<table>
<thead>
<tr>
<th>Title</th>
<th>Benthonic Foraminiferal Biostratigraphy of the Standard Areas of Middle Miocene in the Pacific Side Province, Central Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Konda, Isao</td>
</tr>
<tr>
<td>Citation</td>
<td>Memoirs of the Faculty of Science, Kyoto University. Series of geology and mineralogy (1980), 47(1): 1-42</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-11-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/186637</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Benthonic Foraminiferal Biostratigraphy of the Standard Areas of Middle Miocene in the Pacific Side Province, Central Japan

By

Isao Konda*

(Received June 6, 1980)

Abstract

The benthonic foraminiferal assemblages from the Tomioka and Nishiyatsushiro groups distributed in the Pacific side province, Central Japan, selected by Ikebe et al. (1977) as the composite stratotype of the Kaburan Stage (Middle Miocene) and subdivided by Chiji and Konda (1978) into two sub-stages, the lower Kaburan and upper Fujian substages, were studied.

The following nine and four assemblage zones were recognized in ascending order, respectively,

Tomioka Group

Melonis-Stilostomella Zone

Gyrtammina-Discammina compressa Zone

Cibicidoides pseudoungerianus-Stilostomella lepidula Zone

* Nara Senior High School
Martinottiella communis-Spirosigmoilinella compressa Zone
Stilostomella-Trifarina kokozuraensis Zone
Cassidulina norcrossi-Trifarina kokozuraensis Zone
Uvigerina proboscidea-Lenticulina lurida Zone
Uvigerina proboscidea-Praeglobobulimina papoiides Zone
Ammonia tochigensis-Amphycoryna tubulata japonica Zone

Nishiyatsushiro Group
Melonis pomplioides-Ammodiscus incertus Zone
Globobulimina auriculata-Melonis nicobarensis Zone
Globobulimina auriculata-Nodeosaria longiscata Zone
Melonis pomplioides-Stilostomella ketenizensis Zone

The relation between these assemblage zones of the first group and those of the latter is shown in Fig. 9, together with the horizons of the first (or last) occurrences of important planktonic foraminifera recognized in these sequences.

Judging from the stratigraphic distribution of planktonic and benthonic foraminifera, it may be concluded; (1) the sedimentary environment of the Tomioka Group was the upper bathyal zone under the influence of the warm water current from the late Early Miocene to the early Middle Miocene, but afterwards, it became shallower and changed to the outer or middle neritic zone, and a shifting of the current so as to allow the appearance of cold water species of planktonic foraminifera took place during the middle—late Middle Miocene in the area; (2) on the other hand, the sedimentary environment of the Nishiyatsushiro Group has continued to be the upper bathyal zone throughout that time under the warm water condition.

The faunal changes of benthonic foraminifera in the Globorotalia peripheracuta/Globorotalia miozea (s.s.) and Globorotalia hkykowse/Globorotalia menardii zones reported by Maiya and Murata (1977) from the Hiki Hill and the Daigo-Oniya area of the Kanto district seem to resemble those recognized in the Globorotalia peripheracuta/Globigerina nepenthis Interval-Zone of the Tomioka Group. It may be said, therefore, that the marine regression from the north and west of the Kanto district began in the middle stage of the Middle Miocene.

Besides, referring to the faunal character of benthonic foraminifera from the Middle Miocene sequences distributed not only in the Kanto district but in the adjacent areas of the Pacific side province, Central Japan, some problems which should be reinvestigated in future were discussed.

I. Introduction

During the past several years, the author has been studying the planktonic foraminiferal biostratigraphy of the Neogene sequences, especially of the Tomioka Group distributed in Tomioka City and its environs, Gunma Prefecture, and of the Nishiyatsushiro and Shizukawa groups exposed in Shimobe-cho, Yamanashi Prefecture, the Pacific side province of Central Japan.

Based on the result of this study, the Tomioka and Nishiyatsushiro groups were selected and redefined by Ikebe et al. (1977) as the composite stratotype of the Kaburan Stage (Middle Miocene) which was proposed by Ikebe and Asano (1973). It was found, furthermore, that the age of the Tomioka Group is assigned from the late Early Miocene to the late Middle Miocene, and that the Nishiyatsushiro and Shizu-
kawa groups from the middle Middle Miocene to the middle Pliocene. Subsequently, the Kaburan Stage was subdivided by Chiji and Konda (1978) into two substages, the lower Kaburan (s.s.) and the upper Fujian Substages.

Meanwhile, the remarkable progress in the studies of planktonic microfossils in the 1960's made possible to correlate precisely the Neogene marine sequences scattered over the Pacific coast areas of Central and Southwest Japan. Through the recent studies of these sequences by many micropaleontologists, it has revealed that the greater part of the Middle Miocene Series is lacking in marine sequences in many places of the Pacific side province of Southwest Japan (Ikebe et al., 1973, 1977). Therefore, the Tomioka and Nishiyatsushiro groups have come to be the most important and valuable sequences to elucidate the Middle Miocene paleoenvironment of the Japanese Islands.

The purposes of the present paper are: (1) to describe in detail the faunal composition of benthonic foraminifera from the Tomioka and Nishiyatsushiro groups as the representatives of the Middle Miocene fauna of Japan; (2) to establish the biostratigraphic zones based on the benthonic foraminiferal assemblages taken from the groups; (3) to elucidate the paleoenvironmental changes of Middle Miocene sedimentary basins in the Pacific side province, Central Japan.

The sedimentary environment of the Shizukawa Group is not referred in the present paper. Because, the age of the group is assigned from the Late Miocene to the middle Pliocene and benthonic foraminifera scarcely occur, if any, their preservation is unfavorable for the quantitative analysis, and emphasis is given, as mentioned above, to the Middle Miocene faunal character and paleoenvironment.

All of specimens used in the present study are deposited in the Osaka Museum of Natural History.

II. Acknowledgements

The author is indebted to Dr. Manzo Chiji, Director of the Osaka Museum of Natural History for his constant guidance and encouragement. Acknowledgements are likewise extended to Professor Tadao Kamei, Kyoto University, for suggestions made in the preparation of the manuscript and criticism, and to Dr. Nobuo Ikebe, Professor Emeritus of Osaka City University, for his valuable information on the Cenozoic geology of Japan.

The author also wishes to thank Professor Shiro Nishida, Nara Education University for the use of scanning electron microscope of his institute. Thanks are due to Mr. Tadashi Ikeda, Ichioka Senior High School of Osaka City, for his generous assistance in the field work.

This study has been supported in part a Grant in Aid (no. 734059) for Fundamental Scientific Research from the Ministry of Education.
III. Stratigraphy of the standard areas of Middle Miocene in the Pacific side province

Brief summaries of the lithostratigraphic and biostratigraphic units of the Tomioka and Nishiyatsushiro groups are given here in ascending order. Detailed description of these units are available from the previous papers (Akiyama, 1957; Chiji and Konda, 1978; Matsumaru, 1967, 1977).

1. Lithostratigraphy

Tomioka Group (Figs. 2, and 3)

a. Ushibuse Formation; massive sandstone, adjacent to Pre-Tertiary rocks (green schist) with fault, thickness 70 m +.

b. Obata Formation; alternation of mudstone and sandstone comprising Miogypsina in the lower part, thickness 800 m.

c. Idozawa Formation; mudstone in the lower part with acidic tuff at the base, and alternation of mudstone and sandstone comprising Nephrolepidina and Miogypsina in the upper part, thickness 450 m.

d. Haratajino Formation; mainly mudstone, and alternation of sandstone and mudstone with acidic tuff at the base, thickness 300 m.

e. Niwaya Formation; mudstone in the lower part with acidic tuff at the base, and sandstone intercalating mudstone in the upper part, thickness 250 m.

f. Yoshii Formation; mainly mudstone with acidic tuff at the base and the Fujiki Tuff dated at 11.6±0.4 m. y. (K-Ar, on biotite, Shibata et al., 1979) at the

Fig. 1. Index map showing locations of the areas studied.
Fig. 2. Geological sketch map of the Tomioka area, Gunma Prefecture, and localities of samples collected from the Tomioka Group along the Kabura River and its tributaries.
middle level, alternation of sandstone and mudstone in the uppermost part, thickness 550 m.

g. **Itahana Formation**; alternation of conglomerate and sandstone intercalating acidic tuff, mudstone, and lignite, thickness 800 m.

Nishiyatsushiro Group (Figs. 4-6)

a. **Ichinose Formation**

Furusekigawa Basic Volcanic Rock; basic volcanic rock and pyroclastic rock intercalating tuffaceous sandstone and mudstone, distributed in the east of the area studied, thickness 200 m+.

Kanzaka Mudstone; mudstone intercalating tuffaceous sandstone and andesite tuff, thickness 200 m.

Wadaira Tuff; andesite tuff intercalating mudstone, thickness 500 m.

b. **Diagoyama Formation**

Kamiisshiki Volcanic Breccia; basic volcanic breccia and tuff breccia intercalating tuffaceous and brecciated mudstone-bearing sandstone and mudstone, developed as a wedge and thinning out southwards, thickness 100 m.

Deguchi Alternation of Tuffaceous Sandstone and Mudstone; mudstone in the lower part, and alternation of tuffaceous sandstone and mudstone in the middle and upper parts, thickness 200 m.

Byobulwa Tuff; andesite tuff intercalating alternation of tuffaceous sandstone, mudstone, and tuff, thickness 800 m.

2. **Planktonic foraminiferal biostratigraphy**

Tomioka Group (Fig. 3)

Globigerinoides scianus/Praeorbulina glomerosa Lineage-Zone

Praeorbulina glomerosa/Orbulina suturalis Lineage-Zone

Globorotalia peripheroacuta/Orbulina suturalis Concurrent-Zone

Globorotalia peripheroacuta/Globigerina nepenthes Interval-Zone

Globigerina nepenthes/Globorotalia acostaensis Interval-Zone

Nishiyatsushiro Group (Fig. 6)

Globorotalia peripheroacuta/Globigerina nepenthes Interval-Zone

Globigerina nepenthes/Globorotalia acostaensis Interval-Zone

Globorotalia acostaensis/Pulleniatina primalis Lineage-Zone

*Pulleniatina primalis*Sphaeroidinella dehiscens Interval-Zone

Of these biostratigraphic zones, *Globorotalia peripheroacuta/Globigerina nepenthes* Interval-Zone common to both of the groups was subdivided by use of the *Sphaeroidinella dehiscens* Base-datum into two subzones, that is, the lower, *Globorotalia peripheroacuta*Sphaeroidinellopsis subdehiscens Interval-Subzone, and the upper, *Sphaeroidinellopsis subdehiscens/Globigerina nepenthes* Interval-Subzone, and the *Globigerina nepen-
Fig. 3. Columnar sections of the Tomioka Group showing stratigraphic positions of samples and stratigraphic distribution of some selected planktonic and benthonic foraminifera.

