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Abstract

We consider a class of integer-valued discrete convex functions, called BS-
convex functions, defined on integer lattices whose affinity domains are sets
of integral points of integral bisubmodular polyhedra. We examine discrete
structures of BS-convex functions and give a characterization of BS-convex
functions in terms of their convex conjugate functions by means of (discor-
dant) Freudenthal simplicial divisions of the dual space.
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1. Introduction

Kazuo Murota [13] has developed the theory of discrete convex functions
such as M- and M♮-convex functions and L- and L♮-convex functions (also
see [10, Chapter VII]). The class of integer-valued such discrete convex func-
tions defined on integer lattices is the most fundamental, where M♮-convex
functions have generalized polymatroids [8, 12] as their affinity domains and
L♮-convex functions have convex extensions with respect to the Freudenthal
simplicial divisions.

Murota’s M- and M♮-convex functions and L- and L♮-convex functions
arise in many discrete optimization problems that have efficient solution al-
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gorithms (see, e.g., [15, 18]). Nice combinatorial structures of such discrete
convex functions come from a kind of local submodularity or matroidal struc-
ture, i.e., the greediness property of Jack Edmonds [7] or the structures of
affinity domains, of the conjugate functions, composed by the Freudenthal
simplices (the details will be discussed in Sections 3 and 4).

In this paper we consider a class of integer-valued discrete convex func-
tions, called BS-convex functions, which are defined on integer lattices and
whose affinity domains are sets of integral points of integral bisubmodular
polyhedra. As shown in [1, 3, 4, 5, 10, 16], (integral) bisubmodular poly-
hedra have a signed greediness property and their conjugate functions have
affinity domains composed of reflected Freudenthal simplices. The class of
BS-convex functions has not yet been fully investigated in the paradigm of
Murota’s discrete convex analysis.

We introduce, in Section 2, the concept of BS-convex function. In Sec-
tion 3 we examine the combinatorial structures of BS-convex functions in de-
tail, especially the half-integrality property of their gradient vectors. More-
over, we give a characterization of BS-convex functions by means of the
Freudenthal simplicial divisions and the Union-Jack simplicial divisions of
the dual space in Section 4. Some concluding remarks are given in Section 5.

2. Bisubmodular polyhedra

Let V be a finite nonempty set and 3V be the set of ordered pairs (X, Y )
of disjoint subsets X, Y ⊆ V . Denote by Z and R the set of integers and
that of reals, respectively. Also define 1

2
Z = {k

2
| k ∈ Z}. Any element in

1
2
Z is called half-integral and is called a half-integer if it is not an integer.

Any vector x in (1
2
Z)V is called half-integral and is called integral if x(v) is

an integer for each v ∈ V . For any X ⊆ V define χX ∈ {0, 1}V to be the
characteristic vector of X, i.e., χX(v) = 1 for v ∈ X and χX(v) = 0 for
v ∈ V \X. When X is a singleton {w}, we also write χw as χ{w}. For any
x ∈ RV and X ⊆ V define x(X) =

∑
v∈X x(v), where x(∅) = 0.

Let f : 3V → R be a bisubmodular function, i.e., for every (X,Y ), (W,Z) ∈
3V we have

f(X,Y ) + f(W,Z) ≥ f((X, Y ) ⊔ (W,Z)) + f((X, Y ) ⊓ (W,Z)), (1)

where (X, Y ) ⊔ (W,Z) = ((X ∪ W ) \ (Y ∪ Z), (Y ∪ Z) \ (X ∪ W )) and
(X, Y ) ⊓ (W,Z) = (X ∩W,Y ∩ Z). We assume f(∅, ∅) = 0. Define

P(f) = {x ∈ RV | ∀(X,Y ) ∈ 3V : x(X)− x(Y ) ≤ f(X, Y )}, (2)
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which is called the bisubmodular polyhedron associated with f . When f is
integer-valued, we call the set PZ(f) of all the integral points of P(f) a BS-
convex set (BS stands for ‘bisubmodular’). Note that the convex hull of
PZ(f) is equal to P(f) (see [4, 5] and [10, Sect. 3.5.(b)]). Occasionally we
identify a BS-convex set with its corresponding bisubmodular polyhedron.

