In Fig. 2, we show the quasienergy spectrum of this system
obtained from the numerical calculation of the Schrödinger
equation under H(k,t) [41]. We start from a topologically
trivial band structure at �R = 0. It can be seen apparently
that the band structure changes and the band gap shrinks as
we apply the external field. At �R/2 	 0.75, the band gap
closes and the band structure becomes topologically nontrivial,
corresponding to the sign change of the effective mass at
K = (0,π/a). As a consequence of the topologically nontrivial
band structure, it can be seen that gapless helical edge states
appear between the band gap. These results mean that the
(off-resonant) Rabi oscillation changes the effective band
structure and actually causes the nonequilibrium topological
phase transition into the time-reversal-invariant topological
insulator.

IV. ANALYSIS FROM PERTURBATION THEORY

In the previous section, we have seen the nonequilibrium
topological phase transitions focusing on the Rabi oscillation at
time-reversal-invariant momenta. However, it is rather unclear
from the analysis how the Rabi oscillation affects the structure
of the effective Hamiltonian in the whole Brillouin zone.

FIG. 2. (Color online) The quasienergy spectrum of the effective
Hamiltonian. Here we set the parameters as C1 = C2 = 0.05,M =
1 (the energy unit), B1 = 0.25,B2 = 0.15,A11 = A23 = 0.15,A13 =
A21 = 0.25,φ = 0, and ω = 3. The figures show the quasienergy at
(a) �R/2 = 0, (b) �R/2 = 0.5, (c) �R/2 = 0.75, and (d) �R/2 =
1.25.

Moreover, from a theoretical point of view, the analysis is
exact at the special points in the Brillouin zone but it depends
on the specific form of the time-dependent Hamiltonian, and
therefore it is difficult to generalize the analysis to other
dynamical phenomena. Then it should be useful to formulate
another systematic method to understand the nonequilibrium
topological phases induced by the Rabi oscillation in the form
which can be applied to other periodically driven systems,
when we investigate the nonequilibrium topological phases
from a general viewpoint. In this section, we formulate the
perturbation theory which can be applied to a broad class
of periodically driven quantum systems and reexamine the
nonequilibrium topological phase transitions discussed in the
previous section from the perturbation-theoretical viewpoint.

A. Formulation of perturbation theory

First, we construct the perturbation theory, which is useful
to analyze periodically driven systems from a high-frequency
limit of the external field. Roughly speaking, this perturbation
theory can be regarded as a time-dependent version of the
Schrieffer-Wolff transformation [42]. We start from Eq. (1).
After substituting Eq. (1) into the Schrödinger equation
i∂t |ψ(t)〉 = H(t) |ψ(t)〉, we obtain

[H(t) − i∂t ] |φ(t)〉 = ε |φ(t)〉 , (16)

|φ(t + T )〉 = |φ(t)〉 . (17)

From this equation, it can be seen that the quasienergy and
the corresponding Floquet state can be obtained from the
eigenvalue problem of the operator H(t) − i∂t (we call it the
“Floquet operator” in this paper). We note that this operator
is defined on a Hilbert space H ⊗ T which includes a Hilbert
space T of time-periodic functions (H is the Hilbert space of
the system) [29].
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The central idea of the perturbation theory is to perform a
unitary transformation on the Floquet operator HF ≡ H(t) −
i∂t which makes the eigenvalue problem Eq. (16) expand
in terms of the external time-dependent field. We consider
the unitary transformation which has a form eS(t)HF e−S(t).
In this form, S(t) is an anti-Hermitian operator and must
satisfy a condition S(t + T ) = S(t) because of the periodicity
of the Floquet state [Eq. (17)]. Next, we formally expand the
transformed operator in terms of S(t):

eS(t)HF e−S(t) = H0 + H′(t) − i∂t + [S(t),H0]

+[S(t),H′(t)] + [S(t), − i∂t ]

+ 1

2!
[S(t),[S(t),H0]] + 1

2!
[S(t),[S(t),H′(t)]]

+ 1

2!
[S(t),[S(t), − i∂t ]] + . . . . (18)

Here we divide the Hamiltonian as H(t) = H0 + H′(t), where
H0 is a static part of the Hamiltonian and H′(t) is a time-
periodic external field. The next step is to determine S(t). We
choose

[S(t), − i∂t ] = −H′(t) (19)

to cancel out the second term in Eq. (18). Since [S(t), − i∂t ] =
i∂tS(t), we obtain

S(t) = i

∫ t

0
dt ′H′(t ′), (20)

and we can readily confirm that the condition S(t + T ) = S(t)
is satisfied if the time average of the external field over a period
is zero. Then, we arrive at

eS(t)HF e−S(t) = H0 − i∂t + [S(t),H0] + 1

2
[S(t),H′(t)]

