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A combination of systematic density-functional theory (DFT) calculations and machine learning techniques
has a wide range of potential applications. This study presents an application of the combination of systematic
DFT calculations and regression techniques to the prediction of the melting temperature for single and binary
compounds. Here we adopt the ordinary least-squares regression, partial least-squares regression, support vector
regression, and Gaussian process regression. Among the four kinds of regression techniques, SVR provides the
best prediction. The inclusion of physical properties computed by the DFT calculation to a set of predictor
variables makes the prediction better. In addition, limitation of the predictive power is shown when extrapolation
from the training dataset is required. Finally, a simulation to find the highest melting temperature toward the
efficient materials design using kriging is demonstrated. The kriging design finds the compound with the highest
melting temperature much faster than random designs. This result may stimulate the application of kriging to
efficient materials design for a broad range of applications.
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I. INTRODUCTION

Computational material design based on data mining
techniques and high-throughput screening is a rapidly growing
area in materials science [1–11]. Recent advances of com-
putational power and techniques enable us to systematically
carry out density functional theory (DFT) calculations for
a large number of compounds and crystal structures. When
the large set of DFT calculations is combined with machine-
learning techniques, the exploration of materials can be greatly
enhanced. Using the combination, meaningful information
and patterns can be extracted from existing data to make a
prediction model of a target physical property.

In this paper, we apply the combination of systematic DFT
calculations and several regression techniques to the esti-
mation of an approximated function describing experimental
melting temperatures for single- and binary-component solids.
So far, several theories and formulations applicable to the
prediction of the melting temperature were proposed on the
basis of physical considerations. About a hundred years ago,
Lindemann provided a well-known model which explains the
melting temperature for single-component and simple ionic
binary-component solids [12]. Lindemann assumed that the
critical value of the mean amplitude capable of keeping the
atomic orderings in a crystal is proportional to the bond
distance between atoms or ions. Based upon that assumption
and harmonic theory, a relationship for the melting temperature
Tm was derived as

Tm = cM�2
DV 2/3, (1)

where c, M , �D, and V denote the proportionality constant,
molecular mass, Debye temperature, and molar volume, re-
spectively. Guinea et al. proposed a linear relationship between
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the melting temperature and cohesive energy for elemental
metals based on the Debye model and a binding theory of solids
that they proposed [13]. Also, for covalent crystals, a scaling
theory was applied to predict their melting temperatures [14].
Since the theory is made for covalent crystals, it is not
directly applicable to compounds with other types of chemical
bonds. Chelikowsky and Anderson demonstrated general
trends of melting temperatures in some 500 AB intermetallic
compounds [15]. They found a correlation between the melting
temperatures of the intermetallic compounds and those of the
elemental metals A and B.

Meanwhile, a machine-learning technique was recently
applied to the prediction of the melting temperature for AB
suboctet compounds [16]. They built a prediction model of the
melting temperature using experimental melting temperatures
of 44 suboctet AB compounds and a regularized linear regres-
sion. They only adopted quantities of each constituent atom
as predictor variables, such as atomic number, the pseudopo-
tential radii for s and p orbitals, and the heat of vaporization.
However, more accurate prediction models may be constructed
by feeding systematic DFT results for predictors. In addition,
the use of more advanced regression techniques than the linear
regression used in Ref. [16] may improve the prediction.

In this study, we estimate prediction models applicable
to a wide range of single and binary compounds by using
systematic DFT calculations and advanced regression tech-
niques. The set of compounds contains a wider range of
compounds than that used in the work of Ref. [16]. We
adopt four kinds of regression techniques, i.e., ordinary least-
squares regression (OLSR), partial least-squares regression
(PLSR) [17–19], support vector regression (SVR) [20–24],
and Gaussian process regression (GPR) [25]. Results by the
four regression methods are compared.

Furthermore, one of the ultimate goals to use machine-
learning techniques is to design materials automatically.
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Material design can be formulated as a complicated process
to optimize target physical properties. Typically, the objective
functions of the target physical properties cannot be defined
analytically from physical laws, hence it is regarded as a “black
box.” Since the black-box functions can usually be supposed
to be smooth, a regression function from a limited number
of samples can be used as a surrogate [26]. In a black-box
optimization technique called kriging, the measurements are
designed to maximize the chance of discovering the optimal
compounds. As a case study, a simulation based on kriging for
finding the compound with the highest melting temperature
based on kriging is demonstrated herein.