(1) Hoshi River (Dainichi-Shinden) section (2) Hoshi River (Miyamoto-Kurokawa) section (3) Fujiki and Hoshi rivers (Fujikitori-Beppo) section
(4) Kabura and Kuda rivers (Harutajino-Kudakawa) section (5) Ogawa River (Shimoi-Machiya) section (6) Futago-Tako Bridge section

A: Globigerinoides siculus/Parvularuginula glomerosa Lineage-Zone
B: Peneroplis glomerata/Orbulina umbilicalis Lineage-Zone
C: Globorotalia peripheronoda/Orihuna natalis Concurrent-Zone
D-1: Globorotalia peripheronoda/Spirameniscus subdehiscens Interval-Subzone
D-2: Sphaeroidinellopsis subdehiscens/Globigerina nepetica Interval-Subzone
E: Globigerina nepetica/Globorotalia carinata Interval-Zone
F: Melonis-Stilostominella Zone
G: Cibicides pseudacutispina-Stilostominella leptidea Zone
H: Stilostominella-Trifarina Iseozanensis Zone
I: Ammonia tobiasensis-Amphistephanus tubulatus Iseozanensis Zone

LEGEND

- tuff
- alternation of sandstone and mudstone
- sandstone
- alternation of conglomerate and sandstone
- mudstone
- basement
- Shibata et al. (1979)
Benthonic Foraminiferal Biostratigraphy of Middle Miocene

LEGEND
- Terrace gravel
- Kajiwara Mudstone
- Shionosawa Conglomerate
- Hadakajima Alternation of Sandstone and Mudstone
- Uemura Tuff
- Daigo Alternation of Sandstone and Mudstone
- Takenoshima Sandstone
- Byobuwa Tuff
- Deguchi Alternation of Tuffaceous Sandstone and Mudstone
- Kamiisshiki Volcanic Breccia
- Wadaira Tuff
- Kanzaka Mudstone
- Furusekigawa Basic Volcanic Rock

Fig. 4. Geological map of the Shimobe area, Yamanashi Prefecture (slightly modified from AKIYAMA, 1957).

LEGEND
- Kai: Kajiwara Mudstone
- Sh: Shionosawa Conglomerate
- Ha: Hadakajima Alternation of Sandstone and Mudstone
- Us: Uemura Tuff
- Da: Daigo Alternation of Sandstone and Mudstone
- Ta: Takenoshima Sandstone
- By: Byobuwa Tuff
- De: Deguchi Alternation of Tuffaceous Sandstone and Mudstone
- Ka: Kamiisshiki Volcanic Breccia
- Wa: Wadaira Tuff
- Ku: Kamiisshiki Mudstone
- Fu: Furusekigawa Basic Volcanic Rock

Fig. 5. Localities of samples collected from the Nishiyatsushiro Group along the upper reaches of the Fuji River and its tributaries in the Shimobe area, Yamanashi Prefecture.
Fig. 6. Columnar section of the Nishiyatsushiro Group, showing stratigraphic positions of samples. The first occurrences of some selected planktonic foraminifera are shown on the left of each columns.

Kurihara (1974, 1977) and Muraoka (1977)

This paper benthonic foraminifera

Litho unit foraminiferal zone | Litho unit Blow (1969) | planktonic foraminiferal Zone | Concurrent range-zone | representative species | Litho unit Blow (1969) | planktonic foraminiferal zone | benthonic foraminifera

N.10	Grt. mayeri Zone	G. sycosae / G. menardii	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.10	G. sycosae / G. menardii	Uvigerina problematica / Cibicides ugrandianus
N.9	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.9	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.8	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.8	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.7	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.7	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.6	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.6	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.5	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.5	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.4	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.4	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.3	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.3	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.2	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.2	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus
N.1	G. obesi obesi Zone	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus	Ammonia cf. japonica / Uvigerina problematica / Cibicides ugrandianus	N.1	G. peripheroi Zone	Uvigerina problematica / Cibicides ugrandianus

Fig. 7. Comparison of lithostratigraphic and biostratigraphic subdivisions, proposed by various authors, of the Tomioka Group with special reference to the benthonic foraminiferal distribution. Thick vertical lines show the occurrence range of *Spirosigmolinella compressa* Mathunada.

Benthonic Foraminiferal Biostratigraphy of Middle Miocene

thes|Globorotalia acostaensis| Interval-Zone of the latter group into two subzone, the lower, Globigerina nepenthes|Globorotalia siakensis| Interval-Subzone, and the upper, Globorotalia siakensis|Globorotalia acostaensis| Interval-Subzone, using the Globorotalia siakensis Top-datum. Then, it was mentioned that the Sphaeroidinellopsis subdehiscens Base-datum is recognized at the lower part of the Yoshii Formation (Sample 19) of the Tomioka Group and at the base of about 100 meters thick mudstone (Sample 77032706) which occupies the middle part of the Wadaira Tuff of the Nishiyatsushiro Group (CHIJI and KONDA, 1978). However, as a result of the further examination of a few additional samples from both of the groups, the Sphaeroidinellopsis subdehiscens Base-datum was found lying within the middle part of the Niwaya Formation (Sample 188) of the former group and within the middle part of the Kanzaka Mudstone (Sample 77043008-2) of the latter, respectively. In the present paper, therefore, the stratigraphic position of the base-datum should be corrected as shown in Figs. 3, 6, and 7. The relation among the lithostratigraphic units, planktonic foraminiferal zones, and benthonic ones described later are shown in the same figures.

IV. Benthonic Foraminiferal Zonation

1. Previous works

Hitherto, comparatively little has been known of the benthonic foraminifera except such larger foraminifera as Nephrolepidina and Miogypsina (MATSUMARU, 1967, 1973) from the Tomioka Group.

Recently, based on the extinction level of Spirosigma lignitella compressa MATSUNAGA which is very close to the horizon of the last occurrence of Globorotalia fohsi fohsi (sensu BOLL, 1957), KURIHARA (1977) correlated the Yoshii Formation of the Tomioka Group with the lower part of the Funakawa Formation distributed in the Oga Peninsula of the Japan Sea side province, northern Japan. From the Tomioka Group, MAIYA and MURATA (1977) recognized four planktonic and three benthonic foraminiferal zones, but they enumerated only a few representative benthonic taxa from each of the latter zones. They stated, then, that the stratigraphic occurrence of Spirosigma lignitella compressa MATSUNAGA is limited to the Early Miocene in the Kanto district as well as the Tomioka region. These works are brought together for ready comparison in Fig. 7.

As to the Nishiyatsushiro Group, NISHIYAMA (1969, 1970, 1971) listed a number of benthonic and planktonic foraminifera collected from various localities scattered along the Fiji River and its tributaries.

In all studies mentioned above, however, the minute and precise faunal composition and/or its stratigraphic distribution were not officially announced.
2. Samples and methods

The rock samples used in the present study were collected mostly by the author from each formation of the Tomioka and Nishiyatsushiro groups along six geological sections, respectively. Some of them from the latter sequence were supplied by Dr. Manzo CHIJI, Director of the Osaka Museum of Natural History. The localities and stratigraphic positions of samples from the Tomioka Group are shown in Figs. 2 and 3, and those from the latter in Figs. 5 and 6, together with the columnar sections along the sampling routes. The stratigraphic positions of samples were correlated by use of key beds, which consist of pyroclastic sediments.

Each sample was reduced to 100 or 200 grams in dry weight, and the Naphtha method described by MAiya and INoue (1973) was applied to all samples. After washing with a 200-mesh sieve (opening 74 μ), it was divided into a proper quantity so as to take 200–500 individuals of planktonic and benthonic foraminifera, respectively, and from one split part, all of both foraminifera tests were separated for the study.

3. Definition and characteristics of zones

Of about 400 benthonic taxa obtained from the Tomioka Group, selected were 100 taxa for the purpose of zoning, and of nearly 250 benthonic ones from the Nishiyatsushiro Group, selected were 70 taxa for the same purpose. Their stratigraphic occurrences and relative frequencies are shown in Fig. 10 and 11.

Based on vertical changes of the faunal composition, recognized were nine and four assemblage zones, which were defined by the International Subcommission on Stratigraphic Classification (1976) of IUGS Commission on Stratigraphy, in the Tomioka and Nishiyatsushiro groups, respectively. Each of the zones is described, in ascending order, in the following. The correlation between the zones of the Tomioka Group and those of the Nishiyatsushiro Group is shown in Fig. 9, together with the planktonic foraminiferal biozones.

(1) Tomioka Group

a. Melonis-Stilostomella Zone—Samples 49, 47, 46 (Ogawa River section)—

This zone is characterized by the abundant occurrences of Melonis pompilioides (FICHTEL and MOLL), M. nicobarensis (CUSHMAN), and Stilostomella spp., the last of which includes S. lepidula (SCHWAGER), S. ketienziensis (ISHIZAKI), and Siphonodosaria oinomikadoi (ISHIZAKI). Praeglobobulimina pupoideas (d'ORBIGNY) is also common in the lowermost part of the zone. Besides, Dentalina communis d'ORBIGNY, Globocassidulina subgloboza (BRADY), Bulimina striata BRADY, and Cibicidoides pseudoungerianus (CUSHMAN) show relatively high frequencies in the middle part of this zone, though the last one of them reaches its acme in the overlying zone. The ratio of planktonic forms has high value. The fauna of this zone is of the upper bathyal zone in the temperate
regoin, and this zone corresponds nearly to the *Globigerinoides sicans/Praeorbulina glomerosa* Lineage-Zone of planktonic foraminiferal biozone, and it is recognized in the lower part of the Obata Formation exposed along the Ogawa River.

b. **Cyclammina-Discammina compressa Zone**—Sample 45 (Kuda River section)

This zone is defined by the characteristic occurrences of *Cyclammina cancellata obesa* Cushman and Lainin, *C. orbicularis Brady*, and *Discammina compressa* (Goës), and the former two taxa are almost confined to this zone. The ratio of planktonic forms is very low compared with the subjacent zone, and the benthonic foraminiferal number is also few. The fauna of this zone may be inferred to have lived under the deep and cold water condition. The zone corresponds to the lower part of the *Praeorbulina glomerosa/Orbulina suturalis* Lineage-Zone, and it is recognized in the upper part of the Obata Formation exposed along the Kuda River. However, additional samples need to be examined, because the zone is defined by use of only one sample.

c. **Cibicidoides pseudoungerianus-Stilostomella lepidula Zone**—Samples 41, 40, 39–(1), 34, 57–(1), 34, 56 (Kuda River section); 205, 204–(1), (2) (Kabura River section); 195, 164, 3, 4, 159, 162, 155, 158, 153 (Hoshi River section)

This zone is characterized by the relatively high frequencies of *Cibicidoides pseudoungerianus* (Cushman) and *Stilostomella lepidula* (Schwager) accompanied with *Martinottiella communis* (d'Orbigny), *Spirosignomulinella compressa* Matsunaga, *Melonis pomptilioides* (Fichtel and Moll), *M. nicobarensis* (Cushman), *Pullenia bulloides* (d'Orbigny), *Sphaeroidina bulloides* (d'Orbigny), *Siphonodosaria oinomikadoi* (Ishizaki), *Trifarina kokozuraensis* (Asano), *Uvigerina akitaneis* Asano, and *U. proboscidea* Schwager. It is noticeable, moreover, that such taxa as enumerated below are almost confined to the zone, though the taxa marked with an asterisk are excluded from Fig. 10 on account of their scanty occurrences;

Amphistegina radiata Fichtel and Moll
Bolivina plicatella (Cushman)
B. robusta (Brady)
Brizalina albatrossi (Cushman)
B. cockei (Cushman and Adams)
B. alta (Seguenza)*
B. marginata masudai (Asano)
B. zanzibarica (Cushman)
Dentalina communis d'Orbigny
D. inflexa Reuss
Frongicularia foliacea Schwager
Gätesella schencki Asano
Gyroidina profunda Aoki*
Gyroidinoides altiformis (R. E. and K. C. Stewart)
Gyroidinoides altiformis (R. E. and K. C. Stewart)
G. soldanii (d'Orbigny)*
Hopkinsina imogawaensis Matsunaga*
H. morimachiensis Matsunaga*
Nodosaria tosta Schwager
Planulina nipponica Asano
Plectofrondicularia japonica Asano
P. miocenica Cushman*
Spiroplectammina spp.*
Sphaeroidina japonica Asano
Textularia semialata Cushman
Trifarina bradyi (Cushman)
T. carinata (Cushman)*
Uvigerina akitaensis Asano

