Abstract

We consider a class of integer-valued discrete convex functions, called BS-
convex functions, defined on integer lattices whose affinity domains are sets
of integral points of integral bisubmodular polyhedra. We examine discrete
structures of BS-convex functions and give a characterization of BS-convex
functions in terms of their convex conjugate functions by means of (discord-
ant) Freudenthal simplicial divisions of the dual space.

Keywords: BS-convex functions, bisubmodular polyhedra, the Freudenthal
simplicial divisions, discrete convexity

2000 MSC: 90C27, 52B40, 52A41, 05C22

1. Introduction

Kazuo Murota [13] has developed the theory of discrete convex functions
such as M- and M♮-convex functions and L- and L♮-convex functions (also
see [10, Chapter VII]). The class of integer-valued such discrete convex func-
tions defined on integer lattices is the most fundamental, where M♮-convex
functions have generalized polymatroids [8, 12] as their affinity domains and
L♮-convex functions have convex extensions with respect to the Freudenthal
simplicial divisions.

Murota’s M- and M♮-convex functions and L- and L♮-convex functions
arise in many discrete optimization problems that have efficient solution al-

Email address: fujishig@kurims.kyoto-u.ac.jp (Satoru Fujishige)
1 The author is grateful to Hiroshi Hirai, Shin-ichi Tanigawa, and Kenjiro Takazawa for
their useful comments that improved the presentation. The present research is supported
by JSPS Grant-in-Aid for Scientific Research (B) 25280004.
gorithms (see, e.g., [15, 18]). Nice combinatorial structures of such discrete convex functions come from a kind of local submodularity or matroidal structure, i.e., the greediness property of Jack Edmonds [7] or the structures of affinity domains, of the conjugate functions, composed by the Freudenthal simplices (the details will be discussed in Sections 3 and 4).

In this paper we consider a class of integer-valued discrete convex functions, called BS-convex functions, which are defined on integer lattices and whose affinity domains are sets of integral points of integral bisubmodular polyhedra. As shown in [1, 3, 4, 5, 10, 16], (integral) bisubmodular polyhedra have a signed greediness property and their conjugate functions have affinity domains composed of reflected Freudenthal simplices. The class of BS-convex functions has not yet been fully investigated in the paradigm of Murota’s discrete convex analysis.

We introduce, in Section 2, the concept of BS-convex function. In Section 3 we examine the combinatorial structures of BS-convex functions in detail, especially the half-integrality property of their gradient vectors. Moreover, we give a characterization of BS-convex functions by means of the Freudenthal simplicial divisions and the Union-Jack simplicial divisions of the dual space in Section 4. Some concluding remarks are given in Section 5.

2. Bisubmodular polyhedra

Let V be a finite nonempty set and 3^V be the set of ordered pairs (X, Y) of disjoint subsets $X, Y \subseteq V$. Denote by \mathbb{Z} and \mathbb{R} the set of integers and that of reals, respectively. Also define $\frac{1}{2}\mathbb{Z} = \{\frac{k}{2} \mid k \in \mathbb{Z}\}$. Any element in $\frac{1}{2}\mathbb{Z}$ is called half-integer and is called a half-integer if it is not an integer. Any vector x in $(\frac{1}{2}\mathbb{Z})^V$ is called half-integral and is called integral if $x(v)$ is an integer for each $v \in V$. For any $X \subseteq V$ define $\chi_X \in \{0, 1\}^V$ to be the characteristic vector of X, i.e., $\chi_X(v) = 1$ for $v \in X$ and $\chi_X(v) = 0$ for $v \in V \setminus X$. When X is a singleton $\{w\}$, we also write χ_w as $\chi_{\{w\}}$. For any $x \in \mathbb{R}^V$ and $X \subseteq V$ define $x(X) = \sum_{v \in X} x(v)$, where $x(\emptyset) = 0$. Let $f : 3^V \to \mathbb{R}$ be a bisubmodular function, i.e., for every $(X, Y), (W, Z) \in 3^V$ we have

