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1. Introduction

The Neveu–Schwarz (NS) sector of the heterotic string field theory was first constructed order by
order in the coupling constant using the large Hilbert space of the superghosts [1]. Soon afterwards, it
was completed by giving the action and gauge transformations in a closed form as a Wess–Zumino–
Witten (WZW)-like theory [2], which is a natural extension of the similar formulation of the open
superstring field theory [3]. This heterotic string field theory is a closed string field theory with non-
polynomial interactions (in the NS string field), which can be constructed based on the polyhedral
overlapping conditions [4–9]. The corresponding string products satisfy a set of identities with an
additional derivation η characterizing the algebraic structure of the heterotic string field theory. An
analog of the Maurer–Cartan form, the basic ingredient of the WZW-like action, can be constructed
by means of the pure gauge field in bosonic closed string field theory [2].

On the other hand, the Ramond (R) sector of the heterotic string field theory has not been
studied so far. This is presumably because one of the main motivations to construct string field
theories is to find classical solutions, including the solution for tachyon condensation, which does
not require the R sector. Nevertheless, it is important to understand the R sector for many other
purposes, such as discussing non-renormalization theorems, supersymmetry breaking, and so on.
The aim of this paper is to attempt to construct the full heterotic string field theory by including
the R sector.

In the case of the WZW-like open superstring field theory, however, it was not straightforward
to construct the covariant R action due to the picture number mismatch. Therefore, at first, only
the equations of motion could be given in the covariant form [10]. Subsequently, a covariant action
was constructed by introducing an auxiliary R string field with a constraint [11]. The auxiliary string
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field is eliminated by the constraint, and the equations of motion reduce to those previously obtained.
According to this open superstring case, we will at first attempt to construct the equations of motion
for the NS and the R sectors of the heterotic string field theory since the picture number difficulty is
common to the heterotic string case.

From simple consideration, one can easily notice that the full equations of motion in the heterotic
string field theory have to be non-polynomial not only in the NS string field but also in the R string
field to reproduce correct fermion amplitudes. We will construct them order by order in the R string
field� by imposing some consistency conditions, including invariance under a gauge transformation.
Their explicit forms will be given up to the next-to-next-to-leading order corrections in�. The non-
polynomial gauge transformations will also be determined up to the same order. In addition, we will
find a subset of terms in the equations of motion and the gauge transformations built with one or two
string products to all orders.

Then we will introduce an auxiliary R string field and construct an action. The above equations of
motion can be obtained from those derived from the action by eliminating the auxiliary field using
a constraint [11], which is also non-polynomial in �. We will also propose the Feynman rules to
compute tree amplitudes. Since the action has to be supplemented by the constraint, these Feynman
rules cannot be simply derived by the conventional method. Nevertheless, we can extend the rules
proposed for the open superstring [11] to those of the heterotic string with a few additional prescrip-
tions. As evidence that these Feynman rules work well, we will show that they actually reproduce
on-shell four-point amplitudes with external fermions.

This paper is organized as follows. In Sect. 2, we will briefly summarize the known results on
the NS sector of the heterotic string field theory. The heterotic string fields are defined based on
the large Hilbert space of superghosts for the holomorphic, superstring, sector. Together with the
NS string field V , we will also introduce the R string field � here. After explaining the fundamental
properties of the string products, the WZW-like action of the NS sector will be given. We will attempt
to construct the full equations of motion, including interactions with the R sector, in Sect. 3, and find a
general form of the full equations of motion required by a gauge invariance. The explicit forms of the
equations of motion and the gauge transformations will be given up to the next-to-next-to-leading
order in �. We will also determine a subset of terms to all orders. We will construct, in Sect. 4,
an action and a constraint by introducing an auxiliary R string field �. In Sect. 5, we will propose
the Feynman rules by adding a few prescriptions to the straightforward extensions of those for the
open superstring field theory [11]. We will show how well-known four-point fermion amplitudes
are reproduced. Section 6 is devoted to open questions and discussion. We add three appendices.
In Appendix A, We will give the explicit forms of the gauge transformations at the next-to-next-to-
leading order in �. We will explain in detail how the general form of the full equations of motion
are obtained by imposing a gauge invariance in Appendix B. The derivation of the all-order results
in Sect. 3 will be presented in Appendix C. The gauge transformation laws built with two string
products will also be given.