II. METHODOLOGY

A. Multiple linear regressions

The common goal of regressions is to construct a model that
predicts a response variable from a set of predictor variables.
The use of the multiple linear regressions allows us to attempt
this goal. In the multiple linear regressions, a linear model
describes the linear relationship between a response variable
and a set of predictor variables. In the OLSR, the regression
coefficients are determined by minimizing the mean-squared
error for observed data. However, when the number of
predictor variables is larger than the number of observations,
the OLSR cannot be applied owing to the multicollinearity.

Some approaches for avoiding multicollinearity exist. One
is to eliminate some predictor variables. Another is to perform
the principal component analysis (PCA) of the predictor matrix
and then use the principal components for the regression on
the response variable. However, it is not guaranteed that the
principal components are relevant for the response variable.
PLSR [17–19] is an extension of OLSR and combines features
of OLSR and PCA. In contrast with PCA, PLSR extracts
underlying factors from predictor variables that are relevant
for the response variable. They are called latent variables and
are described by linear combinations of the predictor variables.
By using a small number of latent variables, it is possible to
build a linear prediction model from a large number of the
predictor variables and avoid the multicollinearity.

PLSR with a single response variable finds a set of the
latent variables that performs a simultaneous decomposition
of X and y, where X and y are (N × m) predictor matrices
containing m predictor variables for N observed data and N

vectors of the response variable, respectively. In a PLSR model
with H latent variables, the predictor matrix is decomposed as

X = T P� (2)

in the same fashion as the PCA, where T and P denote
an (N × H ) score matrix and an (m × H ) loading matrix
for X , respectively. The score matrix is a collection of the
latent vectors and expressed as T = [t1, . . . ,tH ], where th is
the hth latent vector. The loading matrix is not orthogonal in
the PLSR opposite to the PCA. Similar to the predictor matrix,
the response variable is also decomposed as

y = T q, (3)

where q is a vector with H components equivalent to the
product of a diagonal matrix and loadings for y.

TABLE I. Algorithm for building PLSR model with a single
response variable. ph, qh are the hth components of P and q,
respectively. Eh and f h are the residual for the predictor matrix
and the response variable, respectively.

Input: E0 = X , f 0 = y
Output: W , q, T , P

for all h = 1, . . . ,H do
Step 1: wh = ET

h−1 f h−1/||ET
h−1 f h−1||

Step 2: th = Eh−1wh/(wT
hwh)

Step 3: qh = f T
h−1 th/(tT

h th)
Step 4: ph = ET

h−1 th/(tT
h th)

Step 5: Eh = Eh−1 − th pT
h

Step 6: f h = f h−1 − qh th

end for

Scores and loadings are obtained by an iterative procedure.
The detailed procedure is shown in Table I. First, a pair of t1

and weight vector w1 with the relationship of t1 = Xw1 are
determined with the constraint that t�

1 y is maximized. Once
the first latent vector and loadings are found, it is subtracted
from X and y. This is repeated until the H th latent vector,
weight vector, and loadings are found. Using the weight matrix
W = [w1, . . . ,wH ] obtained by the iterative procedure, the
regression model is written as

y = XW∗q = Xb, (4)

where W∗ satisfies the equality W∗ = W (P�W )−1. Conse-
quently, the linear regression coefficient vector b corresponds
to W∗q.

B. Nonlinear regressions

1. Support vector regression

To approximate complex response functions, many frame-
works beyond the linear regression have been proposed. SVR is
a regression version of support vector machines that constructs
a nonlinear regression function based on a kernel function.

Consider a set of N training data {(x1,y1), . . . ,(xN,yN )},
where xi and yi denote a vector of predictor variables and
the response variable. Let w and b denote the weight vector
and the bias parameter, respectively. In ε-SVR, the response
function f (x) is modeled as

f (x) = w�φ(x) + b, (5)

where φ(x) maps x onto a higher-dimensional space. We de-
fine φ(x) in an implicit form using a kernel function k(x,x′) as

k(x,x′) = φ(x)�φ(x′).

It has been proven that a mapping φ exists if and only if the
kernel function is positive semidefinite. A popular choice of
k includes the Gaussian kernel and the polynomial kernels.