$$f(X, Y) + f(W, Z) \geq f((X, Y) \cup (W, Z)) + f((X, Y) \cap (W, Z)),$$

(1)

where $(X, Y) \cup (W, Z) = ((X \cup W) \setminus (Y \cup Z), (Y \cup Z) \setminus (X \cup W))$ and $(X, Y) \cap (W, Z) = (X \cap W, Y \cap Z)$. We assume $f(\emptyset, \emptyset) = 0$. Define

$$P(f) = \{x \in \mathbb{R}^V \mid \forall (X, Y) \in 3^V : x(X) - x(Y) \leq f(X, Y)\},$$

(2)
which is called the *bisubmodular polyhedron* associated with f. When f is integer-valued, we call the set $P_Z(f)$ of all the integral points of $P(f)$ a *BS-convex set* (BS stands for ‘bisubmodular’). Note that the convex hull of $P_Z(f)$ is equal to $P(f)$ (see [4, 5] and [10, Sect. 3.5.(b)]). Occasionally we identify a BS-convex set with its corresponding bisubmodular polyhedron.

Now consider an integer-valued function $g : Z^V \rightarrow Z \cup \{+\infty\}$ on the integer lattice Z^V. Suppose that for every vector $\mu : V \rightarrow R$ the convex hull of the affinity (or linearity) domain given by

$$\text{Argmin}\{g(x) - \langle \mu, x \rangle \mid x \in Z^V\},$$

if nonempty, is a BS-convex set. Then we call g a *BS-convex function*. Note that every face of a bisubmodular polyhedron (or a BS-convex set) is a bisubmodular polyhedron (or a BS-convex set).

We have the following theorem, which can be shown by using characterizations of base polyhedra due to Tomizawa [10, Th. 17.1] and of bisubmodular polyhedra due to Ando and Fujishige [1]. We define an *edge vector* to be an edge-direction vector identified up to non-zero scalar multiplication.

Theorem 1. A pointed polyhedron Q is a bisubmodular polyhedron if and only if every edge vector of Q has at most two nonzero components that are equal to 1 or -1.

3. BS-convex functions

Now, let us examine the combinatorial structures of BS-convex functions. Let $g : Z^V \rightarrow Z \cup \{+\infty\}$ be a BS-convex function. In the sequel we suppose that the effective domain of BS-convex function g is full-dimensional and every affinity domain of g is pointed.

Consider an affinity domain Q, of g, of full dimension and suppose that the affine function supporting g on Q is given by

$$y = \langle \mu, x \rangle + \alpha. \quad (4)$$

Note that μ is the gradient vector of g on Q.

Let q be an extreme point of Q. Then we have a signed poset $\mathcal{P}(q) = (V, A(q))$ that expresses the signed exchangeability associated with q for Q (see [1, 2, 9]). Signed poset $\mathcal{P}(q)$ has possible bidirected arcs a as follows:
(a) \(a = u + v \) for distinct vertices \(u, v \in V \), which means that \(q + \chi_u - \chi_v \in Q \).

(b) \(a = u + v \) for vertices \(u, v \in V \), which means that \(q + \chi_u + \chi_v \in Q \) if \(u \neq v \), and \(q + \chi_u \in Q \) if \(u = v \).

(c) \(a = u - v \) for vertices \(u, v \in V \), which means that \(q - \chi_u - \chi_v \in Q \) if \(u \neq v \), and \(q - \chi_u \in Q \) if \(u = v \).

For any arc \(a = u \pm v \) define \(\partial a = \pm \chi_u \pm \chi_v \) if \(u \neq v \), and \(\partial a = \pm \chi_u \) if \(u = v \). Note that (a), (b), and (c) mean that for any arc \(a \in A(q) \) we have \(q + \partial a \in Q \).

For a half-integral vector \(x \in \left(\frac{1}{2} \mathbb{Z} \right)^V \) we call \(U_0 = \{ v \in V \mid x(v) \in \mathbb{Z} \} \) the integer support of \(x \) and \(U_1 = V \setminus U_0 \) the half-integer support of \(x \), respectively.