Besides, Bulimina nipponica Asano occurs from the above-mentioned Melonis-Stilostomella Zone and this zone, but the species does not extend to the overlying zones. Sample 39-(1) yields a few individuals of shallow water species, e.g., Amphistegina radiata Fichtel and Moll, which was transported from some places to become mixed, in association with deep water species of this zone. The ratio of planktonic foraminifera continues to be low from the subjacent zone except the middle part of the zone, in which it becomes relatively high. The fauna of this zone is thought to have lived in the upper bathyal zone, and the influence of cold water is indicated by such species as Trifarina kokozuraensis Asano and Uvigerina akitaensis Asano. This zone is recognized in the Idozawa Formation exposed along the Kuda River, and in the lower part of the Haratajino Formation exposed along the Kabura and Hoshi rivers, and it corresponds to the middle and upper parts of the Praeorbulina glomerosa/Orbulina suturalis Lineage-Zone and the lower part of the Globorotalia peripheroronda/Orbulina suturalis Concurrent-Zone. The Orbulina suturalis Base-datum, which is regarded as the dividing datum plane between the Early and Middle Miocene, was found from the upper part of this zone.

d. Matinottiella communis-Spirosigmoilinetla compressa Zone—Samples 152, 170, 150 (Hoshi River section)—

This zone is outstanding in that Martinottiella communis (d'Orbigny) and Spirosigmoilinetla compressa Matsunaga occur with considerable frequencies associated with Haplophragmoides renzi Asano, Discammina compressa (Göes), and some arenaceous forms. Calcareous forms scarcely occur in the zone throughout. The zone is recognized in the middle part of the Haratajino Formation exposed along the Hoshi River, and corresponds with the middle part of the Globorotalia peripheroronda/Orbulina suturalis Concurrent-Zone. However, it is noteworthy that a change of the faunal composition from the subjacent Cibicidoides pseudoungerianus-Stilostomella leptidula Zone
happens abruptly in the consecutive muddy facies of the formation, and that the foraminiferal number is relatively small and the planktonic forms are never found in the zone.

As for the stratigraphic distribution of *Spirosigmaolinella compressa* Matsunaga in the Kanto district, there have been differences of opinion among scholars. Based on the occurrence of the taxon from the Miocene Series scattered over North and Central Japan, Mayya and Murata (1977) divided the Miocene sedimentary basins into two major types, that is, the "Japan Sea side" and "Pacific side" types, and they stated that the taxon has the long range from the Early Miocene to the Late Miocene in the former type, but it is limited to the Early Miocene in the latter, and that the occurrence of the taxon has the close relationship with some sedimentological events and tectonic developments. On the other hand, Kurihara (1977) stated "*Spirosigmaolinella compressa* occurs in the basal part of the Lower Miocene in the Takasaki region (= the Tomioka region of the present paper). It disappears in the middle part of the Yoshii Formation, while very close to the last occurrence of *Globorotalia fohsi fohsi* (sensu Boll, 1957) in the same section. In the Boso Peninsula, this benthonic species occurs associated with *Globorotalia fohsi peripherororda* and *G. fohsi fohsi* in the Amatsu Formation. *Spirosigmaolinella compressa* disappears together with the *Globorotalia fohsi* group in the section studied in the Boso Peninsula". According to a result of the present study as well, the range of the taxon extends upwards, at least, to the middle part of the *Globorotalia peripherororda/Orbulina suturalis* Concurrent-Zone across the *Orbulina suturalis* Base-datum (Fig. 7). Therefore, it may be said that *Spirosigmaolinella compressa* Matsunaga had still subsisted up to the early or middle Middle Miocene in the Pacific side province of Central Japan.

Another thing to be noticed is that the zone characterized by the poor occurrence of arenaceous forms only was discovered from the Middle Miocene Series of the Pacific side province. In the adjacent Niigata area of the Japan Sea side, there can be recognized the biostratigraphic units represented by the arenaceous forms, that is, the *Haplophragmoides renzi-Plectina nipponica* and *Haplophragmoides renzi-Martinotiella communis* zonules (Matsunaga, 1963). These two oznules were reported from the middle part of the Nanatani Formation included within the *Globorotalia peripherororda/Globorotalia quinifaceta* Zone of Saito and Mayya (1973), which corresponds to the *Globorotalia peripherororda/Orbulina suturalis* Concurrent-Zone of the present paper. Furthermore, the zonule characterized by the poor occurrence of arenaceous forms such as *Martinotiella communis* (D'Orbigny) and a few other taxa is pursued throughout the lower part of the Middle Miocene deposits distributed in the Japan Sea coast region of Southwest Japan (Chij, 1961; Nakaseko, 1952; Tai, 1959), and the boundary between the zonule and the subjacent one represented by the rich calcareous warm water taxa has been called the Foraminiferal Sharp Line by Tai
Meanwhile, judging from the results of sedimentological and paleontological studies of the Miocene sequences in the oil fields of Japan Sea coast region, such arenaceous foraminiferal assemblages as mentioned above are regarded as suggesting the presence of stagnant and anaerobic condition (Iwamoto and Shinbo, 1964). Thus, it may be considered that the stagnant and anaerobic sedimentary environment had extended from the Japan Sea side province of Southwest Japan to the Tomioka area, the northwest margin of the Kanto district of the Pacific side province, Central Japan.

e. **Stilostomella-Trifarina kokozuraensis Zone**—Samples 8, 9 (Hoshi River section)

This zone is characterized by the predominant occurrences of *Stilostomella* spp. and *Trifarina kokozuraensis* (Asano), the former of which includes *Stilostomella lepidula* (Schwager) and *S. ketienziensis* (Ishizaki), mainly associated with *Cibicidoides lobatulus* (Walker and Jacob), *C. pseudoungerianus* (Cushman), *Bulimina striata* d'Orbigny, *Fursenkoina mexicana* (Cushman), *Melonis guadalPae* Parker, and *Uvigerina proboscidea* Schwager. Contrary to the subjacent zone, scarcely found are arenaceous forms. It is a remarkable fact, however, that a number of taxa which occur in higher or lower frequencies throughout the underlying four zones come to be never found from this zone and the overlying ones. They are as follows;

- *Ammodiscus incertus* (D'Orbigny)
- *Discammina compressa* (Goes)
- *Goesella schencki* Asano
- *Spirosigmoilinella compressa* Matsunaga
- *Textularia semialata* Cushman
- *Amphistegina radiata* Fichtel and Moll
- *Bolivina plicatella* (Cushman)
- *Brazalina albatrossi* (Cushman)
- *B. cochei* (Cushman and Adams)
- *B. marginata masudai* (Asano)
- *Bulimina nipponica* Asano
- *Dentalina communis* d'Orbigny
- *D. inflexa* Reuss
- *Gyroidinoides altiformis* R. E. and K. C. Stewart
- *Hopkinsina imogawaensis* Matsunaga
- *H. morimachiensis* Matsunaga
- *Planulina nipponica* Asano
- *Plectofrondicularia japonica* Asano
- *Sphaeroidina japonica* Asano
- *Trifarina bradyi* (Cushman)
Benthonic Foraminiferal Biostratigraphy of Middle Miocene

Uvigerina akitensis ASANO

U. nitidula SCHWAGER

Besides, *Brizalina pisciformis* (GALLWAY and MORREY), *Bulimina rostrata* BRADY, *Gyroidina orbicularis* (d'ORBIGNY), *Nodosaria longiscata* d'ORBIGNY, *N. tosta* SCHWAGER, and *Oolina hexagona* (WILLIAMSON) are hardly found likewise.

The number of foraminifera of this zone is relatively large, and the ratio of planktonic forms is also high. The fauna is inferred to be of the upper bathyal zone in the temperate region. This zone is recognized in the upper part of the Haratajino Formation exposed along the Hoshi River, and it corresponds to the lower part of the *Globorotalia peripheroacuta/Sphaeroidinellopsis subdehiscens* Interval-Subzone.

f. Cassidulina norcrossi-Trifarina kokozuraensis Zone—Samples 10, 186, 188, 11, 192 (Hoshi River section)—

This zone is defined by the abundant occurrences of *Cassidulina norcrossi* CUSHMAN and *Trifarina kokozuraensis* (ASANO) associated with *Cibicidoides aknerianus* (d'ORBIGNY), *C. pseudoungerianus* (CUSHMAN), *Melonis nicobarensis* (CUSHMAN), *M. quadalpae* PARKER, *Uvigerina probosidea* SCHWAGER, and *Martinottiella communis* (d'ORBIGNY). The number of benthonic foraminifera is largest attaining the maximum of 164 per gram, and the ratio of planktonic forms is also high with the average of 55 per cent. The zone is recognized from the uppermost part of the Haratajino Formation through the Niwaya Formation exposed along the Hoshi River, and it corresponds to the middle and upper parts of the *Globorotalia peripheroacuta/Sphaeroidinellopsis subdehiscens* Interval-Subzone and the lower part of the *Sphaeroidinellopsis subdehiscens/Globigerina nepentes* Interval-Subzone. The *Sphaeroidinellopsis subdehiscens* Base-datum are found in the nearly middle level of the zone.

Cassidulina norcrossi CUSHMAN (Figs. 8a–c) has been reported by the name of

![Fig. 8. Cassidulina norcrossi CUSHMAN ×107 OMNH Reg No. F16075F; from Sample 11 (Niwaya Formation, Tomioka Group).](image-url)
Cassidulina kasiwazakensi FUSEJIMA and MARUHASHI from the Neogene deposits distributed in the Japan Sea side provinces, but scarcely any known from the Pacific side ones. Based on the Recent distribution of the species in the sea around northern Japan (CHIJI and KONDA, 1970; IKEYA, 1970; TROTITSKAJA, 1970), it is considered that the fauna of this zone has been flourished under the cold water mass ranging from the outer margin of the continental shelf to the upper bathyal zone, and that the Tomioka Basin was closely connected with Japan Sea in the Middle Miocene and was invaded by cold water mass from the Japan Sea side of northern Japan.

g. Uvigerina proboscidea-Lenticulina lucida Zone—Samples 18–(1), 203, 202, 19 (Fujiki River section)—

This zone is characterized by the continuous and relatively abundant occurrences of *Uvigerina proboscidea* SCHWAGER and *Lenticulina lucida* (CUSHMAN) associated with *Alveophragmium setatum* (BRADY), *Gaudryina ishikiensis* ASANO, *Ammonia japonica* (HADA), *Amphicoryna tubulata japonica* (UCHIO), *Anomalina glabrata* CUSHMAN, *Cibicidoides lobatus* (WALKER and JACOB), *Florilus grateloupia* (d’ORBIGNY), *Melonis nicobarensis* (CUSHMAN), and *M. pomputecules* (FICHTEL and MOLL). Each of the subordinate taxa, however, fluctuates considerably in its relative quantity and becomes occasionally dominant or recessive, and besides, a number of taxa which occur continuously or intermittently through most of the underlying zones disappear in this zone. They are as follows:

- *Brizalina marginata* (CUSHMAN)
- *B. pliciformis* (GALLOWAY and MORREY)
- *Bulimina rostrata* BRADY
- *Cassidulina norcrossi* CUSHMAN
- *Cibicidoides aknerianus* (d’ORBIGNY)
- *Elphidium jenseni* (CUSHMAN)
- *Fissurina marginata* (MONTAGU)
- *Florilus japonicus* (ASANO)
- *Gyroidina orbicularis* (d’ORBIGNY)
- *Hanzawaia nipponica* ASANO
- *Nodosaria longiscata* d’ORBIGNY
- *N. tosa* SCHWAGER
- *Oolina hexagona* (WILLIAMSON)
- *Stilostomella hayasakai* (ISHIZAKI)
- *S. lepidula* (SCHWAGER)
- *Trifarina hughesi* (GALLOWAY and WISSNER)

Instead of the taxa mentioned above, *Cyclammina japonica kaiensis* FUKUTA and SHINOKI, *Tritaxia orientale* (CUSHMAN), *Ammonia japonica* (HADA), and *A. tochigiensis* (UCHIO) first appear in the zone. The benthonic foraminiferal number and the
Fig. 9. Comparison between the benthonic foraminiferal zones of the Tomioka Group and those of the Nishiyatsushiro Group.
ratio of planktonic forms decrease abruptly to 4 per gram and 12 per cent on an average, respectively.