Introducing nonnegative slack variables ξi and ξ ∗
i to allow

for some errors, the optimization problem is stated as

min
w,b,ξ ,ξ∗

1

2
w�w + C

N∑
i=1

(ξi + ξ ∗
i )

subject to

⎧⎪⎨
⎪⎩

w�φ(xi ) + b − yi � ε + ξi

yi − w�φ(xi ) − b � ε + ξ ∗
i

ξi ,ξ
∗
i � 0, i = 1, . . . ,N,

(6)
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where C denotes a positive regularization parameter. This
corresponds to dealing with a so-called ε-insensitive loss
function |ξ |ε expressed by

|ξ |ε =
{

0 if |ξ | � ε

|ξ | − ε otherwise. (7)

The ε-insensitive loss function ignores errors less than ε.
The optimization problem can be solved more easily in its

dual formulation. In general, a standard dualization method
based on Lagrange multipliers is applied to the optimization.
The dual problem is stated as

min
α,α∗

1

2
(α − α∗)� K (α − α∗)

+ ε

N∑
i=1

(αi + α∗
i ) +

N∑
i=1

yi(αi − α∗
i )

subject to

{
e� (α − α∗) = 0
0 � αi, α∗

i � C, i = 1, . . . ,N,
(8)

where e is the vector of all ones, and α and α∗ are Lagrange
multipliers. Here, K is called a kernel matrix whose (i,j )
component is k(xi ,xj ). Using the obtained α and α∗, the
response function is written as

f (x) =
N∑

i=1

(−αi + α∗
i )k(xi ,x) + b. (9)

2. Gaussian process regression

GPR is a Bayesian regression technique and has been
successfully employed to solve nonlinear estimation problems.
A Gaussian process is a generalization of the multivariate
Gaussian probability distribution. The prediction f (x∗) at a
point x∗ and its variance v(f∗) are described by using the
Gaussian kernel function as follows:

k(xi ,xj ) = exp

(
−|xi − xj |2

2σ 2

)
. (10)

When the prior distribution has a variance of σ 2, the prediction
is given as

f (x∗) = k�
∗ (K + σ 2 I)−1 y, (11)

where k∗ = [k(x1,x∗), . . . ,k(xN,x∗)]� is the vector of kernel
values between x∗ and the training examples, and I is the unit
matrix. The prediction variance is described as

v(f∗) = k(x∗,x∗) − k�
∗ (K + σ 2 I)−1k∗. (12)

C. Kriging

Kriging is built on Gaussian processes. Figure 1(a) shows
a typical situation where several samples are available. In
kriging, we search for a next sampling point where the chance
of getting beyond the current best target property is optimal.
To this aim, a Bayesian regression method such as a Gaussian
process is applied, and the probability distribution of the score
at all possible parameter values is obtained as illustrated in
Fig. 1(b). Then the next sampling point is determined as the
one with the highest probability of improvement.
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FIG. 1. (Color online) Illustration of kriging. (a) A typical situ-
ation where several samples are available. The current best target
property is shown as a horizontal line. (b) GPR is applied to the
available samples. The prediction of the target property by GPR is
shown by the blue line. The probability distribution of the target
property at all possible compounds is also shown by orange closed
circles.

We here apply kriging to find the compound with the highest
melting temperature from a pool of compounds. The procedure
used in this study is organized as follows:

(1) An initial training set is first prepared by randomly
choosing compounds.

(2) A compound is selected based on GPR. The compound
is chosen as the one with the largest probability of getting
beyond the current best value fcur. Since the probability is a
monotonically increasing function of the z score,

z(x∗) = [f (x∗) − fcur]/
√

v(x∗), (13)

the compound with the highest z score is chosen from the pool
of unobserved materials.

(3) The melting temperature of the selected compound is
observed.

(4) The selected compound is added into the training data
set. Then the simulation goes back to step (2).

Steps (2)–(4) are repeated until all data of melting temper-
atures are included in the training set.
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TABLE II. Physical properties of compounds adopted as predic-
tor variables. They were computed by the DFT calculation.

Physical property

Volume V (x1)
Nearest-neighbor pair distance rNN (x2)
Cohesive energy Ecoh (x3)
Bulk modulus B (x4)

III. RESULTS AND DISCUSSION

A. Data set

Prediction models are built from a data set containing
experimental melting temperatures and predictors for 248
compounds. The melting temperatures of the 248 compounds
range from room temperature to 3273 K, as shown in the
appendix. The set of compounds do not contain transition
metals to avoid complexity in the DFT calculations.