Then we have the following.

Theorem 2. Let \(g : \mathbb{Z}^V \rightarrow \mathbb{Z} \cup \{ +\infty \} \) be a BS-convex function. For every affinity domain \(Q \) of \(g \) of full dimension the gradient vector \(\mu \) of \(g \) on \(Q \) and the constant \(\alpha \) in (4) are half-integral, and for the half-integer support \(U_1 \) of \(\mu \) we have even \(z(U_1) \) for all \(z \in Q \) or odd \(z(U_1) \) for all \(z \in Q \) according as \(\alpha \) is an integer or a half-integer.

Proof: Since \(Q \) is full-dimensional, letting \(q \) be an extreme point of \(Q \), the gradient vector \(\mu \) is the unique solution of the following system of linear equations with integral right-hand sides:

\[
\langle \partial a, \mu \rangle = g(q + \partial a) - g(q) \quad (\forall a \in A(q)) ,
\]

which has a half-integral solution.

Moreover, it follows from the above argument that \(\mu \) is expressed as \(\mu_0 + \frac{1}{2} \chi U_1 \), where \(\mu_0 = [\mu] \), the integral vector obtained from \(\mu \) by rounding \(\mu(v) \) \((v \in V) \) downward to the nearest integers. Then we have \(g(z) = \langle \mu_0, z \rangle + \frac{1}{2} z(U_1) + \alpha \), which is an integer. Hence, \(\alpha \) is half-integral, from which the latter part of the present theorem easily follows. \(\square \)

Example 3. The set of four points

\[Q = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\} \]
in \mathbb{Z}^3 is a BS-convex set due to Theorem 1. A linear function

$$y = \frac{1}{2}(x(1) + x(2) + x(3))$$

with a half-integer gradient takes on integers on Q since $x(1) + x(2) + x(3)$ is even for all $x \in Q$. Actually Q is an even-parity delta-matroid (see [4, 11]).

A BS-convex set $Q \subseteq \mathbb{Z}^V$ is said to have constant parity if $x(V)$ for all $x \in Q$ are even or are odd.

Conjecture 4. Every constant-parity BS-convex set of full dimension is a translation of a delta-matroid.

Note that BS-convex sets are exactly jump systems without any hole ([4, 11]) and that all the points of every constant-parity BS-convex set Q of full dimension lie on the boundary of the convex hull of Q.

4. BS-convex functions and Freudenthal simplicial divisions

For the unit hypercube $[0,1]^V$ a Freudenthal cell is defined as follows. Let $\lambda = (v_1, \cdots, v_n)$ be a permutation of V, where $n = |V|$. For each $i = 0, 1, \cdots, n$ denote by S_i the set of the first i elements of λ. Then the simplex formed by χ_{S_i} ($i = 0, 1, \cdots, n$) is a Freudenthal cell. The collection of $n!$ such Freudenthal cells corresponding to permutations of V gives us the (standard) Freudenthal simplicial division of the unit hypercube $[0,1]^V$.

For any $S \subseteq V$, transforming the standard Freudenthal simplicial division of $[0,1]^V$ by making points χ_X correspond to points $\chi_{(X \setminus S) \cup (S \setminus X)}$ for all $X \subseteq V$, we get another simplicial division of $[0,1]^V$, which we call the Freudenthal simplicial division reflected by S and each cell of it a Freudenthal cell reflected by S.

The (standard) Freudenthal simplicial division of \mathbb{R}^V is obtained by translations of the standard Freudenthal simplicial division of $[0,1]^V$ to translated unit hypercubes $[0,1]^V + z (= [z, z + \chi_V])$ by all integral $z \in \mathbb{Z}^V$ (see Figure 1).
Figure 1. The Freudenthal simplicial division.