+ 1

2!
[S(t),[S(t),H0]]

+1

3
[S(t),[S(t),H′(t)]] + . . . . (21)

From Eq. (20), it can be seen that this expansion in S(t) is
justified if r/ω is small, where r is the strength of the external
field and ω = 2π/T is its frequency (in the following, we
assume that this condition is satisfied). Since we choose S(t)
to cancel out the bare external field H′(t), the transformed
operator Eq. (21) is expressed as powers of a dimensionless
parameter r/ω. The operator Eq. (21) is still time dependent,
but we note that in Eq. (21) the time-dependent part is smaller
than the original Hamiltonian by the factor r/ω included in
S(t). Let us consider that the frequency is large compared to
the amplitude r and also large compared to the energy scale of
the static part of the system, i.e., the energy scale of H0 (we
denote it � in the following). If we assume that the contribution
to the effective Hamiltonian from a time-dependent part A in
the Hamiltonian can be expanded in terms of a dimensionless
parameter A/ω, the contribution to the effective Hamiltonian
from the time-dependent part of Eq. (21) is estimated as
O( r

ω
�
ω

) and O(( r
ω

)2). When the frequency ω is large enough,
this contribution to the effective Hamiltonian is considered to
be small. Therefore we can neglect the time-dependent part
of Eq. (21) in the first order in r/ω and the zeroth order in

�/ω as the first approximation. This static approximation of
the Floquet operator gives an approximate expression for the
effective Hamiltonian. Finally, we obtain [43]

Heff 	 H0 + 1

T

∫ T

0
dt[S(t),H0] + 1

2T

∫ T

0
dt[S(t),H′(t)]

+ 1

2!T

∫ T

0
dt[S(t),[S(t),H0]]

+ 1

3T

∫ T

0
dt[S(t),[S(t),H′(t)]] + . . . . (22)

For example, one can confirm that the expansion Eq. (22)
correctly reproduces the exact solution Eq. (8) of the Rabi
oscillation in the low orders of �R/ω and �/ω.

We note that the perturbation formula Eq. (22) can be
improved systematically in terms of not only the parameter
r/ω but also �/ω. We neglect the time dependence of the
transformed operator Eq. (21) in the zeroth order in �/ω and
the first order in r/ω, but if we treat the time-dependent part as a
new external field and repeat the procedure of the perturbation
theory we can include the higher-order contributions of the
parameter �/ω and r/ω. The higher-order terms in r/ω are
fully included by these procedures in addition to calculating
the higher-order expansion in Eq. (21).

B. Comparison to the results of the previous section

We now apply the perturbation theory to the system treated
in the previous section. Let us express the Hamiltonian Eq. (10)
as

H0(k) =
3∑

μ,ν=0

dμν(k)σμ ⊗ τν. (23)

Here σμ is the Pauli matrix for spins, and τν is that for
orbitals (we define σ0 = τ0 = 12, where 12 is the 2 × 2 iden-
tity matrix). Then d00(k) = ε(k),d03(k) = M(k),dμ1(k) =
Aμ(k)(μ = 1,2,3), and dμν(k) = 0 otherwise. We also express
the external field Eq. (14) as H′(t) = �R

2 [− sin(ωt + φ)σ1 ⊗
τ1 + cos(ωt + φ)σ1 ⊗ τ2]. For simplicity, we set φ = 0 and
apply the perturbation theory to this system. For example, we
obtain, in the lowest order of S(t),

1

T

∫ T

0
dt[S(t),H0] = −�R

ω
M(k)σ1 ⊗ τ2

+ �R

ω
A2(k)σ3 ⊗ τ0 − �R

ω
A3(k)σ2 ⊗ τ0, (24)

1

2T

∫ T

0
dt[S(t),H′(t)] = −�2

R

4ω
σ0 ⊗ τ3. (25)

From Eq. (25), we can notice that the contribution from
[S(t),H′(t)] (in other words, the noncommutativity of the
external fields in different times) gives the change of the
mass term M(k), which is important for the topological phase
transition in the previous section. We calculate the effects of
the external fields in the second order of (�R/2)/ω and in the
first order of �/ω by performing the expansion Eq. (22) in the
second order of S(t) and repeating the perturbative procedure
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once. Then, we end up with

Heff 	
3∑

μ,ν=0

deff
μν (k)σμ ⊗ τν, (26)

where

deff
00 (k) =ε(k), (27)

deff
03 (k) =M(k)

(
1 − �2

R

ω2

)
− �2

R

4ω
, (28)

deff
11 (k) =A1(k)

(
1 − �2

R

4ω2

)
, (29)

deff
21 (k) =A2(k)

(
1 − 3�2

R

4ω2

)
, (30)

deff
31 (k) =A3(k)