In order to make prediction models, the compounds are
characterized by elemental information and simple physical
properties of the compounds. These features are used as
predictor variables. A key factor for constructing accurate
prediction models is to supply good predictor variables. We
here adopted (1) cohesive energy Ecoh, (2) bulk modulus B,
(3) volume V , and (4) nearest-neighbor pair distance rNN as the
physical properties of compounds as shown in Table II. They
are systematically obtained by the DFT calculation. Besides
the physical properties computed by the DFT calculation, ten
kinds of elemental information are adopted, i.e., (1) atomic
number ZA, and ZB of elements A and B, (2) atomic mass
mA and mB of elements A and B, (3) numbers nA and nB of
valence electrons of elements A and B, (4) periods pA and pB

of elements A and B from periodic table, (5) groups gA and gB

of elements A and B in periodic table, (6) van der Waals radius
rvdw

A , rvdw
B of elements A and B, (7) covalent radius rcov

A and rcov
B

of elements A and B, (8) Pauling electronegativity χA and χB

of elements A and B, (9) first-ionization energy IA, and IB of
elements A and B, and (10) compositions cA = x/(x + y) and
cB = y/(x + y) of AxBy compounds for elements A and B.
In practice, symmetric forms of the elemental information are
introduced so that predictor variables become symmetric with
respect to the exchange of atomic species in binary compounds.
The symmetric forms are shown in Table III. As a result, the
total number of predictor variables is 23.

The DFT computation of physical properties requires
the crystal structure for each compound. Candidates for the
crystal structure are taken from the Inorganic Crystal Structure
Database (ICSD). When the ICSD database has a unique
crystal structure for a compound, the DFT calculation is carried
out by using the unique crystal structure. When the ICSD
database contains multiple crystal structures for a compound,
DFT calculations for all the crystal structures are performed.
The crystal structure with the lowest energy is then adopted
for computing the physical properties.

The cohesive energy is computed by the DFT calculation
using the formula normalized by the total number of atoms,
expressed as

Ecoh =
(
NAEatom

A + NBEatom
B

) − Ebulk

NA + NB
, (14)

TABLE III. Symmetric forms of predictor variables composed
of elemental information. The elemental information are taken from
Ref. [27].

Sum form Product form

Composition, c cAcB (x5)
Atomic number, Z ZA + ZB (x6) ZAZB (x7)
Atomic mass, m mA + mB (x8) mAmB (x9)
Number of valence electrons, n nA + nB (x10) nAnB (x11)
Group, g gA + gB (x12) gAgB (x13)
Period, p pA + pB (x14) pApB (x15)
van der Waals radius, rvdw rvdw

A + rvdw
B (x16) rvdw

A rvdw
B (x17)

Covalent radius, rcov rcov
A + rcov

B (x18) rcov
A rcov

B (x19)
Electronegativity, χ χA + χB (x20) χAχB (x21)
First-ionization energy, I IA + IB (x22) IAIB (x23)

where NA and NB denote the numbers of atoms A and B
included in the simulation cell, respectively. Ebulk is the total
energy of compound at the equilibrium volume. Eatom

A and
Eatom

B are the atomic energies of A and B, respectively. Here,
the energy of an isolated atom in a large cell (=10 Å × 10 Å ×
10 Å) is regarded as the atomic energy. The bulk modulus B

is evaluated using the formula

B = −V0
∂P

∂V
= −V0

P1 − P0

V1 − V0
, (15)

where V0 and V1 denote the equilibrium volume and the
volume that is slightly different from the equilibrium volume,
respectively. P0 and P1 are the pressure at volumes V0 and V1,
respectively.

DFT calculations are performed by the projector
augmented-wave (PAW) method [28,29] within the general-
ized gradient approximation (GGA) [30] as implemented in
the VASP code [31,32]. The total energies converge to less
than 10−2 meV. The atomic positions and lattice constants are
relaxed until the residual forces become less than 10−3 eV/Å.

B. Regressions

Regressions are carried out using two kinds of predictor
variable sets. Predictor set (1) is composed only of symmetric
predictor variables of elemental information as listed in
Table III. Predictor set (1) contains no information obtained by
the DFT calculation. Predictor set (2) is composed of symmet-
ric predictor variables of elemental information and physical
properties of compounds computed by the DFT calculation.

In order to estimate the prediction error, we divide the data
set into training and test data. A randomly selected quarter of
the data set and the rest of the data set are regarded as the test
and training data, respectively. This is repeated thirty times
and then averages of ten-fold cross-validation (CV) scores
and the root-mean-square (rms) errors between predicted and
experimental melting temperatures for test data are evaluated.

We first perform OLSR for building prediction models. Ta-
ble IV shows the CV scores of the OLSR models. When using
predictor sets (1) and (2), we construct prediction models with
the CV scores of 473 and 293 K, respectively. The prediction
is improved by considering physical properties of compounds
computed by the DFT calculation as predictor variables. We
then perform the PLSR using two kinds of predictor variable
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TABLE IV. CV scores and rms errors for test data in OLSR,
PLSR, SVR, and GPR.

