<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>実験廃液処理報告  京都大学の無機廃液処理について</td>
</tr>
<tr>
<td>著者</td>
<td>本田 由治</td>
</tr>
<tr>
<td>創刊号</td>
<td>環境保全 2014年3月号 28号</td>
</tr>
<tr>
<td>出版</td>
<td>環境保全 2014年3月号 28号</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/185738">http://hdl.handle.net/2433/185738</a></td>
</tr>
<tr>
<td>类型</td>
<td>部門論文</td>
</tr>
<tr>
<td>出版</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
2.2（2）京都大学の無機廃液処理について

A. 利用状況

a. 無機廃液の処理実績

無機廃液に関する1980年度から2012年度までの年度別処理量及び2012年度の部別処理実績をそれぞれ図1、表1に示す。図1のグラフにおいて、2005年度の処理量が他年度に比較して極端に少ないのは、建物改修工事の影響である。さらに、2009年度は京都大学無機廃液処理装置（KMS）の一部改修工事があり、その期間処理ができなかったため例年より少ない。また、全学の廃液排出部局を、関連部局、小部局、遠隔地部局などを考慮して分類した11の地区（2008年度から1地区追加）の単位で処理の計画が立てられており、表1に示されているように各地区の中には数数万局を含むものもある。各部局に割り当てられる処理量は、全学の廃液貯留量調査結果に基づいて、無機廃液管理小委員会で決められるが、小部局に配慮してできるだけ貯留廃液を減らすようにしたいと考えている。

廃液量とは別に、1年間に処理した量を元素別に示したものが図2である。使用された薬品分は除く。サンプル分析から算出した値と処理時に混合廃液を採取して分析した値を比較して示している。処理時にあらわれたグラフの側には数値を付している。凡例中にあるICP-OES、AAはそれぞれICP発光分光分析、原子吸光分析のことである。異った情報源から算出した1年間の処理元素量であるが、全体的には特に一方の算出方法に偏った傾向は見られない。ただし、前年と同様Feについては差が大きい。一般重金属系廃液の処理では、サンプル分析の結果に基づいて最適な廃液の組み合わせを考えグループ分けを行うことから、提出する試料はできるだけ2母体を代表するように採取する必要がある。

図1 無機廃液の年度別処理量
表1 無機廃液部局別処理実績（2012年度）

<table>
<thead>
<tr>
<th>地区</th>
<th>部局</th>
<th>一般重金属系</th>
<th>水銀系</th>
<th>シアン系</th>
<th>フッ素系</th>
<th>リン酸系</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>理学部</td>
<td>理学研究科</td>
<td>535.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>535.0</td>
</tr>
<tr>
<td>病院地区</td>
<td>病院</td>
<td>396.0</td>
<td>0.0</td>
<td>15.0</td>
<td>0.0</td>
<td>0.0</td>
<td>411.0</td>
</tr>
<tr>
<td>病院群地</td>
<td>医学部人間健康科学</td>
<td>108.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>0.0</td>
<td>128.0</td>
</tr>
<tr>
<td>薬学部</td>
<td>薬学研究科</td>
<td>40.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>40.0</td>
</tr>
<tr>
<td>工学部</td>
<td>工学研究科</td>
<td>1,230.0</td>
<td>174.0</td>
<td>44.2</td>
<td>310.0</td>
<td>260.0</td>
<td>2,018.2</td>
</tr>
<tr>
<td>内てん</td>
<td>エネルギー科学研究科</td>
<td>760.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>763.0</td>
</tr>
<tr>
<td>地球環境学</td>
<td>地球環境学</td>
<td>320.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>0.0</td>
<td>340.0</td>
</tr>
<tr>
<td>農学部</td>
<td>農学研究科（含宇治地区）</td>
<td>725.0</td>
<td>0.2</td>
<td>20.0</td>
<td>0.0</td>
<td>0.0</td>
<td>745.2</td>
</tr>
<tr>
<td>フィールド科学教育研究センター</td>
<td>500.0</td>
<td>0.0</td>
<td>70.0</td>
<td>0.0</td>
<td>0.0</td>
<td>570.0</td>
<td></td>
</tr>
<tr>
<td>総合人間科</td>
<td>人間・環境学研究科</td>
<td>201.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>201.2</td>
</tr>
<tr>
<td>学務部</td>
<td>201.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>201.2</td>
</tr>
<tr>
<td>宇治地区</td>
<td>化学研究所</td>
<td>526.8</td>
<td>0.0</td>
<td>10.0</td>
<td>20.0</td>
<td>0.0</td>
<td>550.0</td>
</tr>
<tr>
<td></td>
<td>526.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>562.8</td>
</tr>
<tr>
<td>環境科学センター</td>
<td>環境科学センター</td>
<td>30.0</td>
<td>18.0</td>
<td>10.0</td>
<td>0.0</td>
<td>5.0</td>
<td>63.0</td>
</tr>
<tr>
<td>合計</td>
<td>4,972.0</td>
<td>186.2</td>
<td>189.2</td>
<td>399.0</td>
<td>285.0</td>
<td>6,040.4</td>
<td></td>
</tr>
</tbody>
</table>