Now consider an integer-valued function g : ZV → Z ∪ {+∞} on the
integer lattice ZV . Suppose that for every vector µ : V → R the convex hull
of the affinity (or linearity) domain given by

Argmin{g(x)− ⟨µ, x⟩ | x ∈ ZV }, (3)

if nonempty, is a BS-convex set. Then we call g a BS-convex function. Note
that every face of a bisubmodular polyhedron (or a BS-convex set) is a bisub-
modular polyhedron (or a BS-convex set).

We have the following theorem, which can be shown by using characteriza-
tions of base polyhedra due to Tomizawa [10, Th. 17.1] and of bisubmodular
polyhedra due to Ando and Fujishige [1]. We define an edge vector to be an
edge-direction vector identified up to non-zero scalar multiplication.

Theorem 1. A pointed polyhedron Q is a bisubmodular polyhedron if and
only if every edge vector of Q has at most two nonzero components that are
equal to 1 or −1.

3. BS-convex functions

Now, let us examine the combinatorial structures of BS-convex functions.
Let g : ZV → Z ∪ {+∞} be a BS-convex function. In the sequel we suppose
that the effective domain of BS-convex function g is full-dimensional and
every affinity domain of g is pointed.

Consider an affinity domain Q, of g, of full dimension and suppose that
the affine function supporting g on Q is given by

y = ⟨µ, x⟩+ α. (4)

Note that µ is the gradient vector of g on Q.
Let q be an extreme point of Q. Then we have a signed poset P(q) =

(V,A(q)) that expresses the signed exchangeability associated with q for Q
(see [1, 2, 9]). Signed poset P(q) has possible bidirected arcs a as follows:
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(a) a = u+−v for distinct vertices u, v ∈ V , which means that q+χu−χv ∈
Q.

(b) a = u++v for vertices u, v ∈ V , which means that q + χu + χv ∈ Q if
u ̸= v, and q + χu ∈ Q if u = v.

(c) a = u−−v for vertices u, v ∈ V , which means that q − χu − χv ∈ Q if
u ̸= v, and q − χu ∈ Q if u = v.

For any arc a = u±±v define ∂a = ±χu ± χv if u ̸= v, and ∂a = ±χu if
u = v. Note that (a), (b), and (c) mean that for any arc a ∈ A(q) we have
q + ∂a ∈ Q.

For a half-integral vector x ∈ (1
2
Z)V we call U0 = {v ∈ V | x(v) ∈ Z} the

integer support of x and U1 = V \U0 the half-integer support of x, respectively.
Then we have the following.

Theorem 2. Let g : ZV → Z ∪ {+∞} be a BS-convex function. For every
affinity domain Q of g of full dimension the gradient vector µ of g on Q and
the constant α in (4) are half-integral, and for the half-integer support U1 of
µ we have even z(U1) for all z ∈ Q or odd z(U1) for all z ∈ Q according as
α is an integer or a half-integer.

Proof: Since Q is full-dimensional, letting q be an extreme point of Q,
the gradient vector µ is the unique solution of the following system of linear
equations with integral right-hand sides:

⟨∂a, µ⟩ = g(q + ∂a)− g(q) (∀a ∈ A(q)), (5)

which has a half-integral solution.
Moreover, it follows from the above argument that µ is expressed as

µ0 +
1
2
χU1 , where µ0 = ⌊µ⌋, the integral vector obtained from µ by rounding

µ(v) (v ∈ V ) downward to the nearest integers. Then we have g(z) =
⟨µ0, z⟩ + 1

2
z(U1) + α, which is an integer. Hence, α is half-integral, from

which the latter part of the present theorem easily follows. □

Example 3. The set of four points

Q = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
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in Z3 is a BS-convex set due to Theorem 1. A linear function

y =
1

2
{x(1) + x(2) + x(3)}

with a half-integer gradient takes on integers on Q since x(1)+x(2)+x(3) is
even for all x ∈ Q. Actually Q is an even-parity delta-matroid (see [4, 11]).