The zone is recognized in the lower half of the Yoshii Formation exposed along the Fujiki River and it corresponds to the upper half of the Sphaeroidinellopsis subdehiszens /Globigerina nepenthes Interval-Subzone. The faunal composition and its difference from those of the subjacent zone may point to the outer neritic condition of the unstable basin in the regressive stage of the late Middle Miocene.

h. Uvigerina proboscidea-Praeglobobulimina pupoides Zone—Samples 81, 82, 208, 83, 86 (Futago-Tako Bridge section)—

This zone is characterized by the predominance of Uvigerina proboscidea SCHWAGER and Praeglobobulimina pupoides (d’ORBIGNY) associated with Gaudryina ishikiensis ASANO, Martinottiella communis (d’ORBIGNY), Amphicoryna tubulata japonica (UCHIO), Cassidulina norcrossi CUSHMAN, Cibicidoides lobatulus (WALKER and JACOB), Melonis nicobarensis (CUSHMAN), M. pompilioides (FICHTEL and MOLL), Nonionella labradorica (DAWSON), Trifarina kokozuraensis (ASANO), and Uvigerina subperegrina CUSHMAN and KLEINPEL. However, each of the subordinate taxa considerably fluctuates in frequency as that of the subjacent zone, and both of benthonic foraminiferal number and ratio of planktonic forms are very variable. It may be inferred, therefore, that the fauna has lived in the very unstable and changeable environment under the influence of cold water ranging from the outer margin of the neritic zone to the upper bathyal one in the regressive stage. This zone is recognized in the upper half of the Yoshii Formation exposed along the Futago-Tako Bridge section, and it corresponds to the uppermost part of the Sphaeroidinellopsis subdehiszens/Globigerina nepenthes Interval-Subzone and the lower part of the succeeding Globigerina nepenthes/Globorotalia acostaensis Interval-zone. The zone, therefore, comprises the Globigerina nepenthes Base-datum at the lowermost part, though the Globorotalia acostaensis Base-datum has never been found from the Tomioka area.

i. Ammonia tochigiensis-Amphicoryna tubulata japonica Zone—Sample 90 (Futago-Tako Bridge section)—

This zone is outstanding in that the fauna consists of a few taxa such as Ammonia tochigiensis (UCHIO), Amphicoryna tubulata japonica (UCHIO), Gaudryina sp.1, Melonis nicobarensis (CUSHMAN), M. pompilioides (FICHTEL and MOLL), Uvigerina proboscidea SCHWAGER, and Valvulineria sadonica ASANO, and in that Ammonia tochigiensis (UCHIO) and Amphicoryna tubulata japonica (UCHIO) are abundant, especially the former occupies nearly half of benthonic remains. The number of the benthonic forms is very small, barely amounting to 1 per gram, and none of planktonic forms are found.

The zone is recognized at a level of the lower part of the Itahana Formation exposed at the northeast margin of the Futago-Tako Bridge section, and it may
Fig. 10. Stratigraphic distribution of benthonic foraminifera in the Tomioka Group. The frequency in each of the samples is expressed in the following grades: VA; more than 46%, VB: 46-22%, VC: 22-10%, VD: 10-4%, VE: 4-1%, VF: less than 1%. Species of less than 1% frequencies in all of the samples are excluded from the list.

Fig. 10 (continued)
<table>
<thead>
<tr>
<th>Characteristic Unit</th>
<th>Lithologic Unit</th>
<th>ZONE</th>
<th>Percentage</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A-1</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11. Stratigraphic distribution of bentonic foraminifera in the Nishiyamashio Group. VA; more than 46%, A; 46-22%, C; 22-10%, F; 10-4%, R; 4-1%, VR; less than 1%. Species of less than 1% frequencies in all of the samples are excluded from the list.

occupy probably a part of the *Globigerina nepenthes/Globorotalia acostaensis* Interval-Zone, and the fauna indicates an environment ranging from the middle to outer neritic zone under the influence of cold water.

This zone is defined by only one sample and it may be not proper to apply the term zone here. But, the collection of additional samples can be hardly expected, because the Itahana Formation is composed mainly of thick-bedded sandstone and conglomerate, showing a coarsening-upward tendency.

(2) **Nishiyatsushiro Group** (Fig. 11)

 a. **Melonis pompilioides-Ammodiscus incertus Zone**—Samples 77043008–(3), −(1), −(2), 77043009 (Kanzaka-Ichinose section)—

 This zone is characterized by the abundance of *Melonis pompilioides* (Fichtel and Moll) and *Ammodiscus incertus* (d'Orbigny) accompanied with *Dentalina* spp., *Globobulimina auriculata* (Bailey), *Gyroideoides komatsui* (AoKi), *Nodosaria longiscata* d'Orbigny, and *N.* spp. The benthonic foraminiferal number is rather small, amounting to 2–7 individuals per gram, but the ratio of planktonic forms is as high as 50–71 per cent. The fauna of this zone is inferred to have lived in the upper bathyal zone of the temperate region.

 The zone is recognized in the middle part of the Kanzaka Mudstone of the Ichinose Formation exposed along the Kanzaka-Ichinose section, though the assemblages from the lower and upper part of the mudstone are unknown due to the conspicuous weathering and the dissolution of calcareous microfossils. But, the *Sphaeroidinellopsis subdehiscens* Base-datum was confirmed at the middle level of the zone. Therefore, the zone corresponds to the uppermost part of the *Globorotalia peripheroacuta/Sphaeroidinellopsis subdehiscens* Interval-Subzone and the basal part of the succeeding *Sphaeroidinellopsis subdehiscens/Globigerina nepenthes* Interval-Subzone.

 b. **Globobulimina auriculata-Melonis nicobarensis Zone**—Samples 77032706, 7711–2101 (1), −(4), 77112102, 77112103 (Kamiishiki-Wadaira section); 77032611, 77032613 (Kamiishiki-western entrance of Hatouchi Tunnel section)—

 This zone is defined by the predominance of *Globobulimina auriculata* (Bailey) and *Melonis nicobarensis* (Cushman) accompanied mainly with *Melonis pompilioides* (Fichtel and Moll), *Stilostomella fistuca* (Schwager), *S. ketienziensis* (Ishizaki), *Nodosaria longiscata* d'Orbigny, *N.* spp., and *Trifarina occidentalis* (Cushman). *Melonis pompilioides* (Fichtel and Moll) is relatively dominant in the lower part of the zone, but it is overwhelmed by the increase of *Nodosaria longiscata* d'Orbigny in the upper part, and numerous fragments referable to *Rhabdammina abyssorum* M. Sars are found from a few restricted levels of the upper part. Many taxa first appear in this zone, and most of them are found from the overlying two zones as well. They are as follows;
Martinottiella communis (d'ORBIGNY)
M. communis hosoyaensis ASANO
Sigmoilopsis schlumbergeri (SILVESTRI)
Bolivina robusta BRADY
Chilostomella oolina SCHWAGER
Gyroidina sp. 1
Gyroidinoides soldanni (d'ORBIGNY)
Parafissurina ovalis TODD
Plectofrondicularia advena (CUSHMAN)
Pyrgo murrhina (SCHWAGER)
P. vespertilio (SCHUMBERGER)
Sigmoilina sigmoidea (BRADY)
Trifarina kokazuraensis (ASANO)

However, Biloculina natsukawa (MATUI and NAKAMURA), Siphonodosaria cf. abys-sorum (BRADY), and Uvigerina peregrina dirupta TODD occur only from this zone, and Globobulimina perversa (CUSHMAN), Lenticulina lucida (CUSHMAN), and Uvigerina subpere-grina CUSHMAN and KLEINPELL are restricted to the zone and to the next younger zone.

The benthonic foraminiferal number is relatively large, attaining 15 per gram on an average, and the ratio of planktonic forms is as high as in the subjacent zone with the average ratio of 62 per cent. The fauna of this zone may be of the upper bathyal zone of the temperate region.

This zone is recognized; (1) in the mudstone of about 100 meters in thickness which occupies the middle part of the Wadaira Tuff of the Ichinose Formation along the Kamiishiki-Wadaira section; (2) in the mudstone intercalated in the upper part of the Wadaira Tuff along the Kamiishiki-western entrance of Hatouchi Tunnel. It occupies the middle part of the Sphaeroidinellopsis subdehiscens/Gtogigen'na nepenthides Intervai-Subzone.

c. Globobulimina auriculata-Nodosaria longisiza Zone—Samples
77032614 (Kamiishiki-western entrance of Hatouchi Tunnel section);
77032701−(1), −(2), 77032605 (Deguchi-eastern entrance of Hatouchi Tunnel section); 77032927, 77032925, 77032924 (Iitomi Bridge-Fukamachi section)—

This zone is characterized by the predominant occurrences of Globobulimina auriculata (BAILEY) and Nodosaria longisata d'ORBIGNY, accompanied by Martinottiella communis (d'ORBIGNY), Gyroidinoides altiformis (R. E. and K. C. STEWART), Melonis pomipilioides (FICHTEL and MOLL), Nodosaria spp., Pullenia bulloides (d'ORBIGNY), Pyrgo murrhina (SCHWAGER), Siphonodosaria cf. consobrina (d'ORBIGNY), Stilostomella fistuca (SCHWAGER), and S. ketienziensis (ISHIZAKI), the last of which has constant occurrence with relatively high frequency. Marsipella elongata NORMAN and Psammosphaera fusca
Benthonic Foraminiferal Biostratigraphy of Middle Miocene

Schulze are confined to this zone, and some species such as Cyclolypea involvens (Reuss), Globobulimina perversa (Cushman), Globocassidulina subglobosa (Brady), lenticulina lucida (Cushman), Quinqueloculina sawanensis Asano, Sphaeroidina bulboides (D'Orbigny), and Uvigerina subperegrina Cushman and Kleinpell disappear in the middle or upper part of the zone.

The benthonic foraminiferal number is large, amounting to the maximum of 37 individuals per gram in the lower part of this zone, where the ratio of planktonic forms is constant with 60–65 per cent in succession to the subjacent zone. But, the former decreases to 6–14 per gram, and the latter also becomes low with the average of 40 per cent in the upper part. The fauna is inferred to have lived in the upper bathyal zone of the temperate region.