For each integral point \(z \in \mathbb{Z}^V \) let us consider a Freudenthal simplicial division of \([0,1]^V + z \) reflected by a set (depending on \(z \)) in such a way that it gives us a simplicial division of \(\mathbb{R}^V \). We call such a simplicial division of \(\mathbb{R}^V \) a discordant Freudenthal simplicial division of \(\mathbb{R}^V \) (see Figure 2). Given a discordant Freudenthal simplicial division \(D \) of \(\mathbb{R}^V \), we call \(f : \mathbb{Z}^V \to \mathbb{Z} \cup \{+\infty\} \) a \(D \)-convex function if the extension, denoted by \(\hat{f} \), of \(f \) with respect to simplicial division \(D \) is convex on \(\mathbb{R}^V \). The convex conjugate \(f^* : \mathbb{R}^V \to \mathbb{R} \cup \{+\infty\} \) of \(f \) is defined by

\[
 f^*(p) = \sup \{ \langle p, x \rangle - f(x) \mid x \in \mathbb{Z}^V \} \quad (\forall p \in \mathbb{R}^V).
\]

(6)

The restriction of \(f^* \) on the integer lattice \(\mathbb{Z}^V \) is denoted by \(f^*_\mathbb{Z} \).
Theorem 5. Given a discordant Freudenthal simplicial division D of \mathbb{R}^V, let $f : \mathbb{Z}^V \to \mathbb{Z} \cup \{+\infty\}$ be a D-convex function having full-dimensional pointed affinity domains. Then $f_\mathbb{Z}$ is a BS-convex function. Moreover, the gradient of $f_\mathbb{Z}$ on every full-dimensional affinity domain is an integral vector.

Proof: Since facets of any (standard) Freudenthal cell have normal vectors of form $\chi_u - \chi_v$ for $u, v \in V$ with $u \neq v$ and $\pm \chi_v$ for $v \in V$ and since f has an integral gradient on every reflected Freudenthal cell, the present theorem follows from Theorem 1 and the definitions of f^* and $f_\mathbb{Z}^*$.

Now, for a discordant Freudenthal simplicial division D for integer lattice \mathbb{Z}^V let us consider the simplicial division $\frac{1}{2}D$ for the half-integral lattice $\left(\frac{1}{2}\mathbb{Z}\right)^V$. Then, Theorem 5 leads us to the following.

Corollary 6. Consider any $\frac{1}{2}D$-convex function $f : \left(\frac{1}{2}\mathbb{Z}\right)^V \to \frac{1}{2}\mathbb{Z} \cup \{+\infty\}$ having full-dimensional pointed affinity domains. Let Q be an affinity domain (a BS-convex set), of f^*, of full dimension that corresponds to a point $p \in \left(\frac{1}{2}\mathbb{Z}\right)^V$ giving a vertex of the epi-graph of f. Then, the subdifferential $\partial f(p)$ of f at p (the affinity domain Q of $f_\mathbb{Z}$ corresponding to p) is a BS-convex set.
It should be noted that for any \(\frac{1}{2}D \)-convex function \(f \) (in Corollary 6) \(f^*_{\mathbf{Z}} \)
defined on \(\mathbf{Z}^V \) takes on values in \(\frac{1}{2}\mathbf{Z} \), possibly half-integers.

Theorem 7. Let \(f : \left(\frac{1}{2}\mathbf{Z} \right)^V \to \frac{1}{2}\mathbf{Z} \cup \{+\infty\} \) be a \(\frac{1}{2}D \)-convex function having
full-dimensional pointed affinity domains. Suppose that for every point \(p \in \frac{1}{2}\mathbf{Z} \) corresponding to a vertex of the epi-graph of \(\hat{f} \), putting \(Q = \partial f(p) \) and
letting \(U_1 \) be the half-integer support of \(p \), \(z(U_1) \) is even for all \(z \in Q \) or \(z(U_1) \) is odd for all \(z \in Q \) according as \(f(p) \) is an integer or a half-integer. Then, \(f^*_{\mathbf{Z}} \) is a BS-convex function.