CV score (K) RMS error for test data (K)

Predictor set (1)
OLSR 473 472
PLSR 476 476
SVR 376 364
GPR 492 481

Predictor set (2)
OLSR 293 306
PLSR 291 305
SVR 265 262
GPR 334 306

sets. The PLSR is performed using R PACKAGE [19]. The
accuracy of the PLSR is mainly controlled by the number
of the latent factors. The CV scores converge at the number
of latent factors of 18 and 20 using predictor set (1) and using
predictor set (2), respectively. Table IV shows the CV scores of
the optimized PLSR models. When predictor sets (1) and (2)
are used, we construct prediction models with the CV scores
of 476 and 291 K, respectively. They are almost the same as
the CV scores of OLSR models because the OLSR models are
made with less uncertainty.

The rms errors for test data of the OLSR models using
predictor sets (1) and (2) are 472 and 306 K, respectively, which
are almost the same as the CV scores. Also in the case of PLSR,
the prediction errors are almost the same as the CV scores.
Figure 2 shows relationships of predicted and experimental
melting temperatures using predictor sets (1) and (2) in the
OLSR. This is obtained from one of the thirty kinds of random
divisions of the data set. As can be seen in Fig. 2, the prediction
errors for the training and test data are comparable in the
OLSR models using both predictor sets (1) and (2) since the
CV score and rms error for test data are also comparable.
The deviation from the straight line, on which the experimental
and predicted melting temperatures are equal, in the OLSR
model using predictor set (1) is larger than that in the OLSR
model using predictor set (2), corresponding to values of the
CV score and the rms error for test data.
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FIG. 2. (Color online) Melting temperature for 248 compounds
predicted by the OLSR performed by (a) predictor set (1) and (b)
predictor set (2). This is obtained from one of the thirty kinds of
random divisions of the data set into training and test data. Melting
temperatures of training and test data are shown by open and closed
circles, respectively. On the broken line, experimental and predicted
melting temperatures are exactly the same.
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FIG. 3. (Color online) (a) Root-mean square error of five predic-
tion models with up to five predictors selected during the stepwise
regression method. The predictor sets of models (1)–(5) are composed
of Ecoh, {Ecoh,χA + χB}, {Ecoh,χA + χB,B}, {Ecoh,χA + χB,B,cAcB},
and {Ecoh,χA + χB,B,cAcB,rNN}. (b) Standardized regression coeffi-
cients of prediction model (5) for the five predictors. (c) Correlation
coefficients between the melting temperature and predictors. Orange
solid bars show the correlation coefficients for the predictors of
model (5).

To find important predictors for explaining the melting
temperature, a selection of predictors within the OLSR using
predictor set (2) is then carried out. We adopt a stepwise
regression method with bidirectional elimination [33] based
on the minimization of the Akaike information criterion (AIC)
[34]. As a result, the best prediction model with the minimum
AIC is composed of ten predictors and has a rms error of
295 K. Figure 3(a) shows the rms errors for prediction models
with only up to five predictors obtained during the stepwise
regression. The prediction model with five predictors shows
the rms error of 320 K, which is close to that of the best
prediction model. The selected five predictors are Ecoh, χA +
χB, B, cAcB, and rNN. Three of the five predictors are physical
properties of compounds computed by the DFT calculation.
Figure 3(b) shows the standardized regression coefficients of
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the prediction model with the five predictors. The earlier the
predictors are selected by the stepwise regression, the larger are
the absolute value of the standardized regression coefficients
for the predictors. The absolute value of the standardized
regression coefficient for Ecoh, which is the first selected by the
stepwise regression, is the largest among the coefficients for the
five predictors, hence it can be considered that Ecoh contributes
the most to the prediction of the melting temperature. The
importance of the predictors for explaining the melting
temperature can be seen in the correlations between the melting
temperature and predictors. Figure 3(c) shows the correlation
coefficients between the melting temperature and predictors.
The correlation coefficients of Ecoh and B, which are selected
by the stepwise regression, are positively large. On the other
hand, V is not selected by the stepwise regression in spite of its
negatively large correlation coefficient. This may be ascribed
to the fact that the correlations between V and the other
physical properties computed by the DFT calculation are large.

