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SUMMARY
Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. How-

ever, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard,

suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such

as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include

spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems

that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a

simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems

associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale

hPSC production.
INTRODUCTION

Human pluripotent stem cells (hPSCs), including human

embryonic stem cells (hESCs) and human induced pluripo-

tent stem cells (hiPSCs), hold great promise in the fields of

regenerative medicine and drug discovery. Although their

practical usage requires large-scale cell culture, scaling up

of conventional adherent cultures is extremely chal-

lenging, as uniform high quality, reproducibility, and low

running and labor costs must all be achieved. Recently,

hPSC suspension cultures (Amit et al., 2010; Chen et al.,

2012; Olmer et al., 2010; Singh et al., 2010; Steiner et al.,

2010) have attracted considerable attention. They can

potentially be scaled up because attachment surfaces and

adhesion molecules are unnecessary, resulting in reduced

good-manufacturing-practice-grade components and pro-

duction costs. However, the limitations of current suspen-

sion culture methods include suboptimal passaging

procedures that require dissociation and reaggregation

and uncontrollable spontaneous fusion between cell aggre-

gates (Amit et al., 2010; Olmer et al., 2010; Singh et al.,

2010; Steiner et al., 2010). Enzyme treatments that disso-

ciate hPSC colonies into single cells or small aggregates

for subculturing induce considerable hPSC loss due to the

sensitivity of these cells to physical stresses and single-

cell dissociation (Singh et al., 2010; Steiner et al., 2010).
Thus, enzymatic treatment may be the major reason for

relatively low cell expansion ratios in suspension culture

(Amit et al., 2010, 2011; Chen et al., 2012; O’Brien and

Laslett, 2012; Olmer et al., 2010; Serra et al., 2012; Singh

et al., 2010; Steiner et al., 2010; Zweigerdt et al., 2011).

Another problem with suspension cultures is fusion be-

tween cell aggregates (Serra et al., 2012; Zweigerdt et al.,

2011). Uncontrollable spontaneous fusion causes variation

in sphere sizes; the formation of very large spheres may

cause unwanted cell death and/or spontaneous differentia-

tion (Bauwens et al., 2008).

For the practical application of hPSCs in cell therapy or

drug discovery, further refinements toward large-scale, 3D

culturing systems are desired. Current versions of 3D cul-

ture systems for large-scale hPSC production include dy-

namic stirring of carrier beads or cell aggregates in spinner

flasks or their equivalents (Abbasalizadeh et al., 2012; Amit

et al., 2010, 2011; Chen et al., 2012; Krawetz et al., 2010;

Olmer et al., 2010, 2012; Singh et al., 2010; Zweigerdt

et al., 2011). Such stirring, however, needs to be fine-tuned

to minimize detrimental shearing forces that cause signifi-

cant physical damage to hPSCs (Abbasalizadeh et al., 2012;

Amit et al., 2011; O’Brien and Laslett, 2012; Singh et al.,

2010).

We report here a novel 3D sphere culture system using

mechanical passaging and functional polymers that
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resolves major problems associated with suspension cul-

ture methods and dynamic stirring systems. This system

may be optimized toward translation into a large-scale

hPSC production format.
RESULTS

Subculture Method Using Mesh Filters

We developed a subculture method for hPSC suspension

culture based on the mechanical disruption of cell aggre-

gates into smaller aggregates. Larger cell spheres can be

fragmented into smaller ones by simply passing them

through a mesh filter of the appropriate pore size. This is

a much simpler and easier procedure than enzymatic disso-

ciation (Figures 1A and 1B). However, immediately after the

passaging, the smaller spheres exhibited significant cell

loss, which may be due to physical injury. To decrease the

cell loss, we added a ROCK inhibitor (Ri), which increases

survival of hPSCs after dissociation into single cells (Wata-

nabe et al., 2007), for around 24 hr after subculturing (Fig-

ure S1A available online).

We tested several mesh sizes for optimal subculturing.

The fold increase in cell number from day 0 to day 5 was

dependent on the mesh size, as larger mesh sizes produced

larger spheres withminimal cell loss (Figure S1B). However,

using 70 mm meshes resulted in spheres diameter over

300 mm within 5 days, with dark spots appearing within

these spheres (Figure S1C). Because the rate of apoptosis

has been reported to increase with larger sphere diameter

(Amit et al., 2010), this may indicate spontaneous necrosis

or differentiation due to increased sphere size. Thus, when

meshes over 70 mm are used, subculture is required every

3 days, causing frequent cell loss. On the other hand,

smaller mesh sizes could produce smaller spheres, which

might allow for greater expansion of cell numbers between

subcultures. However, during our testing, the smaller

spheres showed a decreased fold increase in cell numbers

compared to the larger mesh sizes, presumably due to the

inability of Ri to completely block cell death in these

smaller sphere. Ultimately, we chose 50 mm as the optimal

mesh size for subculture. After passaging, thesemeshes pro-

duced spheres with a diameter of around 80 mm that

expanded into larger spheres of 220–250 mm in 4 or

5 days, depending on the cell line. When such spheres

were allowed to grow further, many reached diameters of

>300 mm (Figures S1D and S1E). Thus, we determined an

optimal subculturing cycle of 4 or 5 days to avoid the pro-

duction of oversized spheres (Figures 1B and S1D).
Fusion Suppression with Methylcellulose Polymer