A BS-convex set Q ⊆ ZV is said to have constant parity if x(V ) for all
x ∈ Q are even or are odd.

Conjecture 4. Every constant-parity BS-convex set of full dimension is a
translation of a delta-matroid.

Note that BS-convex sets are exactly jump systems without any hole
([4, 11]) and that all the points of every constant-parity BS-convex set Q of
full dimension lie on the boundary of the convex hull of Q.

4. BS-convex functions and Freudenthal simplicial divisions

For the unit hypercube [0, 1]V a Freudenthal cell is defined as follows.
Let λ = (v1, · · · , vn) be a permutation of V , where n = |V |. For each
i = 0, 1, · · · , n denote by Si the set of the first i elements of λ. Then the
simplex formed by χSi

(i = 0, 1, · · · , n) is a Freudenthal cell. The collection
of n! such Freudenthal cells corresponding to permutations of V gives us the
(standard ) Freudenthal simplicial division of the unit hypercube [0, 1]V .

For any S ⊆ V , transforming the standard Freudenthal simplicial division
of [0, 1]V by making points χX correspond to points χ(X\S)∪(S\X) for all X ⊆
V , we get another simplicial division of [0, 1]V , which we call the Freudenthal
simplicial division reflected by S and each cell of it a Freudenthal cell reflected
by S.

The (standard ) Freudenthal simplicial division of RV is obtained by
translations of the standard Freudenthal simplicial division of [0, 1]V to trans-
lated unit hypercubes [0, 1]V + z (= [z, z + χV ]) by all integral z ∈ ZV (see
Figure 1).
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Figure 1. The Freudenthal simplicial division.

For each integral point z ∈ ZV let us consider a Freudenthal simplicial
division of [0, 1]V + z reflected by a set (depending on z) in such a way that
it gives us a simplicial division of RV . We call such a simplicial division of
RV a discordant Freudenthal simplicial division of RV (see Figure 2). Given
a discordant Freudenthal simplicial division D of RV , we call f : ZV →
Z ∪ {+∞} a D-convex function if the extension, denoted by f̂ , of f with
respect to simplicial division D is convex on RV . The convex conjugate
f • : RV → R ∪ {+∞} of f is defined by

f •(p) = sup{⟨p, x⟩ − f(x) | x ∈ ZV } (∀p ∈ RV ). (6)

The restriction of f • on the integer lattice ZV is denoted by f •
Z.
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Figure 2. A discordant Freudenthal simplicial division D.

Theorem 5. Given a discordant Freudenthal simplicial division D of RV ,
let f : ZV → Z ∪ {+∞} be a D-convex function having full-dimensional
pointed affinity domains. Then f •

Z is a BS-convex function. Moreover, the
gradient of f •

Z on every full-dimensional affinity domain is an integral vector.

Proof: Since facets of any (standard) Freudenthal cell have normal vectors
of form χu − χv for u, v ∈ V with u ̸= v and ±χv for v ∈ V and since f has
an integral gradient on every reflected Freudenthal cell, the present theorem
follows from Theorem 1 and the definitions of f • and f •

Z. □
Now, for a discordant Freudenthal simplicial division D for integer lattice

ZV let us consider the simplicial division 1
2
D for the half-integral lattice

(1
2
Z)V . Then, Theorem 5 leads us to the following.

Corollary 6. Consider any 1
2
D-convex function f : (1

2
Z)V → 1

2
Z ∪ {+∞}

having full-dimensional pointed affinity domains. Let Q be an affinity domain
(a BS-convex set ), of f •, of full dimension that corresponds to a point p ∈
(1
2
Z)V giving a vertex of the epi-graph of f̂ . Then, the subdifferential ∂f(p)

of f at p (the affinity domain Q of f •
Z corresponding to p) is a BS-convex

set.
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It should be noted that for any 1
2
D-convex function f (in Corollary 6) f •

Z

defined on ZV takes on values in 1
2
Z, possibly half-integers.