This zone is recognized: (1) in the uppermost part of the Wadaira Tuff of the Ichinose Formation along the Kamiisshiki-western entrance of Hatouchi Tunnel section; (2) in the Deguchi Alternation of Tuffaceous Sandstone and Mudstone of the Daigoyama Formation along the Deguchi-eastern entrance of Hatouchi Tunnel section; (3) in the lower part of the Byobuiwa Tuff of the Daigoyama Formation along the Itomi Bridge-Fukamachi section. Globigerina nepenthes Base-datum was found from the basal part of the Deguchi Alternation of Tuffaceous Sandstone and Mudstone, and the Globorotalia siakensis Top-datum was confirmed at a level in the middle part of the Byobuiwa Tuff. Therefore, this zone ranges from the uppermost part of the Sphaeroidinellopsis subdehiscens/Globigerina nepenthes Interval-Subzone to the major part of the next younger Globigerina nepenthes/Globorotalia siakensis Concurrent-Subzone.

d. Melonis pompilioides-Stilostomella ketienziensis Zone—Samples 77032918, 77032917, 77032916–(1), –(2), 77050104–(4), –(3), –(2), –(1), 77050103–(2), –(1), 77050102, 77032909, 77050101–(2), –(1) (Itomi Bridge-Fukamachi section)—

On the whole, this zone is characterized by the abundant occurrences of Melonis pompilioides (Fichtel and Moll) and Stilostomella ketienziensis (Ishizaki). It is noticeable that Globobulimina auriculata (Bailey), Nodosaria longiscata d'Orbigny, N. spp., and Stilostomella fistuca (Schwager) are found successively with relatively high frequency. There are a few levels where Melonis pompilioides (Fichtel and Moll) is overwhelmed by the increase of Globobulimina auriculata (Bailey). Besides, Melonis nicobarenensis (Cushman) and Uvigerina proboscidea Schwager have a tendency to increase upwards, and Nonionella mioenica Cushman first appears in the zone. The other accompanying taxa are as follows;

- Martinottiella communis (d'Orbigny)
- Sigmoilopsis schlumbergeri (Silvetri)
- Bulimina rostrata Brady
- Gyroidinoides altiformis (R. E. and K. C. Stewart)
Hanzawaia nipponica Asano
Lagena spp.
Planulina wuellerstorfi (Schwager)
Plectofrondicularia advena (Cushman)
Pleurostomella brevis Schwager
P. elliptica Galloway and Heminway
Pullenia bulloides (D'Orbigny)
Pyrgo murrhina (Schwager)

The benthonic foraminiferal number is rather few, amounting to 4–15 per gram. The ratio of planktonic forms is very variable ranging from 5 to 67 per cent in the lower part of the zone, and fairly constant with 54 per cent on an average in the middle and upper parts. The fauna may indicate a slightly unstable environment of the upper bathyal zone of the temperate region.

The zone is recognized in the middle and upper parts of the Byobuwa Tuff of the Daigoyama Formation along the Itomi Bridge-Fukamachi section. The Globorotalia siakensis Top-datum and the next younger Globorotalia acostaensis Base-datum were found from the basal part of the zone, and the Pulleniatina primalis Base-datum from the uppermost part. Therefore, this zone corresponds to the four biozones of planktonic foraminifera, that is, the uppermost part of the Globigerina nepenthesis/Globorotalia siakensis Concurrent-Subzone, the Globorotalia siakensis/Globorotalia acostaensis Interval-Subzone, the Globorotalia acostaensis/Pulleniatina primalis Lineage-Zone, and the lowermost part of the Pulleniatina primalis/Sphaeroidinella dehiscens Interval-Zone.

4. Comparison of benthonic faunas and sedimentary environments between the Tomioka and Nishiyatsushiro groups

Based on the planktonic foraminiferal datum planes, the Sphaeroidinellopsis subdehiscens Base-datum and Globigerina nepenthesis Base-datum, common to the Tomioka and Nishiyatsushiro groups, the benthonic foraminiferal zones of both groups can be correlated with each other as shown in Fig. 9.

In comparison of the benthonic foraminifera from the synchronous zones between the groups, there are considerable differences in their faunal composition. Excepting some taxa whose occurrences are very rare, the number of taxa common to the both groups is only twelve, and they are as follows;

Alveophragmium scitulum (Brady)
Martinottiella communis (d'Orbigny)
Sigmoidopsis schlumbergeri (Silvestri)
Cibicidoides pseudoungerianus (Cushman)
Globocassidulina subglobosa (Brady)
Lenticulina lucida (Cushman)
Melonis nicobarensis (Cushman)
M. pompilioides (FICHTEL and MOLL)
M. quadralpae PARKER
Sphaeroidina bulloides (d'ORBIGNY)
Trifarina kokozuraensis (ASANO)
Uvigerina subperegrina CUSHMAN and KLEINPELL

The number of taxa which are present in the Tomioka Group but not in the Nishiyatsushiro Group is about thirty. The important taxa are as follows;

Cyclammina ezoensis ASANO
Gaudryina ishikiensis ASANO
Ammonia japonica (HADA)
A. ketienziensis (ISHIZAKI)
A. tochigiensis (UCHIO)
Amphicoryna proxima (SILVESTRI)
A. tubulata japonica (UCHIO)
Anomalina glabrata CUSHMAN
Cassidulina norcrossi CUSHMAN
Cibicidoides aknerianus (d'ORBIGNY)
C. lobatulus (WALKER and JACOB)
Elphidium advena (CUSHMAN)
E. jensi (CUSHMAN)
Florilus grateloupia (d'ORBIGNY)
Nonion japonicum ASANO
N. pacificum (CUSHMAN)
Nonionellina labradorica (DAWSON)
Praeglobobulimina pupoides (d'ORBIGNY)

The number of characteristic taxa found from the Nishiyatsushiro Group only is also about thirty. The next taxa are significant;

Ammodiscus incertus (d'ORBIGNY)
Marsipella elongata NORMAN
Psammophsphaera fusca SCHULZE
Reophax pilulifer BRADY
Rhabdammina abyssorum M. SARS
Saccammina sphaerica M. SARS
Globobulimina auriculata (BAILEY)
Gyroidinoides komatsui (AOKI)
G. nipponicus (ISHIZAKI)
Oridosatis umbonatus (REUSS)
Pleurostomella brevis SCHWAGER
P. elliptica GALLOWAY and HEMINWAY
Pyrgo spp.
Siphonodasaria cf. consobrina (d’Orbigny)
Stilostomella fistuca (Schwager)
Tosaia hanzawai Takayanagi
Trifarina occidentalis (Cushman)

Another thing to be noticed is that there is an appreciable difference in the planktonic foraminiferal assemblages as well between the above-mentioned synchronous zones. The characteristic taxa of the Tomioka Group are Globigerina bulloides bulloides d’Orbigny, G. pachyderma (Ehrenberg), and Globorotalia bykovae (Aisenstat), and the assemblages of the group are monotonous in composition, consisting predominantly of several taxa of Globigerina, except ones from the lower part of the Sphaeridinellopsis subdehiscens/Globigerina nepenthes Interval-Subzone. Both species of carinate and non-carinate Globorotalia scarcely occur, and Globigerinoides ruber ruber (d’Orbigny) and Globigerina nepenthes Todd are found in very low frequencies. Therefore, the planktonic foraminiferal assemblages of the upper part of the Tomioka Group are characteristic of the “Miocene boreal fauna” called tentatively by Saito (1963).

From the Nishiyatsushiro Group, on the other hand, tropical and subtropical taxa such as Globorotalia altispira (Cushman and Javis), G. dehiscens (Chapman, Parr, and Collins), Globorotalia languensis Boll, G. peripheroacuta Blow and Banner, G. praefohsi Blow and Banner, Hastigerina siphonifera praessiphonifera Blow, H. siphonifera siphonifera (d’Orbigny), and Globigerina nepenthes Todd etc. are found in fairly high frequencies.

After all, it is apparent that the sedimentary environment of the Tomioka Group and that of the Nishiyatsushiro Group were quite different during the late Middle Miocene, and that the Tomioka area has changed from the upper bathyal condition to the neritic one under the influence of cold water, but the Shimobe area has continued to subside so as to permit the subsistence of the upper bathyal fauna under the warm water current during that time.

V. Middle Miocene benthonic faunas from the other regions of the Kanto and its adjacent districts

Last of all, it is necessary to compare the Middle Miocene foraminiferal faunas of the Tomioka and Nishiyatsushiro groups with those reported from various places of the Kanto and its adjacent districts.

From the Hiki Hill, Saitama Prefecture and the Daigo-Omiya area, Ibaragi Prefecture, three planktonic foraminiferal zones were reported. They are the Globorotalia peripheroronda/Globorotalia quinifalcata, Globorotalia peripheroacuta/Globorotalia miozea (s.s.), and Globorotalia bykovae/Globorotalia menardii zones, in ascending order,
and the representative benthonic foraminifera from each of the zones were also referred (Maiva and Murata, 1977). On the whole, the faunal changes of benthonic foraminifera in the latter two zones seem to resemble those known from the Globorotalia peripheroacuta/Globigerina nepenthis Interval-Zone of the Tomioka Group. It may be said, therefore, that the marine regression from the north and west of the Kanto district began in the middle or late Middle Miocene.

In the Boso Peninsula, Chiba Prefecture, the Amatsu Formation was ascertained by Oda (1977) to have been deposited during the Middle Miocene based on the stratigraphic distribution of planktonic foraminifera. However, it is a matter for regret that the benthonic foraminiferal distribution in the formation remain unknown. Only a few taxa such as Stilostomella spp., Planulina wuelerstorfi (Schwager), and Nodosaria spp. were reported by Maiva and Murata (op. cit.) from the basal part of the formation. Therefore, benthonic fauna can not be compared with those of the Tomioka and Nishiyaitsushiro groups. Further investigation of paleoenvironment based on the faunal character of benthonic forms and its vertical changes are necessary.

Besides, two benthonic faunas were described by Uchio (1950) from Tochigi
Prefecture. One of them was found from the Momiyama Sandstone of the Kanuma Formation exposed in Kanuma City and was assumed to be the Middle Miocene in age, and the other from a fine sandstone of the Terayama Group distributed in

Fig. 13. Geological map of the Uenohara-cho and its environs, Kitakatsura-gun, Yamanashi Prefecture, and locations of samples collected from the Shimada Formation of the Nishi-katsura Group.

Fig. 14. Columnar section of the Shimada and Katsura formations of the Nishikatsura Group, showing the stratigraphic positions of samples.
Utsunomiya City and was assumed to be of the Upper Miocene. The former comprises about thirty taxa, and is characterized by abundant *Vaginulina otukai* Uchío and *Hanzawaia nipponica* Asano associated with *Ammonia tachigiensis* (Uchío), *Elphidium momiyamaensis* Uchío, *Celanthus craticulatum* (Fichtel and Moll), and *Miogypsina kotoi* Hanzawa etc. The latter consists of nearly fifty taxa and is characterized by abundant *Melonis pompioides* (Fichtel and Moll), *Ammonia ketienziensis* (Ishizaki), and *Elphidium subgranulosum* Asano. Planktonic forms such as *Globigerina bulloides* D'Orbigny, *G. bilobata* D'Orbigny, *Globorotalia tumida* (Brady), *G. crassa* (D'Orbigny), and *Orbulina universa* D'Orbigny were also reported. However, reexamination of planktonic foraminifera based on the updated taxonomy is necessary, and age determination of these faunas should be settled first. Comparison of the faunas with those of

![Species table](image)

Fig. 15. Planktonic foraminifera from the Shimada formation of the Nishikatsura Group.
the Tomioka and Nishiyatsushiro groups is a subject of the future investigation.