Another significant problem with suspension cultures is

spontaneous fusion between cell aggregates (Serra et al.,
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2012; Zweigerdt et al., 2011). To reduce aggregate fusion,

we tested the addition of various nontoxic polymers to

the culture medium and found that methylcellulose (MC)

yielded encouraging results (Figure 1C). MC is widely

used for cell culture, including for hematopoietic cells,

and is known to be nontoxic tomany cell types (Miyamoto

et al., 1989; Ogawa et al., 1976).

We then optimized the concentration of MC. Whereas

higher concentrations reduced fusion more strongly, col-

lecting the spheres via centrifugation for culture media

exchange or subculturing was hampered by the resulting

increase in viscosity. We found that a concentration of

0.3%–0.6% (w/v) MC is adequate as the best compromise

between the fusion repression and viscosity increase. These

concentrations of MC are lower than the typical working

concentration (1%) frequently used in the hematopoietic

cell culture (Jin et al., 2013; Lu et al., 2007), and thus, the

lower viscosity results in easy handling during medium

changing, etc. Use of this concentration range decreased

the average fusion rate from 14.9% (SD: ±5.5%) to 9.2%

(SD: ±2.4%) in the case of the hiPSC line 253G1 (n = 5;

p < 0.1; Figure 1C) and from 13.7% (SD: ±4.5%) to 2.4%

(SD: ±1.4%) for the hESC line H9 (n = 6; p < 0.001) from in-

dependent experiments. Flow cytometry analysis revealed

that over 90% of the cell population expressed pluripo-

tency surface markers in H9 spheres cultured in the

medium supplemented with 0.6% MC that reduced spon-

taneous sphere fusion. On the other hand, these ratios

decreased below 90% in the spheres cultured without MC

(Figure S1F). Thus, addition of MC was beneficial for sup-

pression of spontaneous fusion and maintenance of the

pluripotency.

Sphere Culture Protocol and Expansion Rate

With these improvements in sphere culture, the hPSCs

grew as spherical aggregates of uniform size that could be

subcultured every 4 or 5 days. The initial seeding density

was adjusted to 0.7–1.0 3 105 cells/ml. First, we used the

hESC line KhES-1 and mTeSR culture media. Although

the small aggregates appeared elliptical immediately after

passaging, they became spherical after 4 hr (Figure 1B).

The distribution of sphere size was relatively homogeneous

and constituted a near-normal distribution and with an

average diameter between 90 mm and 270 mm within

7 days (Figures 1B, S1D, and S1E). The cell number

increased exponentially until d6 (Figure S2A). Therefore,

we chose the subculture cycle of 4 or 5 days before reaching

plateau. During the 4- or 5-day intervals of sphere growth,

the cell number increased 10- to 20-fold, depending on the

cell line (Figure S2B). Our method is broadly applicable, as

it was successful for all other tested hPSC lines, including

the hESC lines KhES-3, H9, and HES3 and the hiPSC lines

IMR90-1 and 253G1 (Figures S2B and S2C).



Figure 1. Sphere Culture of Human Pluripotent Stem Cells
(A) Mechanical subculture by passaging the cells through mesh filters. Spheres are pushed through a mesh filter with an opening size of
50 mm using a 1 ml micropipette tip. The scale bar represents 100 mm.
(B) Subculture cycle and shapes of spheres of the KhES-1 cell line during the 5-day interval. The scale bar represents 200 mm.
(C) Size distribution and morphology of cells from the 253G1 cell line in culture media with or without 0.3% methylcellulose on day 5. The
blue and red bars represent the number of spherical and fused spheres in each size range, respectively. The graphs show exemplary one of
the five independent experiments. The scale bars represent 200 mm.
(D) Comparison of expansion rates of the KhES-1, H9, and 253G1 cell lines in the sphere culture or in the conventional adherent culture on
feeder layers or on Matrigel. The graph shows exemplary expansion rate plotting. Average slopes and SD in the semilogarithmical plotting
were obtained by calculating exponential trend lines from three independent experiments and indicated in each graph.
See also Figures S1, S2, and S4.
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We compared the expansion rate of the cells in the

sphere culture and conventional adherent culture over

1 month. The expansion rate was calculated by multi-

plying the split ratios at each passage, and it was

similar to the conventional adherent culture on feeder

cells with knockout serum replacement (KSR)/basic

fibroblast growth factor (bFGF) medium or on Matrigel
with mTeSR medium (Figure 1D). In fact, slopes in the

semilogarithmical plotting of the expansion rate were

similar between the sphere and adherent cultures. Thus,

our sphere culture system can expand all of the tested

hPSC lines, with their expansion rates of 8.1 3 106

(SD: ±4.3 3 106; KhES-1), 1.4 3 106 (SD: ±0.2 3 106;

