平成 25 年度 京都大学化学研究所 スーパーコンピュータシステム 利用報告書

多孔質金属の表面特性

Surface properties of porous metals エネルギー科学研究科エネルギー応用科学専攻ミネラルプロセシング分野 袴田 昌高

背景と目的

ZnOやTiO2などの半導体は光触媒性を有し有害な有機物を分解する働きをもつことから、空気洗浄 機やコーティング材として広く用いられている。しかし、これら光触媒半導体のほとんどは紫外線領 域、すなわち 3.2 eV 以上のバンドギャップを持つため、可視光条件下では光触媒特性を示さない。

一方最近の研究から、ナノ多孔質 Au に ZnO を薄く蒸着した Au/ZnO ナノ複合材料は可視光条件下 で光触媒特性を示すことが示された (Fig. 1)。昨年度実施した第一原理計算により、ナノ多孔質 Au の 表面には大きなひずみが存在しており、これが ZnO のバンドギャップに影響を及ぼしたことが示唆さ れたが、Au/ZnO 界面に起因する電場の影響も考えられる。

そこで本研究では、ZnO が良好な光触媒特性を示した原因を解明することを目的として、Au/ZnO 界面により生じる電場の第一原理計算による評価を試みた。

Fig. 1 (a) MO concentration variation with time after sample immersion. (b) MO solution appearance immediately after immersion of nanoporous Au with and without ZnO sputtering. The former immediately turned the surrounding solution red, suggesting the rapid decomposition of MO.

計算手法

Au(111)/ZnO(0001)/真空モデル (Fig. 2) を作製し、Au の格子定数を±5%変化させた上で、CASTEP コードによる構造最適化計算と電子状態密度計算を行った。特に Au/ZnO 界面により ZnO 内に生じる電場の影響を、参考論文 [1-3] の手法を参考に評価した。

Fig. 2 Atomic configuration of Au(111)/ZnO(0001)/vacuum model.

結果および考察

Table 1 に、第一原理計算で計算された Au の格子定数、ZnO の格子定数、ZnO 内に生じた電場をま とめて示す。Au の格子定数が大きくなった場合でも小さくなった場合でも、ZnO 内の電場が大きくな っていることがわかる。ナノポーラス Au 特有の格子ひずみが ZnO 内の電子のふるまいに影響し、Fig. 1 のような光触媒特性の向上が起こったと考えられる [4]。

Table 1 Results of first-principles calculations on Au/ZnO models, showing relationship between strain in Au and ZnO, and ZnO built-in electric field

界面でのZnの位置	Auの	ZnO (0001) の	ZnO内の
	格子定数変化 (%)	面間隔変化(%)	電場 (V/nm)
fcc hollow site	0.05	0.064	0.404
	0	0.095	0.175
	-0.05	0.133	0.424
hcp hollow site	0.05	0.061	0.445
	0	0.098	0.043
	-0.05	0.128	0.263

発表論文

なし

参考論文

[1] L. Dong, S. P. Alpay, J. Appl. Phys. 111, 113714 (2012)

[2] G. Zhang, X. Luo, Y. Zheng, B. Wang, Phys. Chem. Chem. Phys. 14, 7051 (2012)

[3] Y. Dong, L. J. Brillson, J. Electron. Mater. 37, 743 (2008)

[4] M. Hakamada, M. Yuasa, T. Yoshida, F. Hirashima, M. Mabuchi, Appl. Phys. A, in press.