(
1 − 3�2

R

4ω2

)
, (31)

deff
20 (k) = − A3(k)

(�R

ω
+ 2M(k)�R

ω2

)
, (32)

deff
30 (k) =A2(k)

(�R

ω
+ 2M(k)�R

ω2

)
, (33)

deff
12 (k) = −M(k)

(�R

ω
+ 2M(k)�R

ω2

)

+ �3
R

4ω2
− 2A2

1(k)�R

ω2
, (34)

deff
22 (k) = − 2A1(k)A2(k)�R

ω2
, (35)

deff
32 (k) = − 2A1(k)A3(k)�R

ω2
. (36)

The terms Eqs. (27)–(31) are already present in the original
Hamiltonian Eq. (23) but modified by the external perturba-
tion. In the special case, the deff

03 (k) component Eq. (28) at
time-reversal-invariant momenta k = K indeed agrees with
the expansion of the exact result Eq. (15) in terms of �R/ω

and M(K )/ω. On the other hand, the terms Eqs. (32)–(36)
are absent in the original Hamiltonian, and they predict that
the new contribution appears in the effective Hamiltonian.

FIG. 3. (Color online) Plots of some components of the effective
Hamiltonian. The left figure is the σ1 ⊗ τ2 component calculated by
the perturbation theory [Eq. (34)], and the right figure is that of the
numerical result for the effective Hamiltonian. The parameters of the
Hamiltonian are the same as in Fig. 2(d).

Particularly, Eqs. (32), (33), (35), and (36) vanish at k = K ,
and therefore we cannot extract these terms from the exact
solution at the time-reversal-invariant momenta.

We can directly check the prediction of the perturbation
theory by comparing these results to the numerical calculation
of the effective Hamiltonian. In Figs. 3 and 4, we show the
numerical results of the effective Hamiltonian and the corre-
sponding components calculated from the perturbation theory.
We can see clearly that the perturbative expression grasps
the qualitative behavior of the effective Hamiltonian, except
for quantitative difference from the higher-order contribution.
The results indicate that the perturbation theory can describe
the qualitative behavior of the effective Hamiltonian in the
whole Brillouin zone, starting from the high-frequency limit
of the external field.

V. CONCLUSION

In this paper, we have constructed a model which shows
nonequilibrium topological phase transitions using ultracold
atoms in optical lattices. By using the Rabi oscillation, we
can control the band structure and the band gap effectively
and induce time-reversal-invariant topological insulators in
dynamical situations. Furthermore, we have formulated the
perturbation theory which qualitatively reproduces the be-
havior of the effective Hamiltonian using the time-dependent
Schrieffer–Wolff-type transformation. The perturbation theory
developed here can be used for a wide variety of periodically
driven systems as long as the frequency of the external field
is the largest energy scale in the systems, and therefore it
may be useful to analyze other time-dependent phenomena in
periodically driven systems.

Toward experimental realization of the nonequilibrium
topological phase, we note some required points. First, to
suppress the loss of atoms filled in the lower band, the driving
frequency should be chosen off resonant on the other bands.
Strictly speaking, of course, if we choose the frequency off
resonant, the system is far from equilibrium states and it
is no more in “insulating” states. Whether we can observe
the edge states in such nonequilibrium distribution is one
of nontrivial problems of nonequilibrium topological states,
but the possibility to observe the edge states may remain
if the heating of the system is not serious. The calculations
for nonequilibrium properties of the topological phases which
include the nonequilibrium distribution are beyond this work

FIG. 4. (Color online) Plots of some components of the effective
Hamiltonian. The left figure is the σ3 ⊗ τ0 component calculated by
the perturbation theory [Eq. (33)], and the right figure is that of the
numerical result for the effective Hamiltonian. The parameters of the
Hamiltonian are the same as in Fig. 2(d).
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and left for future problems. Second, although the situation
is complicated because of the reason mentioned above, the
temperature of the atomic gas is in general required to be
sufficiently lower than the band gap of the insulator. In
our system, the band gap is determined by the strength of
the optical coupling A(k), which depends on experimental
setups but can be estimated to be of the order of the recoil
energy [10,44].

For the analyses in this paper, we have neglected the effects
of the trap potential and interactions. However, our setup
to realize nonequilibrium topological phases uses local Rabi
oscillation in real space; then effects of trap potentials are
considered to be almost similar to those in static topological
phases, which are discussed in Ref. [45] for instance. This can
be seen from the perturbation formula Eq. (22), which shows

that the effects of the combination of the external field and
the trap potential vanish since the local external perturbation
commutes with the on-site trap potential. The effects of
interactions on topological phases can be investigated with
Green’s-function methods [46–48]. As long as the interactions
are not large enough to close the energy gap in the “topological
Hamiltonian” [48], the topological phases survive even if the
atom-atom interactions exist.
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