図2 処理時分析（ICP-OES,AA分析）
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td>161</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>186</td>
</tr>
<tr>
<td>Cr</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>Ca</td>
<td>715</td>
<td>715</td>
<td>715</td>
<td>715</td>
<td>715</td>
<td>715</td>
<td>715</td>
<td>715</td>
<td>715</td>
</tr>
<tr>
<td>Fe</td>
<td>793</td>
<td>793</td>
<td>793</td>
<td>793</td>
<td>793</td>
<td>793</td>
<td>793</td>
<td>793</td>
<td>793</td>
</tr>
</tbody>
</table>

表2 地区別ミシシダ数と利用者数（2012年度）

<table>
<thead>
<tr>
<th>地区</th>
<th>2011年</th>
<th>2012年</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>工学部</td>
<td>108</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>農学部</td>
<td>108</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>理学部</td>
<td>108</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>総合人間科</td>
<td>108</td>
<td>108</td>
<td>216</td>
</tr>
<tr>
<td>宇治地区</td>
<td>108</td>
<td>108</td>
<td>216</td>
</tr>
</tbody>
</table>

c. 使用薬品等とスラッジの発生・搬出状況

表3 2012年廃棄物処理に使用した薬品と熱量当量を、表4 は発生したスラッジ等に関するデータを示している。表3の各項目で示される薬品等の、どの処理に使用されたかを示す対象として記号H,M,H,C,N,P,Fで表し、対応する処理を注目付けて報告に示した。表4中数字は、2012年廃棄物発生・搬出等の薬品の数であり、搬出の数の欄（）内の数字は特別管理薬品廃棄物の数を示している。
搬出するスラッジが特別管理産業廃棄物に該当するかどうか、廃棄物の処理および清掃に関する法律に基づいて行う溶出試験で、基準を超えた項目があるかどうかで決まる。項目には、Cd、Pb、全水銀、有機水銀、As等があるが、搬出スラッジが特別管理産業廃棄物になる原因のほとんどは、全水銀が基準を超えたためである。水銀が検出されたスラッジについては、有害汚泥として北海道の野村興業（株）イトマラ鉱業所に委託処理をしている。特別管理産業廃棄物は、取り扱いに厳しい基準が設けられ、処理のコストもかかる。廃液は事前にサンプル検査をしているが、事前検査では精度より迅速性を優先した分析を行うので、水銀のような基準値が低いものはどうしても完全にはチェックできない。一般重金属系廃液中に混入してフェライト化処理後に検出された処理水中的水銀は、専用のキレート樹脂で吸着除去することができるが、スラッジに入り込んでしまった水銀は除去できない。発生源で厳しく分別貯留していただくようお願いする。