In the other adjacent regions, Fukuta and Shinoki (1952) studied benthonic foraminiferal fauna from the Shimada Formation distributed from the south of Uenohara-cho, Kitakatsura-gun, Yamanashi Prefecture to the southwest of the Lake Sagami, Tsukui-gun, Kanagawa Prefecture. The fauna comprises very abundant arenaceous forms such as Martinottiella communis (d'Orbigny), Haplophragmoides scitulum (Brady), and Gössela schencki Asano in association with Cyclammina incisa (Stache), C. japonica kaiensis Fukuta and Shinoki, Nonion soldannii (d'Orbigny), N. pacificum Cushman, and some others. Fukuta and Shinoki (op. cit.) came to a conclusion that the Shimada Formation was deposited in rather cold water condition. Recently, the author studied planktonic foraminifera collected from the formation (Figs. 13 and 14). Most of them are in poor preservation and unfavorable for the quantitative analysis of faunal composition, but about thirty taxa including Globigerina nepenthodes Todd, Globigerinoides subquadratus Bronnimann, Globorotalia menardii (d'Orbigny), and G. continuosa Blow were found (Fig. 15). It is inferred, therefore, that the formation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Itahana F.</td>
<td>Ammonia tochigiensis- Amphicoryna tubulata japonica Zone</td>
<td>Gna.n</td>
<td>N.15</td>
<td>?</td>
<td>NORNIAN</td>
<td></td>
</tr>
<tr>
<td>Yoshii F.</td>
<td>Uvigerina proboscidea- Praeglobobulimina papoides Zone</td>
<td></td>
<td>N.14</td>
<td></td>
<td>LUSIAN</td>
<td></td>
</tr>
<tr>
<td>Niwaya F.</td>
<td>Uvigerina proboscidea- Lenticulina lucida Zone</td>
<td></td>
<td></td>
<td></td>
<td>RELIZIAN</td>
<td></td>
</tr>
<tr>
<td>Haratajino F.</td>
<td>Cassidulinina morcosii- Trifarina kokozurnensis Zone</td>
<td>Sps.s-d</td>
<td>N.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idozawa F.</td>
<td>Stilostomella- Trifarina kokozurnensis Zone</td>
<td>Grt.p-a</td>
<td>N.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martinottiella communis- Spirosequinella compressa Zone</td>
<td>Orb.s</td>
<td>N.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cibicidites pseudoungerianus- Stilostomella legidula Zone</td>
<td></td>
<td>N.9</td>
<td>15.0</td>
<td>RELIZIAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N.8</td>
<td></td>
<td>TOZAN</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 16. Relation among the Japanese chronostratigraphic units, the benthonic foraminiferal zones in the Tomioka area, and California stages based on benthonic foraminiferal distribution.

is included within the *Globigerina nepenthes*/*Globorotalia acostaensis* Interval-Zone, and that the temperature of surface water was rather warm at the deposition of the formation. Judging from the faunal composition of benthonic and planktonic foraminifera it is considered that the formation was deposited in the upper bathyal zone under the influence of the warm water current in the late Middle Miocene.

VI. Summary and conclusion

1. It was revealed that the *Sphaeroidinellopsis subdehiscens* Base-datum exists in a level somewhat lower than that reported previously (Chiji and Konda, 1978) through the examination of additional samples. The stratigraphic position of the base-datum should be altered as follows. The base-datum exists in the middle part of the Niwaya Formation of the Tomioka Group and in the same part of the Kanzaka Mudstone of the Nishiyatsushiro Group.

2. Based on the stratigraphic distribution of benthonic foraminifera, the Tomioka and Nishiyatsushiro groups are divided into nine and four biozones, respectively. They are as follows, in ascending order.

 Tomioka Group—Melonis-Stilostomella Zone, Cyclammina-Disammina compressa Zone, Cibicidoides pseudoungerianus-Stilostomella lepidula Zone, Martinottiella communis-Spirosigmoidinella compressa Zone, Stilostomella-Trifarina kokozuraensis Zone, Cassidulina norcrossi-Trifarina kokozuraensis Zone, Uvigerina proboscidea-Lenticulina lucida Zone, Uvigerina proboscidea-Praeglobobulimina pugoides Zone, and Ammonia tochigiensis-Amphiocoryina tubulata japonica Zone.

 Nishiyatsushiro Group—Melonis-Pompilioides-Ammodiscus incertus Zone, Globobulimina auriculata-Melonis nicobarensis Zone, Globobulimina auriculata-Nodosaria longiscata Zone, and Melonis pompilioides-Stilostomella ketienziensis Zone.

3. The lower half of the Tomioka Group was deposited in the upper bathyal zone under the warm water condition during the late Early Miocene. However, just above the *Orbulina suturalis* Base-datum of the group, the Martinottiella communis-Spirosigmoidinella compressa Zone characterized by the poor occurrence of arenaceous forms such as Cyclammina incisa (Stache), Disammina compressa (Göes), Gósella schencki Asano, Haplophragmoides renzi Asano, Martinottiella communis (d’Orbigny), and Spirosigmoidinella compressa Matsunaga was recognized, though it is several tens of meters thick. The faunal change from the subjacent Cibicidoides pseudoungerianus-Stilostomella lepidula Zone characterized by the rich warm water species of calcareous forms happens abruptly in the consecutive muddy facies of the Haratajino Formation, and the planktonic forms are never found in the zone. Such a biozone seems to indicate the stagnant and anaerobic condition of the basin, and it has been pursued from the Japan Sea side province of Southwest Japan through the adjacent Niigata basin in
the early Middle Miocene. Accordingly, it may be considered that the Tomioka basin had been connected with the sedimentary basin of Japan Sea side since that time, and that the boundary between this zone and the subjacent one corresponds to the Foraminiferal Sharp Line of Tai (1963).

(4) In the middle Middle Miocene, the Tomioka basin was significantly affected by the cold water mass which invaded the Kanto district from the northward, and subsequently, it became shallower and changed from the uppermost bathyal zone to the outer or middle neritic zone.

(5) By means of the Sphaeroidinellopsis subdehiscens Base-datum and the next younger Globigerina nepenthes Base-datum, the benthonic foraminiferal zones of the Tomioka Group and those of the Nishiyatsushiro Group are correlated with each other as shown in Fig. 9. As to the Nishiyatsushiro Group distributed in the Shimobe area, there is no indication for the appreciable depth change throughout the time of deposition. All the benthonic foraminiferal assemblages are of the upper bathyal zone, and many tropical and subtropical taxa of planktonic forms were abundantly and consistently found from the whole section of the group. Contrary to the Tomioka area, the Shimobe area has continued to submerge under the warm water condition during the middle and late Middle Miocene, and there accumulated the marine sequence intercalating very thick volcanic detritus. On the other hand, the Uenohara area of the eastern margin of Yamanashi Prefecture situated near to the Kanto district was deposited under a deep water condition in a transitional region of the warm and cold water currents.

(6) There are many points of resemblance in the faunal character and its vertical changes between the Middle Miocene benthonic faunas reported from Saitama and Ibaragi prefectures and those found from the Tomioka Group. It can be said, therefore, that the marine regression from the north and west of the Kanto district began in the middle Middle Miocene. As far as the southern part of the district is concerned, the Middle Miocene benthonic fauna remains unknown. It is necessary to investigate the stratigraphic distribution of benthonic foraminifera from the Amatsu Formation distributed in the Boso Peninsula.

VII. Discussion

The present study has revealed that the Tomioka area was affected significantly by the cold deep water during the middle Middle Miocene time, and changed to the neritic zone after that time.

As a whole, the Middle Miocene was a remarkable regressive stage in the Japanese region. In many places, as mentioned afore, the greater part of the Middle Miocene Series is lacking in marine sequences, especially on the Pacific side of the
Benthonic Foraminiferal Biostratigraphy of Middle Miocene

Japanese Islands*. Change of depositional condition of the Tomioka area is presumably not a local phenomenon in the Kanto district, Central Japan, but a event related to upheaval of the Japanese region during the Middle Miocene time.

Furthermore, it is noticeable that a subarctic bathyal fauna including abundant *Cassidulina norcrossi* Cushman and *Trifarina kokozuensis* (Asano) was found in the lower part of the *Globorotalia peripherocuta/Globigerina nepenthes* Interval Zone corresponding approximately to the middle Middle Miocene. With regard to this, some discussion may be necessary.

Judging from available data of biostratigraphic and paleontological studies on the middle latitudes along the marginal North Pacific region, appearance of the subarctic deep water type fauna in the Tomioka Group can be convincingly attributed to the worldwide temperature change in the Middle Miocene.

In recent years, intercontinental correlation of California mid-Cenozoic stages defined by Kleinpell (1938) based on stratigraphic distribution of benthonic foraminifera became possible through the progress of studies of planktonic microfossils and radiometric dating (Bandy and Ingle, 1970; Bandy, 1972; Ingle, 1977; Lipps, 1964, 1967, 1968; Turner, 1970; Wilcoxon, 1969), and then, all, the upper part of Relizian, Luisian, and lower half of Mohnian stages of Kleinpell (op. cit.) in ascending order, have been considered to be equivalent to the Middle Miocene (Fig. 16).

The Luisian Stage corresponding approximately to the middle Middle Miocene was essentially regressive. It is absent at some localities in California. The early Luisian is represented by warm to temperate water type fauna of medium depth (bathyal zone) including abundant *Siphogeneria* under the open sea condition, but the later stage by shallow (neritic) and current-sheltered warm water type, and paleotemperature became successively cooler toward the latest stage. In the following lower Mohnian Stage corresponding to the late Middle Miocene, benthonic fauna characteristic of the neritic zone became common. The warm water elements have disappeared in the middle Mohnian and there is a remarkable increase of cold water forms such as *Cassidulina*, *Nonion pizarensis*, and *Uvigerina*. The faunal change observable between the Luisian and Mohnian is the most pronounced change recognized in the California Miocene (Kleinpell, 1938).

Therefore, general trends of paleoenvironmental changes are similar to each other between the Pacific side of the Japanese Islands and California coast during the Middle Miocene time. This is also supported by the data on oxygen isotope analyses of bathyal foraminiferal tests from the DSDP cores in the Pacific Ocean.

Recently, oxygen isotopic compositions of multispecies assemblages of bathyal

* The Shimobe area is an exception, because the area is situated in the Fossa Magna region where subsidence and sedimentation occurred largely following intense volcanism and faulting movements during the Middle and Late Miocene.
Fig. 17.
foraminifera from many sampling sites in the North and South Pacific have been plotted as a function of time (Douglas and Savin, 1973; Savin et al., 1975; Saito, 1977). In these data, all points concentrate on a single curve without any exception, and the most dramatic cooling of bottom waters is shown in the Middle Miocene. Also, in general Tertiary paleotemperature deduced from isotope analyses of planktonic and benthonic foraminifera of five DSDP cores (sites 44, 47, 55, 167, and 171) in the North Pacific (Savin et al., 1975), the fluctuation of the planktonic and benthonic foraminiferal curves are parallel until the early Middle Miocene, and thereafter the benthonic curve shows a temperature decline, while the low latitude planktonic temperature curve shows relatively constant temperatures (Fig. 17). Since deep bottom water temperatures throughout the world's oceans today closely approximate surface temperatures in their source region at polar latitudes, the oxygen isotopic record in deep sea sediments may in turn suggest high latitude surface temperatures of the geologic past. In addition, because the thermal conditions (temperatures and

Fig. 17. General Tertiary paleotemperatures deduced from oxygen isotope analyses of planktonic and benthonic foraminifera from several DSDP cores in the North and South Pacific and South Atlantic oceans:
(a) locations of cores studied. Circles=DSDP sites. Triangles=USNS Eltanin sampling sites. (b) Oxygen isotopic compositions of multispecies assemblages of benthonic foraminifera. The Tertiary temperature scale applies to samples older than Middle Miocene. Modern temperature scale is applicable to present-day oceans. Temperature scales for Middle and Late Miocene and Pliocene lie between two scales shown. (c) Surface temperature of five low latitude North Pacific DSDP sampling sites estimated from isotopic data. Also shown are bottom temperature (or high latitude surface temperatures) from (b). Quoted from Savin et al. (1975).
volume of ice) of high latitudes are the primary factor controlling the δ18O values
in the tests of bathyal foraminifera (Schackleton, 1967; Schackleton and Opdyke,
1976), the δ18O record in deep open ocean sediments is globally synchronous.