253G1), and 16.5 3 106 (SD: ±6.6 3 106; H9) during
Stem Cell Reports j Vol. 2 j 1–12 j May 6, 2014 j ª2014 The Authors 3



Figure 2. Transmission Electron Microscopy of Human Plurip-
otent Stem Cell Spheres
(A) A low-magnification (light microscopy) image of a KhES-1
sphere at four passages. The blue signal indicates nuclei. The scale
bar represents 50 mm.
(B) A high-magnification image of the peripheral region of a
KhES-1 sphere. The black arrows indicate adherens junctions, and
the red signal indicates actin bundles. The black dots indicate
glycogen granules. The scale bar represents 1 mm.
(C–F) Higher magnification images of a (C) tight junction, (D)
adherens junction, (E) desmosome, and (F) gap junction found in
the periphery of a KhES-1 sphere. The scale bar represents 100 nm.
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40 days (42 days for the H9 line) from three independent

experiments (n = 3).

Sphere Morphology and Expression of Pluripotency

Markers

Whenwe examined the spheres using electronmicroscopy,

we found that they were composed of uniform cells with

no significant differentiation characteristics (Figures 2A

and 2B). The sphere surface was covered with numerous

microvilli (Figure 2B). We noticed the presence of junction

complexes on the sphere surfaces that were reminiscent of

the apical side of an epithelium (Figures 2B–2F). These

complexes included tight junctions, adherens junctions,
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desmosomes, and gap junctions. Immunostaining of

frozen sections showed that all of the cells in a sphere

expressed pluripotency marker molecules, including

OCT3/4, NANOG, SSEA-4, and TRA-1-60 (Figures 3A and

S3A). Flow cytometric analysis revealed that over 95% of

the cell population expressed pluripotency surface

markers. The fluorescent staining intensities and distribu-

tion of the pluripotency markers in populations were iden-

tical to those observed in conventional adherent cultures

(Figures 3B and S3B).

StemPro Medium Compared with mTeSR Medium

We also examined whether our sphere culture method was

compatible with other established media. We confirmed

that StemPro medium (Life Technologies), could be used,

although the growth rate of the spheres was reduced

when this mediumwas used. Because the standard concen-

tration of bFGF in the StemPro medium (8 ng/ml) is much

lower than that of mTeSR (100 ng/ml), we tested higher

concentrations and obtained better growth rates (Figures

S4A and S4B). Although the spheres that formed in

StemPro exhibited slightly different morphology, the addi-

tion of 50 ng/ml bFGF resulted in a growth rate that was

similar to that observed in mTeSR (Figure S4B). We also

confirmed that almost all of the cells in the spheres grown

under these conditions expressed pluripotency surface

markers (Figure S4C). Although we obtained similar results

using either mTeSR or StemPro, we decided to use mTeSR

for further investigation, as the latter medium yielded a

slightly larger cell population.

Characterization of hPSC Spheres

Upon examination after middle- to long-term subculturing

(around 20 or 50 passages) for the sphere culture, the karyo-

types of the hPSCswere found to be normal (Figures 3C and

S5A). These spheres could be transferred to the conven-

tional adherent culture either on feeder cells or Matrigel.

We also confirmed that the spheres could be cryopreserved

and thawed through the standard vitrification method

to restart either the sphere or adherent culture. The

viability of the frozen cells upon thawing was similar in

both sphere and adherent cultures, at 88.4% (SD: ±1.8%)

and 90.3% (SD: ±2.2%) from three independent experi-

ments, respectively.