2. The NS sector of the heterotic string field theory

In this section, we summarize the known results in the NS sector of the heterotic string field theory
[1,2]. Together with the NS string field V , the R string field � is also introduced. After introducing
the string products and discussing their fundamental properties, the gauge-invariant WZW-like action
is given.
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2.1. Heterotic string fields

The first quantized heterotic string in a consistent background is in general described by a con-
formal field theory with the following structure of holomorphic and anti-holomorphic sectors. The
holomorphic sector is composed of the Hilbert spaces of an N = 1 superconformal matter with
central charge c = 15, the reparametrization ghosts (b(z), c(z)) with c = −26 and the bosonized
superghosts (ξ(z), η(z), φ(z)) with c = 11. In particular, we adopt the large Hilbert space for the
superconformal ghosts involving the zero mode ξ0 of the field ξ(z). The anti-holomorphic sector
consists of a conformal matter theory with c̄ = 26 and the reparametrization ghosts (b̄(z̄), c̄(z̄))with
c̄ = −26. The normalization of correlation function in this Hilbert space is given by

〈〈ξe−φc∂c∂2cc̄∂̄ c̄∂̄2c̄〉〉 = 2. (1)

There are two sectors, the NS sector and the R sector, in the full heterotic string theory depending on
the boundary conditions of the holomorphic world-sheet fermions. The states in the NS (R) sector
represent space-time bosons (fermions).

Using the Becchi–Rouet–Stora–Tyutin (BRST) operator Q, the linearized equations of motion are
given by

QηV = 0, (2a)

Qη� = 0, (2b)

for the NS string field V and the R string field �, respectively. In this paper, we denote the zero-
mode η0 of the field η(z) as η, for simplicity. Due to the nilpotency Q2 = η2 = 0 and the anti-
commutativity {Q, η} = 0, these equations of motion are invariant under the gauge transformations

δV = Q	0 + η	1, (3a)

δ� = Q	1/2 + η	3/2, (3b)

where 	n with integer (half-integer) n are the gauge parameter NS (R) string fields with the picture
number n as shown below. The on-shell physical states obtained from these equations of motion and
gauge transformations coincide with those given by the conventional BRST cohomology in the small
Hilbert space [12].

In the NS string field V , a physical vertex operator takes the form of

|V 〉 = · · · + ξ0e−φcc̄V (NS)
A (k)|0〉ϕA(k)+ · · · , (4)

where V (NS)
A is a general matter primary operator with conformal dimensions (1/2, 1). The coef-

ficient ϕA(k) represents a space-time boson field, where the space-time tensor indices are simply
denoted as A. Since the matter vertex V (NS)

A is Grassmann odd,1 the NS string field V is found to
be Grassmann odd. We also find, from the structure of (4), that the NS string field V has the ghost

1 In this paper, we focus on the supersymmetric theory and assume that the NS states are projected onto the
Gliozzi–Scherk–Olive (GSO) even sector.
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number (G) equal to one and the picture number (P) equal to zero. In summary,

V : Grassmann odd, (G, P) = (1, 0). (5)

Similarly, a physical vertex operator in the R string field has the form

|�〉 = · · · + ξ0e−φ/2cc̄V (R)
α (k)|0〉ψα(k)+ · · · . (6)

The matter primary operator V (R)
α has conformal dimension (5/8, 1), whose holomorphic sector is

including the matter spin operator and α denotes the space-time tensor-spinor indices. We can assign
odd Grassmann parity to the vertex e−φ/2V (R)

α after imposing the GSO projection. Taking account
of the fact that the space-time fermion fieldsψα(k) are Grassmann odd, we can read from (6) that the
R string field � is Grassmann odd and has the ghost number one and the picture number one-half:

� : Grassmann odd, (G, P) =
(

1,
1

2

)
. (7)

The gauge parameter string fields 	n are found, from (3), to be Grassmann even and have
(G, P) = (0, n).

All the heterotic string fields and the parameters,V ,�, and	n also satisfy the subsidiary conditions
for the closed string:

b−
0 V = L−

0 V = 0, b−
0 � = L−

0 � = 0, b−
0 	n = L−

0 	n = 0, (8)

where

c±
0 = 1

2
(c0 ± c̄0), b±

0 = b0 ± b̄0, L±
0 = L0 ± L̄0. (9)

We also define an inner product by 〈A, B〉 = 〈A|c−
0 |B〉, where 〈A| is the Belavin–Polyakov–

Zamolodchikov (BPZ) conjugate state of |A〉. This inner product satisfies

〈A, B〉 = (−1)(A+1)(B+1)〈B, A〉, (10)