表3 KMS処理における使用薬品・光熱水量等（2012年度）

<table>
<thead>
<tr>
<th>項目</th>
<th>使用量 (kg)</th>
<th>使用対象</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般重金属系（フェライト化）</td>
<td>5,790 L</td>
<td>○ Hg ○ CN ○ P ○ F</td>
</tr>
<tr>
<td>有機水銀系（フェライト化）</td>
<td>85 kg</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>水銀系(10%)</td>
<td>263 kg</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>水銀系 (98%)</td>
<td>11 L</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>酸化銀第1代</td>
<td>4,000 kg</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>過マンガン酸カリウム(粉末)</td>
<td>20 kg</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>酸化クロム(35%)</td>
<td>18 L</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>オキシルール (重金属除去剤)</td>
<td>2 L</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>激流剤</td>
<td>8 L</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>塩化カリウム</td>
<td>471 kg</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>水素塩素塩水素スラッジ</td>
<td>160 L</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>酸化物</td>
<td>54 kg</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>高分子塩基塩0.1%</td>
<td>1,091 L</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>電気 (動力)</td>
<td>3,873 kwh</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>都市ガス</td>
<td>727 m³</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>上水</td>
<td>243 m³</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
</tbody>
</table>

M 一般重金属系 (フェライト化工序)
Hg 水銀系 (酸化分解・キレート樹脂吸着処理)
CN シアン系 (アルカリ塩素処理 + 紫外線・オゾン分解処理)
F.P フッ素・リン酸系 (石灰化処理)

表4 KMSにおけるスラッジ等発生・搬出状況（2012年度分）

<table>
<thead>
<tr>
<th>スラッジ種類</th>
<th>発生量 (kg)</th>
<th>搬出量 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>フェライトスラッジ</td>
<td>1,770</td>
<td>1,480</td>
</tr>
<tr>
<td>フッ素・リン酸系スラッジ</td>
<td>1,264 (900)</td>
<td></td>
</tr>
</tbody>
</table>

※○内は特別管理産業廃棄物として搬出した分

B. 廃入廃液の性状

a. 廃液中の元素等の濃度について

表5は、KMSで1年に処理された無機廃液中の主な元素等の平均濃度を過去5年にわたり種類別に示したものである。濃度は、事前に排出者から提出されたサンプルを蛍光X線分析法で測定して求めたものである（CN、Fは別法による。2011年度はリン酸系廃液中のリン酸濃度が100,000mg/Lを超えたが、2012年度ではフッ素系のフッ素濃度がかなり高濃度で搬入されている。フッ素、リン酸系廃液の貯留量がなかなか減らないが、最近は想定した濃度度より高濃度の廃液が搬入しているため処理が追いついていないのが現状である。

b. ミニプラントの結果について

環境科学センターでは、廃液サンプルの分析に加え、ミニプラント試験を行うことでより詳細に廃液の性状を把握し、本処理を適正に行うように努めている。表6はミニプラント試験結果を表しており、試験された廃液を飽和磁化の大きさでランク分けしている。ランクが※の廃液は10倍を超える希釈倍率で試験したもののまたは著しく磁性の低い40 (emu/g) 以下の廃液である。通常試験は、廃液100mLを水で10倍希釈して1Lで行うが、生成スラッジの磁性が著しく低い評価の場合、次に示されるように100g（emu/g）以上あった廃液の割合は全廃液中91%（容量ベース）であった。利用者は、○○△等で評価された試験結果に基づいて処理費を負担することになる（×の場合は再試験）。評価と元素濃度の関係について、2012年度の結果を示したのが図3である。Cr の濃度が高いと評価が低くなる（△）傾向にあるが、当該年度についてはCr 以外のCu、Niの影響（Fe は除く）が見られるようである。重金属類の他には有機物やリン酸も生成スラッジの磁性低下の原因となる。本処理では、搬入された個々の廃液（一般重金属系廃液）にこれらの磁性の評価値を加えてグループ分けし、フェライト化処理が円滑に行えるようゆるやかに対応している。

なお、工学部附属環境安全衛生センターにミニプラントおよび蛍光エックス線分析装置が設置されており、桂地区の方は2006年度から廃液サンプルの分析およびミニプラント試験は当該センターで行っている。
### 表5 KMSで処理された無機廃液中の主な元素等の年度別平均濃度（mg/L）