We examined the differentiation potential of hPSCs in

our sphere culture through an in vitro differentiation assay

and an in vivo teratoma formation assay. The induction of

early lineage marker expression for the three germ layers

was confirmed by embryoid body (EB) formation (Figures

S5B and S5C). The cells differentiated in culture into cardi-

omyocytes that expressed the cardiac markers cardiac

troponin T, a-actinin, and NKX2.5 and also into neurons

that expressed the neural marker bIII tubulin (Figures S5D



Figure 3. Pluripotency Marker Expression and Karyotype of Human Pluripotent Stem Cells in Sphere Culture
(A) Immunofluorescent staining of pluripotency marker proteins NANOG, OCT3/4, SSEA-4, and TRA-1-60 in frozen sections of KhES-1
spheres after 55 passages. In the merged panels, the green signals indicate the markers and the blue signals indicate DAPI nuclear
staining. The scale bar represents 100 mm.
(B) Flow cytometry analysis of the pluripotency surface markers SSEA-4, TRA-1-60, and SSEA-3 on KhES-1 cells in the sphere culture after
72 passages. The control panel indicates analysis without the primary antibody. The percentage of the marker-positive population is
indicated in each panel.
(C) Multicolor FISH karyotype analysis of sphere-cultured KhES-1 cells at passage 51.
(D) Histology of teratomas derived from KhES-1 cells at passage 21 in the sphere culture. The teratomas contained various tissues from the
three germ layers, including the neural epithelium (ectoderm), cartilage (mesoderm), and gut-like epithelium with mucosa (endoderm).
The scale bars represent 50 mm.
See also Figures S3–S5.
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and S5E). When transplanted into immune-deficient mice,

hPSCs in sphere cultures formed typical teratomas that

contained tissues of all three germ layers, including the

neural epithelium, cartilage, and gut-like epithelium (Fig-

ure 3D). Taken together, these data indicate that our sphere

culture system supports robust growth and the pluripo-

tency of all tested hPSC lines.
Gellan Gum Polymer Inhibits Sedimentation

For the practical application of hPSCs, further progress

toward large-scale, 3D culture system is required. There-

fore, we searched for additional chemical compounds

that could maintain the hPSC spheres in suspension

without the need for stirring, which causes significant

cell damage (Abbasalizadeh et al., 2012; Amit et al.,
Stem Cell Reports j Vol. 2 j 1–12 j May 6, 2014 j ª2014 The Authors 5



Figure 4. Characterizations of Low-Acyl
Gellan Gum Polymer
(A) The chemical structure of the repeat
unit of low-acyl gellan gum (GG).
(B) Stereo view of GG (reproduced from
Figure 2 in Chandrasekaran and Thailambal,
1990). Two adjacent up- and down-point-
ing gellan double-helices are crosslinked at
the arrows by calcium ions (filled circles).
(C) Apparent viscosities and settling
rates of GG and methylcellulose (MC). The
average and SD are shown from three ex-
periments (n = 3). The asterisks indicate no
settling.
(D) Settled or suspended polystyrene beads
in the culture medium under various con-
centrations of GG.
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2011; O’Brien and Laslett, 2012; Singh et al., 2010). We

tested several large-molecule compounds for their ability

to maintain polystyrene beads in suspension, because

these beads have a diameter and specific gravity similar

to those of hPSC spheres. We identified a polymer, low-

acyl gellan gum (GG), which inhibits sedimentation and

maintains the beads in suspension. GG was originally

isolated as an extracellular polysaccharide secreted by

Sphingomonas paucimobilis and is currently used widely as

a natural food additive, owing to its unique physico-

chemical characteristics that add a distinct chewing

texture (Bajaj et al., 2007). As shown in Figures 4A and

4B, GG consists of a linear anionic tetrasaccharide

repeating unit, which forms double helical structures

that assemble into firm and brittle aqueous gels in

the presence of cationic ions (Chandrasekaran and Thai-

lambal, 1990). Most of the polymers, such as MC, show

elevated viscosity and handling difficulty with increasing

concentration. Nevertheless, they cannot completely

inhibit sedimentation (Figure 4C, lower panel). In

contrast, addition of GG does not increase apparent viscos-

ity but completely inhibits bead sedimentation at very

low concentrations (i.e., approximately 0.02%; Figure 4C,

upper panel). In such media, polystyrene beads remain in

suspension without the need for dynamic agitation

(Figure 4D).
6 Stem Cell Reports j Vol. 2 j 1–12 j May 6, 2014 j ª2014 The Authors
3D Sphere Culture with GG Polymer