Next, we perform SVR and GPR using predictor sets (1)
and (2). SVR and GPR are performed using R PACKAGE

[35,36]. The Gaussian kernel is adopted as the kernel function
in SVR. SVR with the Gaussian kernel has two parameters
which control the accuracy of the prediction model, i.e.,
the variance of the Gaussian kernel and the regularization
parameter. Therefore, the two parameters are optimized based
on the minimization of the CV score. Candidates of them are
set to 10−3, 10−2, 10−1, 100, 101, 102, and 103. By performing
regressions for all combinations of candidates, the optimal
values of the two parameters are determined.

Table IV shows the CV scores of the optimized SVR and
GPR models. Using SVR, we get prediction models with the
CV scores of 376 and 265 K using predictor sets (1) and
(2), respectively. Using GPR, prediction models with the CV
scores of 492 and 334 K are obtained using predictor sets (1)
and (2), respectively. As is the case in OLSR, the prediction of
the melting temperature is improved by considering physical
properties of compounds computed by the DFT calculation as
predictors. In addition, when using predictor set (1), the SVR
model is the best among the four kinds of regression models.
On the other hand, when using predictor set (2), the use of
SVR does not significantly improve the prediction compared
to the linear regressions.

Figures 4 and 5 show relationships of predicted and
experimental melting temperatures in SVR and GPR,
respectively. They are obtained from one of the thirty kinds of
random divisions of the data set, the same as those in OLSR.
Then the rms errors for test data are also estimated. The rms
errors of SVR models using predictor sets (1) and (2) are
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FIG. 4. (Color online) Same as in Fig. 2 but for SVR models.
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FIG. 5. (Color online) Same as in Fig. 2 but for GPR models.

364 and 262 K, respectively, which are very close to the CV
scores. The rms errors of GPR models using predictor sets
(1) and (2) are 481 and 306 K, respectively, which are also
close to the CV scores. Among the four kinds of regression
techniques, SVR provides the prediction models with the best
CV scores and rms errors. This is consistent with the fact that
nonlinear regressions are widely accepted to be useful for
estimating complex response functions.

C. Prediction

In this section, we examine the predictive power of the
melting temperature of compounds which are missing in
the dataset of Table V (hereinafter called dataset I). Some
nitrides are known to decompose and release nitrogen gas
at a temperature below the melting point under ambient
pressure. In some databases, the decomposition temperature is
shown instead of the melting temperature. Elemental carbon is
another example whose melting temperature under the ambient
pressure is not well established by experiments. A series of
nitrides and elements of Group 14 (carbon group) are therefore
selected for the targets of the prediction.

Figure 6 shows melting temperatures for nitrides and Group
14 elements predicted with dataset I by the SVR model and the
OLSR model, which lead to rms errors for test data of 262 and
295 K. Ten predictors are optimized by the stepwise method
in the OLSR model. The error bars shown in Fig. 6 correspond
to 95% confidence intervals in the OLSR model. The melting
temperatures predicted by the SVR and OLSR models do not
differ so much for most of compounds included in the dataset I.
They are also close to experimental melting temperatures. The
largest error can be found for AlN. The reason for the poor
prediction may be ascribed to experimental error rather than
problems in the prediction model, since the experimental data
in literature is widely scattered. It is 3273.15 K in dataset I,
while other databases report 2473.15 K [37] and 3473 K [38].

Meanwhile, missing compounds in dataset I can be classi-
fied into two groups according to the width of the error bar in
Fig. 6. For compounds with narrow error bars, the predictions
by SVR and OLSR models are nearly the same, which is
similar to those compounds in dataset I. In such a compound,
the melting temperature is expected to be predictable with the
accuracy comparable to that for compounds in dataset I. We
collected experimental melting temperatures of compounds
that are not included in dataset I and made a new dataset II.
They are estimated from an extrapolation of experimental
solid-liquid phase boundaries to the ambient pressure in a
pressure-temperature phase diagram.
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FIG. 6. (Color online) Melting temperatures of nitrides and
Group 14 elements predicted by SVR (blue closed squares) and OLSR
with ten predictors optimized by the stepwise method (red closed
circles) along with experimental melting temperatures (gray closed
bars) in dataset I. The error bars indicate 95% confidence intervals in
the OLSR model. Open bars show melting temperatures of Mg3N2,
BN, GaN, and C obtained by extrapolation using the solid-liquid
phase boundaries in pressure-temperature phase diagrams (dataset II).