Theorem 7. Let f : (1
2
Z)V → 1

2
Z ∪ {+∞} be a 1

2
D-convex function having

full-dimensional pointed affinity domains. Suppose that for every point p ∈
1
2
Z corresponding to a vertex of the epi-graph of f̂ , putting Q = ∂f(p) and

letting U1 be the half-integer support of p, z(U1) is even for all z ∈ Q or
z(U1) is odd for all z ∈ Q according as f(p) is an integer or a half-integer.
Then, f •

Z is a BS-convex function.

Proof: Note that for the affine function (4) that supports f • on Q = ∂f(p)
we have µ = p and α = −f(p). We can thus see from the assumption that
f •
Z is integer-valued (cf. Theorem 2). Hence the present theorem follows from
Corollary 6. □

We call a 1
2
D-convex function f in Theorem 7 a BS •-convex function.

From Theorems 2 and 7 we now have the following.

Theorem 8. A function g : ZV → Z∪{+∞} is a BS-convex function if and
only if we have g = f •

Z for a BS •-convex function f : (1
2
Z)V → 1

2
Z ∪ {+∞}.

Let us denote by UJ the Union-Jack simplicial division for ZV of RV .
(The Union-Jack simplicial division is a discordant Freudenthal simplicial
division obtained in a somewhat concordant way as follows. For each integral
point z ∈ ZV z is expressed as z0 + χW where z0 has all even values z0(v)
(v ∈ V ) and W is a subset of V . Then consider a Freudenthal simplicial
division of [z, z + χV ] reflected by W .) Also denote by 1

2
UJ the half Union-

Jack simplicial division for (1
2
Z)V (see Figure 3). Similarly we define the

quarter Union-Jack simplicial division 1
4
UJ for (1

4
Z)V . Then we have

Theorem 9. Every discordant Freudenthal simplicial division D for ZV of
RV is a coarsening of the half Union-Jack simplicial division 1

2
UJ for (1

2
Z)V .

Hence the class of the convex extensions of BS-convex functions is a subclass
of the convex conjugate functions of 1

4
Z-valued 1

4
UJ-convex functions for the

fixed quarter Union-Jack simplicial division 1
4
UJ for (1

4
Z)V .
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Figure 3. The half Union-Jack simplicial division 1
2
UJ.

5. Concluding Remarks

We have examined structures of BS-convex functions, which are integer-
valued discrete convex functions having BS-convex sets (sets of integral points
in integral bisubmodular polyhedra) as their affinity domains. We have
shown the following relations.

{D-convex functions (∀D)} ⊂ {BS•-convex functions}
⊂ {1

2
D-convex functions (∀D)}

and by duality (or conjugacy)

{D-convex functions (∀D)}• ⊂ {BS-convex functions}
⊂ {1

2
D-convex functions (∀D)}•,

where {f, · · ·}• = {f •, · · ·}. We also have

{1
2
D-convex functions (∀D)} ⊂ {1

4
UJ-convex functions}.

Murota [14] considered M-convex functions on constant-parity jump sys-
tems, which are closely related to BS-convex functions since the convex hulls
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of BS-convex sets and of jump systems are both integral bisubmodular poly-
hedra (see [4, 11]). Domains of M-convex functions on jump systems con-
sidered in [14] may have holes. Moreover, the convex extension of such an
M-convex function restricted on the underlying integer lattice may take on
non-integral values on the holes. A special case of BS-convex functions de-
fined on delta-matroids was also considered in [6, 17].

Since BS-convex functions have combinatorially nice structures, we think
that we will find practical problems where BS-convex functions play a fun-
damental rôle in solving them effectively.
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