On the Japan Sea side of northern Japan, tropical species of planktonic foraminifera,
such as Globorotalia praemenardii praemenardii Cushman and Stainforth,
Globorotalia miozae (s.l.) Finlay, Globoguadrina altispirea altispirea (Cushman and Javis),
and Globoguadrina dehiscens (Chapman, Parr and Collins), disappear at the top of the
Globorotalia peripheroacuta/Globorotalia miozae (s.l.) Zone corresponding approximately
to Blow’s (1969) Zone N.10–N.11 (Ikebe et al., 1977; Maiya, 1978). In the Tomioka area,
on the other hand, tropical taxa mentioned above subsisted until the top
of the Globorotalia peripheroacuta/Globigerina nepenthes Interval-Zone corresponding to
Zone N.10–N.13 (Chiji and Konda, 1978), and then it should be emphasized that
prior to the extinction of tropical planktonic foraminifera a remarkable faunal change
of benthonic foraminifera occurred in the bathyal zone; namely, a subarctic cold
water type fauna such as the Cassidulina norcrossi-Trifarina kokozuraensis Assmélage
invaded the Tomioka basin, replacing the warm to temperate water type fauna.
Therefore, it is considered that the cold deep waters derived from the surface waters
in the high latitude regions had underlain the warm surface current during the middle
Middle Miocene. Accordingly, the faunal composition change of bathyal foramin-
ifera in the land section is not inconsistent with the δ18O record in deep sea sedi-
ments mentioned above.

In California as well, planktonic and benthonic foraminiferal occurrences show
a similar trend in the Lusitan Stage; some tropical indices of planktonic foraminifera
still survived into the close of the stage, suggesting that the major isotherms has
shifted northward at this time, and all of them disappear in the following Lower
Mohnian Stage (Bandy, 1972; Ingle, 1967; Lipps, 1964; Parker, 1964). On the
other hand, benthonic foraminiferal faunal change in the Lusitan Stage shows already
a tendency of gradual cooling of the Pacific bottom waters (Kleipell, 1938).

There are not enough data, however, on benthonic foraminifera to explain
Middle Miocene events in the marginal North Pacific region. On the Pacific side
of northern Japan, only a Middle Miocene benthonic fauna has been known from
the Hatajatake Formation distributed in the southwest of Sendai (Asano, 1937; Takay
agai, 1952), and the age of the formation was assigned by Oda and Sakai (1977)
to be the early Middle Miocene to the early Late Miocene based on planktonic
foraminifera and radiolaria. Takayanaugi (op. cit.) classified sedimentary environ-
ment of the formation into two phases, the earlier one of a shallow sea in an unstable
area and the later one of a deeper in a more stable condition, but it seems for the
author that there is no apparent evidence of the temperature decline of deep waters
in the faunal composition of the later phase.
Besides, some Middle Miocene marine sequences have been reported through
the recent studies of planktonic microfossils from the Kadonosawa-Sannohe, Ichino-
seki, and Joban areas, the Pacific side of northern Japan [SAMATA, 1976; TAKAYANAGI
et al., 1976; TUSCHI et al., 1979; (Fig. 18)]. Nevertheless, benthonic foraminiferal
research on these sequences has not been carried out until now. In connection with
the author’s work, it is necessary to confirm benthonic foraminiferal compositions in
these sequences.

References
AKIYAMA, M., (1957): The Neogene strata along the upper course of the Fujikawa River, Yamanashi
abstract].
——— (1972): Neogene planktonic foraminiferal zones, California, and some geologic impli-
BLOW, W. H. (1959): Age, correlation, and biostratigraphy of the upper Tocuyo (San Lorenzo) and
——— (1969): Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. In:
BRÖNNIANN, P. and RENZ, H. H., eds., Proceedings of the First International Conference on Planktonic
BOLLI, H. M., (1957): Planktonic foraminifera from the Oligocene-Miocene Cipero and Lengua
——— (1978): Planktonic foraminiferal biostratigraphy of the Tomioka Group and the Nishiyatsu-
shiro and Shizukawa groups, Central Japan, with some consideration on the Kaburan Stage
(Middle Miocene). Cenozoic Geology of Japan (Professor Nobuo Ikebe Memorial Volume), 73-92
DOUGLAS, R. G. and SAVIN, S. M. (1973): Oxygen and carbon isotope analyses of Cretaceous and
Tertiary foraminifera from the Central North Pacific. In: WINTERER, E. L. and EWING, J. L. (eds.)
Office.
FUKUTA, O. and SHINOKI, R. (1952): Stratigraphical and micropaleontological study of the Nishi-
Cenozoic Geology of Japan (Professor Nobuo Ikebe Memorial Volume), 13-34 (in Japanese with English
abstract).
———, and ASANO, K. (1973): Interregional correlation of the Neogene based on planktonic
English abstract).

——— (1971): Neogene biochronology of the South Fossa Magna, Central Japan (III)—On the biostratigraphy and the paleoecology in the southwestern and the eastern areas of Yamanashi Prefecture.—Ibid., no. 21, 212-218.
Benthonic Foraminiferal Biostratigraphy of Middle Miocene

Isao Konda

Explanation of Plates I-V

Plate I

Fig. 1: *Martinottiella communis* (D’OcIBiGNy) ×50 OMNH Reg. No. F13871F; from Sample 57–(1) (Idozawa Formation, Tomioka Group).

Fig. 2: *Martinottiella communis* (D’OcIBiGNy) ×72 OMNH Reg. No. F13872F; from Sample 57–(1) (Idozawa Formation, Tomioka Group).

Figs. 3a, b: *Spirosigmaillinella compressa* Matsunaga ×66 OMNH Reg. No. F13903F; from Sample 4 (Haratajino Formation, Tomioka Group).

Fig. 4: *Spirosigmaillinella compressa* Matsunaga ×60 OMNH Reg. No. F13904F; from Sample 57–(1) (Idozawa Formation, Tomioka Group).

Figs. 5a, b: *Discammina compressa* (GöBl) ×24 OMNH Reg. No. F13858F; from Sample 162 (Haratajino Formation, Tomioka Group).

Figs. 6a, b: *Discammina compressa* (GöBl) ×22 OMNH Reg. No. F13857F; from Sample 57–(1) (Idozawa Formation, Tomioka Group).

Fig. 7: *Ammodiscus incertus* (D’OcIBiGNy) ×6 OMNH Reg. No. F13912F; from Sample 77043008–(2) (Kanzaka Mudstone, Ichinose Formation, Nishiyatsushiro Group).

Fig. 8: *Ammodiscus incertus* (D’OcIBiGNy) var. ×6 OMNH Reg. No. F13913F; from Sample 41 (Idozawa Formation, Tomioka Group).

Fig. 9: *Marriepella elongata* Norman ×14 OMNH Reg. No. F13914F; from Sample 77043008–(2) (Kanzaka Mudstone, Ichinose Formation, Nishiyatsushiro Group).

Figs. 10a, b: *Goezeitella schencki* AsANo ×26 OMNH Reg. No. F13836F; from Sample 150 (Haratajino Formation, Tomioka Group).

Figs. 11a, b: *Gyrvoidinoides altiformis* (R. E. and K. C. STEWART) ×50 OMNH Reg. No. F13837F; from Sample 77032613 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 12: *Hursenkoina mexicana* (CusHJAN) ×60 OMNH Reg. No. F13835F; from Sample 41 (Idozawa Formation, Tomioka Group).

Fig. 13: *Hursenkoina mexicana* (CusHJAN) ×60 OMNH Reg. No. F13835F; from Sample 4 (Haratajino Formation, Tomioka Group).

Figs. 14a, b, c: *Gyrvoidinoides altiformis* (R. E. and K. T. STEWART) ×56 OMNH Reg. No. F13839F; from Sample 162 (Haratajino Formation, Tomioka Group).

Figs. 15a, b: *Cyclusminna orbicularis* (D’OcIBiGNy) ×18 OMNH Reg. No. F13856F; from Sample 45 (Obata Formation, Tomioka Group).

Figs. 16a, b, c: *Cyclusminna orbicularis* (D’OcIBiGNy) ×70 OMNH Reg. No. F13838F; from Sample 41 (Idozawa Formation, Tomioka Group).

Figs. 17a, b, c: *Gyrvoidinoides solidani* (D’OcIBiGNy) ×54 OMNH Reg. No. F13841F; from Sample 77112101–(1) (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Plate II

Fig. 1: *Stilostonella fistuca* (Schwager) ×46 OMNH Reg. No. F13906F; from Sample 77112101–(1) (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 2: *Stilostonella fistuca* (Schwager) ×50 OMNH Reg. No. F13907F; from Sample 77032909 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Fig. 3: *Stilostonella ketizensi* (Ishiz) ×54 OMNH Reg. No. F13908F; from Sample 77050102 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).
Fig. 4: *Stilostomella ketienziensis* (ISHIZAKI) ×40 OMNH Reg. No. F13909F; from Sample 77050102 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Fig. 5: *Stilostomella leptidula* (SCHWAGER) ×50 OMNH Reg. No. F13910F; from Sample 39–1 (Idozawa Formation, Tomioka Group).

Fig. 6: *Stilostomella leptidula* (SCHWAGER) ×46 OMNH Reg. No. F13911F; from Sample 162 (Haratajino Formation, Tomioka Group).

Fig. 7: *Stilostomella leptidula* (SCHWAGER) ×46 OMNH Reg. No. F13915F; from Sample 8 (Haratajino Formation, Tomioka Group).

Fig. 8: *Stilostomella hayasakai* (ISHIZAKI) ×50 OMNH Reg. No. F13916F; from Sample 186 (Niwaya Formation, Tomioka Group).

Fig. 9: *Siphonodasoria oinomikadoi* (ISHIZAKI) ×60 OMNH Reg. No. F13895F; from Sample 41 (Idozawa Formation, Tomioka Group).

Fig. 10: *Stilostomella consobrina* (D’ORBIGNY) ×30 OMNH Reg. No. F13905F; from Sample 77112101–1 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 11: *Nodosaria longiscata* (D’ORBIGNY) ×10 OMNH Reg. No. F13917F; from Sample 77032706 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 12: *Nodosaria longiscata* (D’ORBIGNY) ×12 OMNH Reg. No. F13918F; from Sample 77032706 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 13: *Nodosaria tosta* SCHWAGER ×40 OMNH Reg. No. F13879F; from Sample 77050101–1 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Fig. 14: *Nodosaria tosta* SCHWAGER ×50 OMNH Reg. No. F13880F; from Sample 77050101–1 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Figs. 15a, b: *Plectofrondicularia japonica* ASANO ×36 OMNH Reg. No. F13887F; from Sample 158 (Haratajino Formation, Tomioka Group).