<table>
<thead>
<tr>
<th>年度</th>
<th>処理量</th>
<th>Hg</th>
<th>Cr</th>
<th>Cd</th>
<th>As</th>
<th>Pb</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Sn</th>
<th>PO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>5,141.5</td>
<td>0</td>
<td>110</td>
<td>15</td>
<td>2</td>
<td>21</td>
<td>510</td>
<td>180</td>
<td>300</td>
<td>1100</td>
<td>110</td>
<td>290</td>
<td>190</td>
<td>140</td>
</tr>
<tr>
<td>2009</td>
<td>4,132.0</td>
<td>0</td>
<td>150</td>
<td>237</td>
<td>44</td>
<td>590</td>
<td>180</td>
<td>250</td>
<td>1900</td>
<td>110</td>
<td>86</td>
<td>230</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>5,543.6</td>
<td>0</td>
<td>140</td>
<td>34</td>
<td>12</td>
<td>13</td>
<td>280</td>
<td>120</td>
<td>300</td>
<td>1100</td>
<td>110</td>
<td>22</td>
<td>90</td>
<td>210</td>
</tr>
<tr>
<td>2011</td>
<td>5,240.9</td>
<td>0</td>
<td>89</td>
<td>27</td>
<td>2</td>
<td>32</td>
<td>360</td>
<td>45</td>
<td>180</td>
<td>280</td>
<td>71</td>
<td>12</td>
<td>120</td>
<td>500</td>
</tr>
<tr>
<td>2012</td>
<td>4,972.0</td>
<td>0</td>
<td>52</td>
<td>62</td>
<td>2</td>
<td>28</td>
<td>430</td>
<td>97</td>
<td>320</td>
<td>300</td>
<td>170</td>
<td>130</td>
<td>80</td>
<td>150</td>
</tr>
</tbody>
</table>

### 水銀系

<table>
<thead>
<tr>
<th>年度</th>
<th>処理量</th>
<th>Hg</th>
<th>Cr</th>
<th>Cd</th>
<th>As</th>
<th>Pb</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Sn</th>
<th>PO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>270.8</td>
<td>440</td>
<td>95</td>
<td>6</td>
<td>17</td>
<td>23</td>
<td>3</td>
<td>260</td>
<td>140</td>
<td>5</td>
<td>0</td>
<td>19</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>204.6</td>
<td>460</td>
<td>94</td>
<td>38</td>
<td>14</td>
<td>71</td>
<td>69</td>
<td>140</td>
<td>70</td>
<td>34</td>
<td>27</td>
<td>35</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>306.3</td>
<td>620</td>
<td>81</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>29</td>
<td>120</td>
<td>0</td>
<td>31</td>
<td>288</td>
<td>4,900</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>351.7</td>
<td>680</td>
<td>72</td>
<td>8</td>
<td>2</td>
<td>24</td>
<td>410</td>
<td>2300</td>
<td>14</td>
<td>4</td>
<td>7</td>
<td>320</td>
<td>2,500</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>195.2</td>
<td>1,100</td>
<td>150</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>22</td>
<td>7</td>
<td>310</td>
<td>33</td>
<td>1</td>
<td>0</td>
<td>200</td>
<td>170</td>
</tr>
</tbody>
</table>

### リン酸系

<table>
<thead>
<tr>
<th>年度</th>
<th>処理量</th>
<th>Hg</th>
<th>Cr</th>
<th>Cd</th>
<th>As</th>
<th>Pb</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Sn</th>
<th>PO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>174.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>33,000</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>45.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>11</td>
<td>0</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>71,000</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>220.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>53,000</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>578.0</td>
<td>0</td>
<td>2</td>
<td>21</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>20</td>
<td>90</td>
<td>60</td>
<td>30</td>
<td>6</td>
<td>340</td>
<td>130,000</td>
</tr>
<tr>
<td>2012</td>
<td>285.0</td>
<td>0</td>
<td>7</td>
<td>18</td>
<td>0</td>
<td>450</td>
<td>2</td>
<td>5</td>
<td>17</td>
<td>110</td>
<td>2</td>
<td>2</td>
<td>77,000</td>
<td></td>
</tr>
</tbody>
</table>