Proof: Note that for the affine function (4) that supports \(f^* \) on \(Q = \partial f(p) \)
we have \(\mu = p \) and \(\alpha = -f(p) \). We can thus see from the assumption that \(f^*_{\mathbf{Z}} \) is integer-valued (cf. Theorem 2). Hence the present theorem follows from
Corollary 6. \(\square \)

We call a \(\frac{1}{2}D \)-convex function \(f \) in Theorem 7 a BS\(^*\)-convex function.

From Theorems 2 and 7 we now have the following.

Theorem 8. A function \(g : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\} \) is a BS-convex function if and only if we have \(g = f^*_{\mathbf{Z}} \) for a BS\(^*\)-convex function \(f : \left(\frac{1}{2}\mathbf{Z} \right)^V \to \frac{1}{2}\mathbf{Z} \cup \{+\infty\} \).

Let us denote by UJ the Union-Jack simplicial division for \(\mathbf{Z}^V \) of \(\mathbf{R}^V \).
(The Union-Jack simplicial division is a discordant Freudenthal simplicial division obtained in a somewhat concordant way as follows. For each integral point \(z \in \mathbf{Z}^V \) \(z \) is expressed as \(z_0 + \chi_W \) where \(z_0 \) has all even values \(z_0(v) \) \((v \in V) \) and \(W \) is a subset of \(V \). Then consider a Freudenthal simplicial division of \([z, z + \chi_V]\) reflected by \(W \).) Also denote by \(\frac{1}{2}\)UJ the half Union-Jack simplicial division for \(\left(\frac{1}{2}\mathbf{Z} \right)^V \) (see Figure 3). Similarly we define the quarter Union-Jack simplicial division \(\frac{1}{4}\)UJ for \(\left(\frac{1}{4}\mathbf{Z} \right)^V \). Then we have

Theorem 9. Every discordant Freudenthal simplicial division \(D \) for \(\mathbf{Z}^V \) of \(\mathbf{R}^V \) is a coarsening of the half Union-Jack simplicial division \(\frac{1}{2}\)UJ for \(\left(\frac{1}{2}\mathbf{Z} \right)^V \). Hence the class of the convex extensions of BS-convex functions is a subclass of the convex conjugate functions of \(\frac{1}{2}\mathbf{Z} \)-valued \(\frac{1}{2}\)UJ-convex functions for the fixed quarter Union-Jack simplicial division \(\frac{1}{4}\)UJ for \(\left(\frac{1}{4}\mathbf{Z} \right)^V \).
5. Concluding Remarks

We have examined structures of BS-convex functions, which are integer-valued discrete convex functions having BS-convex sets (sets of integral points in integral bisubmodular polyhedra) as their affinity domains. We have shown the following relations.

\[
\{ D\text{-convex functions (}\forall D\text{)} \} \subset \{ \text{BS}^\bullet\text{-convex functions} \} \\
\subset \{ \frac{1}{2} D\text{-convex functions (}\forall D\text{)} \}
\]

and by duality (or conjugacy)

\[
\{ D\text{-convex functions (}\forall D\text{)} \}^\bullet \subset \{ \text{BS-convex functions} \} \\
\subset \{ \frac{1}{2} D\text{-convex functions (}\forall D\text{)} \}^\bullet,
\]

where \(\{f, \cdots\}^\bullet = \{f^\bullet, \cdots\} \). We also have

\[
\{ \frac{1}{2} D\text{-convex functions (}\forall D\text{)} \} \subset \{ \frac{1}{4} \text{UJ-convex functions} \}.
\]

Murota [14] considered M-convex functions on constant-parity jump systems, which are closely related to BS-convex functions since the convex hulls
of BS-convex sets and of jump systems are both integral bisubmodular polyhedra (see [4, 11]). Domains of M-convex functions on jump systems considered in [14] may have holes. Moreover, the convex extension of such an M-convex function restricted on the underlying integer lattice may take on non-integral values on the holes. A special case of BS-convex functions defined on delta-matroids was also considered in [6, 17].

Since BS-convex functions have combinatorially nice structures, we think that we will find practical problems where BS-convex functions play a fundamental rôle in solving them effectively.