Fig. 16: *Plectofrondicularia advena* (CUSHMAN) ×28 OMNH Reg. No. F13885F; from Sample 77032613 (Deguchi Alternation of Tuffaceous Sandstone and Mudstone, Daigoyama Formation, Nishiyatsushiro Group).

Figs. 17a, b: *Pleurostomella alternans* SCHWAGER ×56 OMNH Reg. No. F13888F; from Sample 77050104–2 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Figs. 18a, b: *Nonionellina labradorica* (DAWSON) ×66 OMNH Reg. No. F13878F; from Sample 3 (Haratajino Formation, Tomioka Group).

Fig. 19: *Praeglobobulimina pugoides* (D’ORBIGNY) ×34 OMNH Reg. No. F13928F; from Sample 56 (Idozawa Formation, Tomioka Group).

Fig. 20: *Praeglobobulimina pugoides* (D’ORBIGNY) ×54 OMNH Reg. No. F13927F; from Sample 195 (Haratajino Formation, Tomioka Group).

Fig. 21: *Planorostomella brevis* SCHWAGER ×56 OMNH Reg. No. F13889F; from Sample 77050104–4 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Fig. 22: *Planorostomella brevis* SCHWAGER ×28 OMNH Reg. No. F13890F; from Sample 77032613 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Figs. 23a, b: *Sphaeroidina japonica* ASANO ×70 OMNH Reg. No. F13898F; from Sample 159 (Haratajino Formation, Tomioka Group).

Fig. 24: *Globobulimina auriculata* (BAILEY) ×44 OMNH Reg. No. F13925F; from Sample 77050102 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Fig. 25: *Globobulimina auriculata* (BAILEY) ×40 OMNH Reg. No. F13926F; from Sample 77032613 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Figs. 26a, b: *Sphaeroidina austriaca* (D’ORBIGNY) ×50 OMNH Reg. No. F13896F; from Sample 153 (Haratajino Formation, Tomioka Group).

Figs. 27a, b: *Sphaeroidina bulloides* (D’ORBIGNY) ×60 OMNH Reg. No. F13877F; from Sample 34 (Idozawa Formation, Tomioka Group).
Plate III

Fig. 1: Amphicoryna tubulata japonica (UCHIO) ×50 OMNH Reg. No. F13845F; from Sample 83 (Yoshii Formation, Tomioka Group).

Fig. 2: Amphicoryna tubulata japonica (UCHIO) ×56 OMNH Reg. No. F13844F; from Sample 83 (Yoshii Formation).

Fig. 3: Brizalina pisiformis (GALLOWAY and MORREY) ×54 OMNH Reg. No. F13932F; from Sample 77050102 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Fig. 4: Amphicoryna proxima (SILVESTRI) ×60 OMNH Reg. No. F13846F; from Sample 83 (Yoshii Formation, Tomioka Group).

Figs. 5a, b: Fissurina fukamensis (ASANO) ×44 OMNH Reg. No. F13859F; from Sample 77112102 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Figs. 6a, b: Fissurina exculta (BRADY) ×60 OMNH Reg. No. F13860F; from Sample 153 (Tomioka Group).

Fig. 7: Oolina melo n’ORIGNY ×74 OMNH Reg. No. F13883F; from Sample 188 (Niwaya Formation, Tomioka Group).

Fig. 8: Oolina hexagona (WILLIAMSON) ×100 OMNH Reg. No. F13882F; from Sample 158 (Haratajino Formation, Tomioka Group).

Fig. 9: Oolina costata (WILLIAMSON) ×86 OMNH Reg. No. F13881F; from Sample 82 (Yoshii Formation, Tomioka Group).

Fig. 10: Lagena parri LOEBLICH and TAPPAN ×74 OMNH Reg. No. F13867F; from Sample 77043009–(1) (Kanzaka Mudstone, Ichinose Formation, Nishiyatsushiro Group).

Fig. 11: Lagena flatulenta LOEBLICH and TAPPAN ×66 OMNH Reg. No. F13865F; from Sample 77050104–(3) (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Figs. 12a, b: Alveophragmium scutatum (BRADY) ×16 OMNH Reg. No. F13847F; from Sample 203 (Yoshii Formation, Tomioka Group).

Fig. 13: Lagena semilunata WRIGHT ×90 OMNH Reg. No. F13868F; from Sample 192 (Niwaya Formation, Tomioka Group).

Figs. 14a, b: Tritaxia orientale (CUSHMAN) ×40 OMNH Reg. No. F13919F; from Sample 19 (Yoshii Formation, Tomioka Group).

Figs. 15a, b, c: Ammonia ketienzensis (ISHIZAKI) ×40 OMNH Reg. No. F13848F; from Sample 162 (Haratajino Formation, Tomioka Group).

Fig. 16: Lagena striata (n’ORIGIN) ×66 OMNH Reg. No. F13869F; from Sample 202 (Yoshii Formation, Tomioka Group).

Fig. 17: Lagena substrista WILLIAMS ×100 OMNH Reg. No. F13870F; from Sample 203 (Yoshii Formation, Tomioka Group).

Fig. 18: Lagena laevis (MONTAGU) ×84 OMNH Reg. No. F13866F; from Sample 77032614 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 19: Gaudryina ihikimensis ASANO ×50 OMNH Reg. No. F13840F; from Sample 202 (Yoshii Formation, Tomioka Group).

Figs. 20a, b, c: Ammonia tochigiensis (UCHIO) ×46 OMNH Reg. No. F13849F; from Sample 90 (Itahana Formation, Tomioka Group)
Plate IV

Figs. 1a, b: *Melonis niohabarenis* (Cushman) ×80 OMNH Reg. No. F13873F; from Sample 9 (Haratajino Formation, Tomioka Group).

Figs. 2a, b: *Melonis pompilioides* (Fichtel and Moll) ×46 OMNH Reg. No. F13874F; from Sample 77050101–(1) (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Figs. 3a, b: *Melonis pompilioides* (Fichtel and Moll) ×60 OMNH Reg. No. F138745F; from Sample 202 (Yoshii Formation, Tomioka Group).

Figs. 4a, b: *Pullenia bulboides* (d’Orbigny) ×70 OMNH Reg. No. F13891F; from Sample 4 (Haratajino Formation, Tomioka Group).

Figs. 5a, b: *Pullenia bulboides* (d’Orbigny) ×60 OMNH Reg. No. F13892F; from Sample 4 (Haratajino Formation, Tomioka Group).

Figs. 6a, b: *Melonis quadolpae* Parker ×66 OMNH Reg. No. F13876F; from Sample 77050104–(1) (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Figs. 7a, b: *Melonis quadolpae* Parker ×80 OMNH Reg. No. F13877F; from Sample 192 (Niwaya Formation, Tomioka Group).

Figs. 8a, b: *Pullenia subcarinata* (d’Orbigny) ×54 OMNH Reg. No. F13893F; from Sample 192 (Niwaya Formation, Tomioka Group).

Figs. 9a, b, c: *Cibicidoides pseudoungerianus* (Cushman) ×50 OMNH Reg. No. F13855F; from Sample 188 (Niwaya Formation, Tomioka Group).

Figs. 10a, b: *Pyrgo vespertilio* (Schliebenberg) ×34 OMNH Reg. No. F13894F; from Sample 77032613 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Figs. 11a, b, c: *Planulina nipponica* Asano ×26 OMNH Reg. No. F13884F; from Sample 162 (Haratajino Formation, Tomioka Group).

Figs. 12a, b: *Hoplophragmoides renzi* Asano ×20 OMNH Reg. No. F13861F; from Sample 150 (Haratajino Formation, Tomioka Group).

Plate V

Fig. 1: *Bulimina nipponica* Asano ×84 OMNH Reg. No. F13851F; from Sample 41 (Idozawa Formation, Tomioka Group).

Fig. 2: *Bulimina striata* d’Orbigny ×80 OMNH Reg. No. F13852F; from Sample 8 (Haratajino Formation, Tomioka Group).

Fig. 3: *Bulimina striata* d’Orbigny ×100 OMNH Reg. No. F13853F; from Sample 8 (Haratajino Formation, Tomioka Group).

Fig. 4: *Uvigerina proboscidea* Schwager ×74 OMNH Reg. No. F13923F; from Sample 82 (Yoshii Formation, Tomioka Group).

Fig. 5: *Uvigerina proboscidea* Schwager ×70 OMNH Reg. No. F13931F; from Sample 202 (Yoshii Formation, Tomioka Group).

Fig. 6: *Bulimina rostrata* Brady ×56 OMNH Reg. No. F13854F; from Sample 77052917 (Byobuiwa Tuff, Daigoyama Formation, Nishiyatsushiro Group).

Figs. 7a, b: *Uvigerina subperegrina* Cushman and Kleinpell ×80 OMNH Reg. No. F13922F; from Sample 81 (Yoshii Formation, Tomioka Group).

Figs. 8a, b: *Uvigerina akitaensis* Asano ×70 OMNH Reg. No. F13920F; from Sample 41 (Idozawa Formation, Tomioka Group).

Figs. 9a, b: *Hopkinsina morimachdensis* Matsunaga ×50 OMNH Reg. No. F13863F; from Sample 153 (Haratajino Formation, Tomioka Group).

Figs. 10a, b: *Hopkinsina inogawaensis* Matsunaga ×36 OMNH Reg. No. F13862F; from Sample 3 (Haratajino Formation, Tomioka Group).
Fig. 11: *Trifarina hughesi* (GALLOWAY and WISLER) ×120 OMNH Reg. No. F13900F; from Sample 153 (Haratajino Formation, Tomioka Group).

Fig. 12: *Uvigerina akitaensis* ASANO ×70 OMNH Reg. No. F13924F; from Sample 41 (Idozawa Formation, Tomioka Group).

Fig. 13: *Trifarina kokozuransis* (ASANO) ×84 OMNH Reg. No. F13929F; from Sample 162 (Haratajino Formation, Tomioka Group).

Fig. 14: *Uvigerina subperegrina* CUSHMAN and KLEINPEL ×74 OMNH Reg. No. F13921F; from Sample 77032614 (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 15: *Trifarina bradyi* (CUSHMAN) ×66 OMNH Reg. No. F13899F; from Sample 158 (Haratajino Formation, Tomioka Group).

Fig. 16: *Trifarina kokozuransis* (ASANO) ×76 OMNH Reg. No. F13930F; from Sample 162 (Haratajino Formation, Tomioka Group).

Figs. 17a, b: *Hopkinsina shinboi* MATSUNAGA ×60 OMNH Reg. No. F13864F; from Sample 8 (Haratajino Formation, Tomioka Group).

Fig. 18: *Trifarina occidentalis* (CUSHMAN) ×66 OMNH Reg. No. F13901F; from Sample 771-12101–(4) (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Fig. 19: *Trifarina occidentalis* (CUSHMAN) ×66 OMNH Reg. No. F13902F; from Sample 771-12101–(4) (Wadaira Tuff, Ichinose Formation, Nishiyatsushiro Group).

Figs. 20a, b: *Bolivina zanzibarica* CUSHMAN ×84 OMNH Reg. No. F13850F; from Sample 56 (Idozawa Formation, Tomioka Group).
KONDA: Benthonic Foraminiferal Biostratigraphy of Middle Miocene
Konda: Benthonic Foraminiferal Biostratigraphy of Middle Miocene