By utilizing the distinct properties of GG, we further

improved our sphere culture system toward 3D culture

without mechanical or dynamic stirring. As shown in Fig-

ure 5A, 3D sphere culture medium supplemented with

0.015%–0.02% GG can maintain sphere suspended for at

least 2 days (48 hr). It shows no sign of gelation or signif-

icantly increased viscosity (Movie S1). Thus, for medium

change or subculture, spheres can be collected quickly

and simply by mild centrifugation after dilution with a

double volume of Dulbecco’s modified Eagle’s medium

(DMEM)/F12 basal medium. Then, we confirmed that

hPSCs could proliferate at normal rates in the 3D

sphere culture medium in culture plates (Figure 5B). We

compared the mTeSR medium supplemented with MC

and GG or GG only for the 3D culture medium. Growth

rate in the MC+GG medium was slightly better than that

in the GG-only medium (Figure S6A). Thus, we decided

to use MC+GG medium for the 3D sphere culture

medium. Also, we compared the passaging method either

using mesh filters or single-cell dissociation and reaggrega-

tion in the 3D culture system. The single-cell dissociation

method gave much lower growth rate than the filter mesh

method (Figure S6B). It seems that the dissociated single

cells cannot form adequate spheres in the 3D sphere

culture medium. Thus, we confirmed that the passage



Figure 5. 3D Sphere Culture of Human
Pluripotent Stem Cells
(A) Complete inhibition of hPSC sphere
sedimentation by low-acyl GG at 0.015%.
KhES-1 spheres on day 4 were suspended in
the culture medium with various concen-
trations of GG and observed after 16 hr. The
scale bar represents 5 mm.
(B) Fold increase in KhES-1 cell number in
culture medium with or without GG in
different culture vessels. The average fold
increase from independent experiments
indicates the cell number increase from
days 0 to 5, and the error bars indicate the
SD (n = 10 for tube-shaped bags and n = 4
for others). Significance calculations were
performed using the Student’s t test.
(C) A tube-shaped culturing bag made of a
gas-permeable membrane (left) and poly-
styrene tubes (15 and 5 ml).
(D) Morphologies of KhES-1 spheres on
day 5 in the 3D sphere culture medium
with 0.020% GG. The scale bar represents
200 mm.
(E) Comparison of KhES-1 cell expansion
rates in the 3D sphere culture using tube-

shaped gas-permeable bags or culture plates. The graph shows exemplary expansion rate plotting. Average slopes and SD in the
semilogarithmical plotting were obtained by calculating exponential trend lines from three independent experiments and indicated in
each graph.
See also Figure S6 and Movie S1.
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method using mesh filters is optimal for our 3D culture

system.

To progress toward a practical larger-scale 3D culture sys-

tem, we next examined hPSC culture in test tubes as a

model of deep medium containers. Whereas the spheres

that were cultured with 2D sphere culture medium settled

to the bottoms of polystyrene tubes and underwent com-

plete growth inhibition, spheres that were cultured in the

3D medium remained in suspension and grew at slower

rates than cells in culture plates (Figure 5B). We speculated

that the decreased cell growth may have been due to insuf-

ficient gas exchange and therefore used a tube-shaped bag

that was made of a gas-permeable membrane (Nipro; Fig-

ure 5C). As expected, the spheres in the bag grew at growth

rates similar to those of spheres in culture plates (Figure 5B).

The morphologies and sizes of the spheres in 3D and 2D

sphere culture medium were similar (Figure 5D), as was

the expansion rate (Figure 5E). Cells also maintained a

normal karyotype (Figures S6C).

The hPSCs from the 3D sphere culture expressed the plu-

ripotencymarkermolecules OCT3/4, NANOG, SSEA-4, and

TRA-1-60, as shown with immunostaining (Figures S6D

and S6E). Over 95% of the cell population expressed

pluripotency markers, as established by flow cytometry
(Figure S6F).We also confirmed that the hPSCs could differ-

entiate into cells that express lineage marker genes of the

three germ layers in an EB formation assay (Figure S6G).

These data thus indicate that our novel 3D culture system

enables robust and stable hPSC growth and expansion

while maintaining pluripotency.

Scaling Up of 3D Sphere Culture

To demonstrate the capability of scaling up our novel

3D sphere culture system, we tested 200 ml volume capac-

ity culture bags that are made of a gas-permeable mem-

brane. KhES-1 spheres were subcultured at 13.2 3 106

(SD: ±5.0 3 106) cells/bag, and we changed the culture

medium on days 1, 3, and 5. The growth rate in the bags

was 12.5-fold (SD: ±4.9) on day 5, yielding 1.4 3 108

(SD: ±0.1 3 108) cells per bag from three independent ex-

periments (n = 3; Figure 6A).

Such cell number would be equivalent to the total num-

ber of cells harvested from 17 (SD: ±2) of the 100 mm cul-

ture dishes in conventional adherent culture system with

daily medium change (Figure 6B). Thus, the cell number

yield per volume of the consumed medium would be

higher in the 3D culture system than that in conventional

adherent culture. The morphologies and sizes of the
Stem Cell Reports j Vol. 2 j 1–12 j May 6, 2014 j ª2014 The Authors 7



Figure 6. Proof of Principle 3D hPSC Sphere Culture
(A) A trial for larger-scale sphere culture by using 200 ml gas-permeable membrane bags. The scale bar represents 5 cm.
(B) Comparison of cell yield calculated from the average cell number obtained in the 3D sphere or adherent culture using KhES-1 cell line.
(C) Morphology of KhES-1 spheres cultured for 5 days in a 200 ml bag. The scale bar represents 200 mm.
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spheres (Figure 6C) were similar to those of spheres in the

small-scale culture. These results suggest that our 3D cul-

ture system may be used as a starting point for the large-

scale culture aimed at practical applications in cell-based

therapy or drug discovery.
DISCUSSION

In this study, we developed a simple, mechanical subcul-

turing method that uses mesh filters and a polymer to

suppress spontaneous cell aggregate fusion. In doing so,

we believe we have resolved most of the major problems

associated with current suspension culture system for

hPSCs. The hPSCs form spheres of uniform size,

expand robustly, and have stable growth rates that

are similar to those of conventional adherent culture.