### シアン系

<table>
<thead>
<tr>
<th>年度</th>
<th>処理量</th>
<th>Hg</th>
<th>Cr</th>
<th>Cd</th>
<th>As</th>
<th>Pb</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Sn</th>
<th>PO4</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>194.0</td>
<td>1</td>
<td>140</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>43</td>
<td>133</td>
<td>320</td>
<td>2</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>224.0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>6</td>
<td>1,100</td>
<td>0</td>
<td>51</td>
<td>16</td>
<td>820</td>
<td>1,900</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>372.5</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>6</td>
<td>1,100</td>
<td>0</td>
<td>51</td>
<td>16</td>
<td>820</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>293.5</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>1</td>
<td>190</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>450</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>189.2</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>19</td>
<td>620</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>310</td>
<td>960</td>
<td></td>
</tr>
</tbody>
</table>

### フッ素系

<table>
<thead>
<tr>
<th>年度</th>
<th>処理量</th>
<th>Hg</th>
<th>Cr</th>
<th>Cd</th>
<th>As</th>
<th>Pb</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Sn</th>
<th>PO4</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>556.2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>51</td>
<td>250</td>
<td>70</td>
<td>0</td>
<td>25</td>
<td>1,100</td>
<td>26,000</td>
</tr>
<tr>
<td>2009</td>
<td>480.0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>9</td>
<td>13</td>
<td>8</td>
<td>15</td>
<td>24</td>
<td>760</td>
<td>37,000</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>280.0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>13</td>
<td>2</td>
<td>73</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>1,300</td>
<td>52,000</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>423.0</td>
<td>18</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>34</td>
<td>2</td>
<td>61</td>
<td>31</td>
<td>18</td>
<td>0</td>
<td>6</td>
<td>460</td>
<td>16,000</td>
</tr>
<tr>
<td>2012</td>
<td>399.0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>15</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>82</td>
<td>310</td>
<td>69,000</td>
<td></td>
</tr>
</tbody>
</table>

### 表6 ミニプラント試験結果（2012年度）

<table>
<thead>
<tr>
<th>飽和磁化 (emu/g)</th>
<th>評価</th>
<th>容量 (L)</th>
<th>比率 容量％</th>
<th>平均濃度 (mg/L)</th>
<th>試験数 (バッチ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>×</td>
<td>159</td>
<td>3.2</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>303</td>
<td>△</td>
<td>230</td>
<td>6.1</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>1,110</td>
<td>○</td>
<td>250</td>
<td>22.4</td>
<td>74</td>
<td>6</td>
</tr>
<tr>
<td>3,390</td>
<td>◎</td>
<td>230</td>
<td>68.3</td>
<td>30</td>
<td>88</td>
</tr>
</tbody>
</table>

※ 10倍を超える希釈倍率で試験した廃液か飽和磁化が40emu/g未満の廃液
c. 有機物の影響について

図4は、フェライト化処理における再処理率（処理回数に対する、処理水が排水基準値を超えた回数の割合）と処理前の廃液のCOD値（化学的酸素要求量）の年度平均の推移の関係である。再処理率と廃液のCODに比較的相関があることがわかる。1994年度では再処理率が90%に達した。10回のうち1回しかフェライト化処理がスムーズにできず何らかの再処理を行ったことになる（例えば活性炭塔の通水）。

排水基準を超えた主な項目はCd、Cu等であり、この原因は主として有機物による影響と考えられる。COD値が高いことはこれらの金属を含む有機金属化合物の存在やこれらの金属と廃液中の有機物との錯体生成の可能性を示唆している。有機物の混入は必要最小限に抑えられたほうがよい。数年前まで、廃液のCODが確かに減少しており、それに伴い再処理率も低下してきていた。2006年度は70%と急上昇した。原因は有機物の影響ではなく、多量のフッ素が一般重金属系廃液に混入したためである。このため、前号（No.22）に記したが、ミニュプラントの試験後にフッ素分析用のパックテストを行うことでフッ素を多量に含んだ一般重金属系廃液の搬入を防止することにした。この結果、フッ素混入の廃液は事前にチェックでき改善された。その後、CODが増加傾向にあったが、近年は減少してきており、再処理率も低下している。セメントでは、有機物のチェックのため、一般重金属系廃液を対象にTOC（全有機体炭素）を測定している。図3は、廃液中の元素別平均濃度とミニュプラント試験結果（2012年度）

図4 フェライト化処理における再処理率と廃液のCODの年度変化