As can be seen in Fig. 6, the melting temperatures predicted
by the SVR and OLSR models using dataset I agree well with
the experimental data in dataset II when the error bar of the
prediction is narrow, as for Mg3N2. On the other hand, the pre-
diction is less reliable for compounds with wide error bars such
as C and BN. In contrast to compounds with narrow error bars,
the melting temperatures predicted by the OLSR model differs
greatly from those predicted by the SVR model. The prediction
with the wide error bars requires an extrapolation from dataset
I. As demonstrated in Sec. III B, both of the cohesive energies
and bulk moduli of the compounds are important predictors in
the OLSR model. Since both C and BN have larger cohesive
energy and bulk modulus than compounds in dataset I, their
melting temperatures need to be predicted by extrapolation.
Hence, the predictive power for these compounds becomes
poor. Inclusion of these new data into the training dataset
should decrease the uncertainty of the prediction models,
thereby drastically improving the predictive power.

D. Kriging

Finally, we perform a simulation for finding the compound
with the highest melting temperature by using kriging. Here
we start the kriging from a data set of 12 compounds. For
comparison, a simulation based on the random selection of
compounds is also performed. Both the kriging and random
simulations are repeated thirty times and the average number of
compounds required for finding the compound with the highest
melting temperature is observed. Figure 7 shows the highest
melting temperature among observed compounds during one
of the thirty kriging and random trials. As can be seen in Fig. 7,
the compound with the highest melting temperature can be
found much more efficiently by using the kriging. The average
number of observed compounds required for finding the com-
pounds with the highest melting temperature over thirty trials
using the kriging and random compound selections are 16.1
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FIG. 7. (Color online) Highest melting temperature among the
observed compounds in simulations for finding the compound with
the highest melting temperature based on kriging and random
compound selections.

and 133.4, respectively; hence kriging substantially improved
the efficiency of discovery. This is a very encouraging result
for application of kriging to various materials design problems.

IV. CONCLUSION

In summary, we have presented applications of regression
techniques to the prediction of the melting temperature of
single and binary compounds. Prediction models are built by
four kinds of regression techniques. It is found that the SVR
prediction model has the highest predictive power from among
the four regressions. Also, the prediction models are much
improved by considering the physical properties computed by
the DFT calculation as predictor variables. The best prediction
model has been constructed by the SVR using the predictor
variable set composed of elemental information and physical
properties computed by the DFT calculation. It has the CV
score of 265 K and a rms error for test data of 262 K. In addition
to the construction of prediction models, a limitation of the
predictive power is shown when extrapolation from training
dataset is required. We have also demonstrated simulations
to find the compound with the highest melting temperature.
The simulations are based on kriging that stands on GPR. The
average number of compounds required for finding the optimal
compound over thirty-times kriging compound selection is
16.1, which are much smaller than that in random compound
selections of 133.4, hence the kriging discovers the optimal
compound much more efficiently. This result strongly supports
that kriging facilitates efficient discovery of optimal materials.
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APPENDIX: MELTING TEMPERATURES OF
SINGLE- AND BINARY-COMPONENT SOLIDS

Table V shows the melting temperatures of single and
binary component solids in the data set.
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TABLE V. Melting temperatures of 248 AxBy binary compounds included in the data set, quoted from Ref. [27].

Compound Melting temp. (K) Compound Melting temp. (K) Compound Melting temp. (K) Compound Melting temp. (K)