Furthermore, by adding the GG polymer, which prevents

sedimentation of the spheres without increase of the vis-

cosity, we also succeeded in excluding the potentially

damaging processes of dynamic agitation or stirring in

3D culture systems. The system thus provides a very
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simple and practical setup for large-scale hPSC expansion

and production.

Depending on the disease target or therapy type, a large

number of cells may be required for clinical applications

involving hPSCs. For example, whereas relatively small

numbers of cells (around 105 or 106) will be required for

treating macular dystrophy (Serra et al., 2012) or Parkin-

son’s disease (Lindvall et al., 2004; Serra et al., 2012), a

much larger number of cells (between 109 and 1010) will

be necessary for treating myocardial infarction, hepatic

failure, or diabetes (Jing et al., 2008; Lock and Tzanakakis,

2007; Serra et al., 2012). This creates a need for a robust

and reliable large-scale cell culture and production system

for realization of cell-based therapy using hPSCs.

Furthermore, this type of large-scale cell production sys-

tem should have a high level of quality control for mini-

mizing risks and quality variation in cell products. For

example, a very large number of stem cells should be pro-

duced in a single culture vessel or bioreactor, rather than

in multiple vessels, to assure that the whole product has

the same characteristics as a single lot of stem cells or differ-

entiated cells. Aliquots from this ‘‘master batch’’ can thus
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be used for downstream safety characterization, such as

tumor formation risk assessment. In order to apply such a

large-scale culture system for hPSCs, this suspension cul-

ture system could be utilized for the optimal production

system, as it avoids the need for costly extracellular matrix

molecules for cell adhesion and for enzymatic cell dissoci-

ation that can compromise cell quality.

Here, we provide proof-of-principle that a gas permeable

culture bag can be used in the 3D culture system, obviating

the need for stirring during gas and nutrient exchange. We

succeeded to use a 200 ml culture bag with a thickness of

15 mm for cell production. Thus, it would be possible to

use a 1 lmedium capacity culture bag of the same thickness,

with increased scale of productionof 13109 cells per1 l bag.

Moreover, our novel 3D sphere culture system may be uti-

lized for other mass-production systems such as bioreactors

after additional research and development of the necessary

adaptation technology. In suchpotentialnewtypesof biore-

actors, our 3D culturemediumusing theGGpolymerwould

enable to useminimumdynamic agitation only for keeping

sufficientexchangeof gasesandnutrients inabioreactorbut

no strong stirring necessary for keeping the spheres in sus-

pension. In addition, the low viscosity of the 3D culture

medium would not disturb the monitoring of culture pa-

rameters such as pH and pO2. Thus, these advantages can

greatly reduce cell damages caused by shear stress of dy-

namic agitation in application to the bioreactor systems.

In summary, our novel 3D sphere culture system may be

the optimal starting point for further development of large-

scale hPSC production systems such as bioreactors and for

practical large-scale applications in the cell therapy and

drug discovery fields.
EXPERIMENTAL PROCEDURES

Human Pluripotent Stem Cell Lines
The hESC lines KhES-1, KhES-3, H9, and HES3 (Reubinoff et al.,

2000; Suemori et al., 2006; Thomson et al., 1998) and the hiPSC

lines 253G1 (Takahashi et al., 2007) and IMR90-1 (Yu et al.,

2007) were used for this study. The hESC lines were used in accor-

dance with the Guidelines for the Derivation and Utilization of

Human Embryonic Stem Cells of the Ministry of Education, Cul-

ture, Sports, Science and Technology, Japan.

For the conventional adherent culture, hPSCs were grown on a

mouse fibroblast feeder cell layer in DMEM/F12 with 20% KSR

(Life Technologies) and 5 ng/ml recombinant bFGF (Wako Pure

Chemical Industries) as reported previously (Suemori et al.,

2006). For feeder-free adherent culture, hPSCs were grown on

Matrigel (hESC-qualifiedMatrix, BD Biosciences) inmTeSR culture

medium (STEMCELL Technologies).

