Crystallization of hinokiresinol synthase

(Graduate School of Agriculture, Laboratory of Metabolic Science of Forest Plants and Microorganisms, RISH, Kyoto University)

Daichi Mori

Wood constitutes about 90% of terrestrial biomass. Wood is composed of sapwood and heartwood, the latter of which occupies large part of large-diametered wood and contains secondary metabolites called heartwood constituents. Heartwood constituents affect the coloration and physical property of heartwood such as vibration characteristic and dimensional stability. Furthermore, heartwood constituents usually have various biological activities. The presence of heartwood constituents may contribute to the longevity of trees. To elucidate the mechanism of heartwood formation is important to improve the quality of wood biomass.

Norlignan is a class of heartwood constituents typically found in conifers such Cupressaceae and Araucariaceae. Norlignans are also found in monocotyledonous species. Previous research revealed that norlignans, cis- and trans-hinokiresinols, were enzymatically formed from p-coumaroyl CoA and p-coumaryl alcohol. Later, the two genes (HRSα and HRSβ) encoding cis-hinokiresinol synthase (HRS) were identified. Interestingly, recombinant proteins obtained by individual expression of HRSα and HRSβ catalyzed the formation of (7S)-trans-hinokiresinol at 20.6 and 9.0% enantiomer excess (% e.e.). By contrast, the equivalent mixture of recombinant HRSα and HRSβ catalyzed the formation of only (7S)-cis-hinokiresinol with more than 99% e.e. These results indicated that the subunit composition of HRS is able to control cis/trans isomerism and enantioselectivity in hinokiresinol formation (Figure). However, the reaction mechanism mediated by HRS and the stereochemical regulatory mechanism of the reaction by subunit composition have not been elucidated. As a first step towards the elucidation of these mechanisms, we established crystallization condition of recombinant HRSβ.

The author established a large-scaled purification of recombinant HRSs by the combination of immobilized metal ion affinity chromatography (IMAC) and anionic exchange chromatography. Yield of purified HRSs was about 0.5 mg L⁻¹ culture medium for recombinant HRSα and about 5 mg L⁻¹ culture medium for recombinant HRSβ and a recombinant protein (HRSαβ) coexpressed with HRSα and HRSβ. However, recombinant HRSs were found to be easily aggregated or denatured during storage in an unoptimized condition. Therefore, the optimized condition for the storage of HRSs was screened by thermal shift assay. As a result, the presence of polyols was found to stabilize recombinant HRSβ and HRSαβ, respectively.

Using the stabilized condition for storage of recombinant HRSs, we screened a crystallization condition for recombinant HRSs. Among recombinant HRSs, recombinant HRSβ was successfully crystallized at 293 K by the sitting-drop vapor-diffusion method. The crystals thus obtained were analyzed by X-ray diffraction experiments in SPring-8. X-ray diffraction was observed in two crystals. A crystal obtained in the reservoir solution supplemented with 0.01 mM p-coumaric acid diffracted to 3.85 Å resolution, and a crystal obtained in the reservoir solution supplemented with 0.1 mM p-coumaryl alcohol diffracted to 3.15 Å resolution. Further optimization of crystallization condition would be needed to obtain higher resolution of diffraction.

Acknowledgements

The author thanks Prof. Bunzo Mikami, Graduate School of Agriculture, Kyoto University for his supervising crystallization and X-ray crystallography.