Al 933.473 Cs2O 768.15 KO2 808.15 RbO2 813.15
Al2O3 2327.15 Cs2S 793.15 Li 453.65 S 388.36
Al2S3 1373.15 CsBr 909.15 Li2O 1711.15 S4N4 451.35
Al2Te3 1168.15 CsCl 919.15 Li2S 1645.15 Sb 903.778
Al4C3 2373.15 CsF 976.15 Li3N 1086.15 Sb2O3 928.15
AlAs 2013.15 CsH 801.15 LiBr 823.15 Sb2S3 823.15
AlBr3 370.65 CsI 905.15 LiCl 883.15 Sb2Se3 884.15
AlCl3 465.75 CsO2 705.15 LiF 1121.35 Sb2Te3 893.15
AlI3 461.43 Ga 302.9146 LiH 965.15 SbBr3 370.15
AlN 3273.15 Ga2O3 2080.15 LiI 742.15 SbCl3 346.55
AlP 2823.15 Ga2S3 1363.15 Mg 923.15 SbF3 560.15
AlSb 1338.15 Ga2Se3 1210.15 Mg2Ge 1390.15 SbI3 444.15
As 1090.15 GaAs 1511.15 Mg2Si 1375.15 Se 493.95
As2O3 587.15 GaBr3 396.15 Mg2Sn 1044.15 SeBr4 396.15
As2O5 1003.15 GaCl2 445.55 Mg3As2 1473.15 SeO2 633.15
As2S3 585.15 GaCl3 351.05 Mg3Sb2 1518.15 SeO3 391.15
As2Se3 650.15 GaI3 485.15 MgBr2 984.15 Si 1687.15
As2Te3 648.15 GaP 1730.15 MgCl2 987.15 Si2I6 523.15
As4S4 580.15 GaS 1238.15 MgF2 1536.15 Si3N4 2173.15
AsBr3 304.25 GaSb 985.15 MgH2 600.15 SiC 3103.15
AsI3 414.15 GaSe 1233.15 MgI2 907.15 SiI4 393.65
Ba 1000.15 GaTe 1097.15 MgO 3098.15 SiS2 1363.15
BaBr2 1130.15 Ge 1211.4 MgS 2499.15 Sn 505.078
BaCl2 1234.15 GeBr2 395.15 Na 370.944 Sn4P3 823.15
BaF2 1641.15 GeBr4 299.25 Na2O 1407.15 SnBr2 505.15
BaH2 1473.15 GeF2 383.15 Na2O2 948.15 SnBr4 302.25
BaI2 984.15 GeI2 701.15 Na2S 1445.15 SnCl2 520.15
BaO 2246.15 GeI4 419.15 NaBr 1020.15 SnF2 488.15
BaS 2500.15 GeO2 1389.15 NaCl 1073.85 SnI4 675.15
BaSe 2053.15 GeS 931.15 NaF 1269.15 SnO 1250.15
BaSi2 1453.15 GeS2 1113.15 NaH 911.15 SnO2 1903.15
Be 1560.15 GeSe 948.15 NaI 934.15 SnP 813.15
Be2C 2400.15 GeTe 997.15 NaO2 825.15 SnS 1154.15
Be3N2 2473.15 I2 386.85 P 883.15 SnSe 1134.15
BeBr2 781.15 I2O4 403.15 P2I4 398.65 SnSe2 923.15
BeCl2 688.15 IBr 313.15 P2O5 835.15 SnTe 1079.15
BeF2 825.15 ICl 300.53 P2S3 563.15 SO3 335.35
BeI2 753.15 In 429.75 P2S5 558.15 Sr 1050.15
BeO 2851.15 In2O3 2185.15 P4S3 446.15 SrBr2 930.15
Bi 544.556 In2S3 1323.15 P4S7 581.15 SrCl2 1147.15
Bi2O3 1098.15 In2Se3 933.15 Pb 600.612 SrF2 1750.15
Bi2O4 578.15 In2Te3 940.15 Pb3O4 1103.15 SrH2 1323.15
Bi2S3 1050.15 InAs 1215.15 PbBr2 644.15 SrI2 811.15
Bi2Te3 853.15 InBr3 693.15 PbCl2 774.15 SrO 2804.15
BiBr3 492.15 InCl 498.15 PbF2 1103.15 SrS 2499.15
BiCl3 507.15 InF3 1445.15 PbI2 683.15 SrSe 1873.15
BiF3 922.15 InI 637.55 PbO 1160.15 SrSi2 1373.15
BiF5 424.55 InI3 480.15 PbS 1386.15 Te 722.66
BiI3 681.75 InN 1373.15 PbSe 1351.15 TeCl4 497.15
Ca 1115.15 InP 1335.15 PbTe 1197.15 TeF4 402.15
Ca3N2 1468.15 InS 965.15 PI3 334.35 TeI4 553.15
CaBr2 1015.15 InSb 797.15 Rb 312.45 TeO2 1006.15
CaC2 2573.15 K 336.65 Rb2O 778.15 TeO3 703.15
CaCl2 1048.15 K2O 1013.15 Rb2O2 843.15 Tl 577.15
CaF2 1691.15 K2O2 818.15 Rb2S 698.15 Tl2O 852.15
CaH2 1273.15 K2S 1221.15 Rb2Se 1006.15 Tl2O3 1107.15
CaI2 1056.15 K2Se 1073.15 RbBr 965.15 Tl2S 730.15
CaO 2886.15 KBr 1007.15 RbCl 997.15 TlBr 733.15
CaS 2797.15 KCl 1044.15 RbF 1068.15 TlCl 704.15
CaSi 1597.15 KF 1131.15 RbH 858.15 TlF 599.15
CaSi2 1313.15 KH 892.15 RbI 929.15 TlI 714.85
Cs 301.65 KI 954.15 RbN3 590.15 TlSe 603.15
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