Sphere Culture of Human Pluripotent Stem Cells
To initiate sphere cultures, hPSC colonies in conventional

adherent cultures were partially dissociated into large clumps
with CTK solution (Suemori et al., 2006) or dispase (BD Biosci-

ences) and then rinsed with hPSC culture medium to remove the

feeder cells. After collecting the clumps by centrifugation, they

were suspended in the 2D sphere culturemedium;mTeSRmedium

supplemented with 0.3%–0.6% MC (R&D Systems). Then,

medium containing clumps of cells was supplemented with

10 mM Ri Y-27632 (Wako Pure Chemical Industries) in order to

support cell survival in the subculture. Next, the clumps were

passed through a nylon mesh filter with openings of 50 mm

(CellTrics; PARTEC) and transferred to 6-well plates (Ultra Low

Attachment Cluster Plate; Corning Life Sciences), with each well

containing 3 ml of culture medium. The cell numbers were

adjusted to 2 to 3 3 105 cells/well (0.7–1.0 3 105 cells/ml). Under

these culture conditions, the clumps became spherical after several

hours. Culture medium was replaced on days 1 and 3 (day 0, sub-

culturing day) by collecting the spheres through centrifugation

and resuspending them in fresh, 2D sphere culture medium

without Ri. The sphere diameters increased from around 80 mm

on day 0 to over 200 mm on days 4 or 5. Spheres were subcultured

every 4 (H9 cell line) or 5 (other hPSC lines) days; the spheres were

collected by centrifugation and suspended in mTeSR with MC and

Ri and were passed through a 50 mm mesh filter using a 1 ml

Pipetman tip (Gilson). Alternatively, we also used 5 or 10 ml

pipettes that were controlled by a motor-driven Pipettor (BD

Falcon) for passaging through the mesh filters. The split ratios

for each subculture were between 1:6 and 1:8, depending on the

cell line. For cryopreservation, hPSC spheres on day 1 were frozen

using a previously described vitrification cryopreservationmethod

(Fujioka et al., 2004; Suemori et al., 2006).

3D Sphere Culture with Gellan Gum Polymer
The 3D sphere culture medium was prepared at Nissan Chemical

Industries as follows. Kelcogel low-acyl GG CG-LA (Sansho) was

suspended in pure water to 0.3% (w/v) and dissolved by stirring

at 90�C. The aqueous solution was sterilized at 121�C for 20 min

in an autoclave. Then, the solution was added to mTeSR basal

medium at the given concentration with stirring at room temper-

ature. The final 3D sphere culture medium consists of mTeSR

medium with 0.3% MC and 0.01%–0.02% GG.

We also used low-attachment culture dishes (Corning Life

Sciences; 641-05191), polypropylene test tubes (BD Biosciences;

352058 or 352057), and culturing bags that were made of a gas-

permeable membrane (Nipro). The procedures for changing the

culture medium and passaging with mesh filters were the same

as for 2D sphere culturing, except for sphere collection. In brief,

the culture medium was diluted with a double volume of

DMEM-F12 basal medium, mixed by gently inverting the tube

several times, and then centrifuged at 100–180 3 g for 3 min.

This allowed collection of 3D cultured spheres in three simple steps

that took only 5–10 min. For larger volume culture using 200 ml

bags, the culture medium was replaced on days 1 and 3 by collect-

ing the spheres using cell strainer (BD Falcon).

Characterization of Human Pluripotent Stem Cells in

Sphere Cultures
The diameters of the hESC and hiPSC spheres were measured and

analyzed using photographs that were taken with a phase-contrast
Stem Cell Reports j Vol. 2 j 1–12 j May 6, 2014 j ª2014 The Authors 9
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inverted microscope (Olympus) and processed with ImageJ soft-

ware (NIH; http://rsbweb.nih.gov/ij/). Cells were counted with

NucleoCounter NC-200 (Chemometec) after dissociating the

spheres into single cells with a 0.25% trypsin-EDTA solution. The

fold increase in cell number was calculated by using the cell

numbers on day 0 and day 5. The expansion rates were calculated

by multiplying the split ratios at each passage. For the karyo-

type analysis, hPSC spheres on day 1 were transferred to an

adherent culture on feeder layer for 48 hr and treated with

colcemid (Nakalai Tesque) according to themanufacturer’s instruc-

tions. Fifty randomly selected mitotic metaphase nuclei were

analyzed by chromosome counting, after which ten nuclei were

examined using multicolor fluorescence in situ hybridization

(FISH) karyotype analysis. These analyses were carried out by

Chromosome Science.
Electron Microscopy
hPSC spheres were chemically fixed with 2% glutaraldehyde in

NaHCa buffer (100 mM NaCl, 30 mM HEPES, and 2 mM CaCl2
at pH 7.4). The specimens were postfixed with 0.25% OsO4/

0.25% K4Fe(CN)6, dehydrated with a graded ethanol series, and

embedded in Araldite 502 resin (Polysciences). After polymeriza-

tion at 65�C for a few days, ultrathin sections, obtained using a

Ultramicrotome (Leica FC6), were mounted on EM grids, stained

with lead citrate, and then observed with a conventional transmis-

sion electronmicroscope (JEOL JEM1400). Bright-field lightmicro-

scopy images were obtained from thick sections (�1 mm) that had

been stained with toluidine blue.
Marker Expression Analysis
For pluripotency marker immunostaining, hPSC spheres were

fixed with 4% paraformaldehyde (PFA), rinsed in PBS, soaked in

15% sucrose, and embedded in optimum cutting temperature

compound (Sakura Finetek) for frozen sectioning. Sphere samples

were sectioned in 12-mm-thick slices, permeabilized and blocked

with 1% BSA, and stained with primary antibodies as follows: rab-

bit anti-NANOG (Cell Signaling Technology), mouse anti-OCT3/4

(C-10; Santa Cruz Biotechnology), rat anti-SSEA3 (MC631;

Millipore), mouse anti-SSEA4 (MC813; Millipore) or mouse anti-

TRA-1-60 (Millipore). The sampleswere incubatedwith Alexa Fluor

488-conjugated secondary antibodies (Life Technologies), and

signals were detected and photographed through fluorescence

microscopy.

For flow cytometry analysis, hPSC spheres were dissociated into

single cells with a 0.25% trypsin-EDTA solution for 2 min, rinsed

with staining buffer (PBS with 2% fetal bovine serum [FBS]), and

incubated for 30 min at 4�C with primary antibodies that had

been diluted in the staining buffer. Then, the samples were rinsed

with staining buffer, incubated for 30 min at 4�C with secondary

antibodies that had been diluted in staining buffer, rinsed with

staining buffer, and counterstained with 7-amino-actinomycin D

(BD Biosciences) immediately before analysis. The stained cell

samples were analyzed using a FACS Canto II Flow Cytometer

and FACS Diva software (BD Biosciences).

For marker gene expression analysis, total RNA was purified

with an RNeasy Mini Kit (QIAGEN). cDNA was then synthesized

using the purified RNA and SuperScript III Reverse Transcriptase
10 Stem Cell Reports j Vol. 2 j 1–12 j May 6, 2014 j ª2014 The Authors
(Life Technologies). Quantitative RT-PCR (qRT-PCR) was per-

formed with each gene-specific primer/probe mix (TaqMan

Gene Expression Assays), TaqMan Universal PCR Master Mix,

and a 7900HT Fast Real Time PCR System (Life Technologies)

according to the manufacturer’s instructions. The PCR data were

analyzed using the comparative cycle threshold method (2 D/D

CT), and all of the values were normalized with respect to PP1A

expression.
Differentiation Assay
For the teratoma formation assay, hESC spheres were injected

directly into the testes of severe combined immunodeficiency

mice (NOD.CB17-scid; CLEA Japan). After 8 weeks, the resulting

teratomas were surgically dissected out of the mice and fixed

with 4% PFA. The samples were embedded in paraffin, sectioned

into 5 mm slices, and stained with hematoxylin and eosin. All

mouse works were approved by the Institutional Animal Ethics

Committee of Kyoto University.

For embryoid body formation, hPSC spheres on day 0 were

cultured for 2 weeks in DMEM/F12 medium that had been supple-

mented with 5% KSR or 20% FBS. The medium was changed three

times a week. Total RNA was purified and gene expression was

analyzed by performing qRT-PCR as described above.

Induction of differentiation into cardiomyocytes or neurons

during culturing was carried out as described previously (Minami

et al., 2012; Sakurai et al., 2010). Procedures for the immunostain-

ing analysis of the differentiated cells were also described

previously (Minami et al., 2012; Sakurai et al., 2010). The anti-

bodies that were used for this analysis were anti-cardiac troponin

T (Santa Cruz Biotechnology), anti-aactinin (Sigma-Aldrich), and

anti-NKX2.5 (Abcam) for cardiomyocytes, and anti-bIII tubulin

(Sigma-Aldrich) for neurons.
Physical Property Measurements of Gellan Gum

Solution
Viscosity was measured by using an MCR 302 rheometer (Anton

Paar), a 25 mm cone plate, and a gap of 0.107 mm. The apparent

viscosities of the samples were assessed at 25�C with a shear rate

of 10 s�1.

For measuring settling rates, sample solutions were added to bot-

tles that contained polystyrene beads (diameter of 0.2–0.3 mm;

specific gravity of 1.04; Polysciences). After shaking the bottles,

the settling velocity of the beads was measured at 25�C.
Statistical Analysis
Throughout this study, each experiment was independently per-

formed at least three times. All of the results were expressed as

the mean ± SD. The unpaired two-tailed Student’s t test was used

to compare the mean values of measurements. Differences were

considered significant for p < 0.05.
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