〈X A, B〉 = (−1)A〈A, X B〉, with X = Q or η, (11)

and is non-zero if and only if the total ghost and picture numbers are equal to four and minus one,
respectively:

G(A)+ G(B) = 4, P(A)+ P(B) = −1. (12)

2.2. String products and identities

As in the bosonic string field theory [8,9], the n string product (n ≥ 2) in the heterotic string field
theory is defined by a multilinear map from n string fields {Bi } (i = 1, . . . , n) annihilated by b−

0 and
L−

0 to one string field [B1, . . . , Bn] also annihilated by b−
0 and L−

0 . Each string field Bi can either
be an NS string field or an R string field. We can find that the resultant string field [B1, . . . , Bn] is
an NS (R) string field if the number of the R string in {Bi } is even (odd) from the cut structure of the
world-sheet fermions [13]. This is also consistent with the space-time fermion number conservation.
The string field [B1, . . . , Bn] has ghost and picture numbers

(G, P) =
(

n∑
i=1

Gi − 2n + 3,
n∑

i=1

Pi

)
, (13)

where (Gi , Pi ) are those of Bi .
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The BRST operator Q does not act as derivation on these string products but satisfies [9]

0 = Q[B1, . . . , Bn] +
n∑

i=1

(−1)(B1+···+Bi−1)[B1, . . . , Q Bi , . . . , Bn]

+
∑

{il , jk}
l+k=n

σ(il , jk)[Bi1, . . . , Bil , [B j1, . . . , B jk ]], (14)

where σ(il, jk) is a sign factor defined to be the sign picked up when one rearranges the sequence
{Q, B1, . . . , Bn} into the order {Bi1, . . . , Bil , Q, B j1, . . . , B jk }. These identities have exactly the
same form as those of bosonic closed string field theory because they have the same structure of
the anti-ghost b insertion. We have three additional derivations X = {η, δ, ∂t } playing important
roles in the heterotic string field theory. They are graded commutative with the BRST operator
X Q = (−1)X Q X and act on the string products as derivations:

X [B1, . . . , Bn] =
n∑

i=1

(−1)X (1+B1+···+Bi−1)[B1, . . . , X Bi , . . . , Bn]. (15)

In addition to these fundamental BRST operator Q and string products [· · · ], it is useful to
introduce a new BRST operator Q B0 ,

Q B0 B ≡ Q B +
∞∑

m=1

κm

m!
[Bm

0 , B], (16)

and string products [· · · ]B0 ,

[B1, . . . , Bn]B0 ≡
∞∑

m=0

κm

m!
[Bm

0 , B1, . . . , Bn], (17)

shifted by a Grassmann even NS string field B0 with (G, P) = (2, 0). If B0 satisfies the equation

F(B0) ≡ Q B0 +
∞∑

n=2

κn−1

n!
[Bn

0 ] = 0, (18)

the shifted BRST operator Q B0 is nilpotent and the shifted string products [· · · ]B0 satisfy the same
form of identities as (14):

0 = Q B0[B1, . . . , Bn]B0 +
n∑

i=1

(−1)(B1+···+Bi−1)[B1, . . . , Q B0 Bi , . . . , Bn]B0

+
∑

{il , jk}
l+k=n

σ(il, jk)[Bi1, . . . , Bil , [B j1, . . . , B jk ]B0]B0 . (19)

The operators X = {η, δ, ∂t } are, in contrast, neither graded commutative with Q B0 nor derivation
on the shifted string products [· · · ]B0 . Extra terms appear in the relations from the contribution that
X operates on B0:

Q B0(X B)− (−1)X X (Q B0 B) = −κ[X B0, B]B0, (20)

X [B1, . . . , Bn]B0 =
n∑

i=1

(−1)X (1+B1+···+Bi−1)[B1, . . . , X Bi , . . . , Bn]B0

+ (−1)Xκ[X B0, B1, . . . , Bn]B0 . (21)
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2.3. WZW-like action for the NS sector of the heterotic string

As in the conventional WZW theory, we introduce an extra dimension parameterized by t ∈ [0, 1].
The string field V is extended to the t-dependent one V(t) satisfying V(0) = 0 and V(1) = V . The
fundamental quantities to construct the action are the four string fields BQ(V) and BX (V) with X =
{η, δ, ∂t }, which are analogs of the Maurer–Cartan form g−1dg. The most important one BQ(V) is
defined by the pure gauge field G(V) in closed bosonic string field theory associated with a finite
gauge parameter V , which satisfies Eq. (18): F(G) = 0 [2]. The remaining three, BX , are determined
so that they satisfy an analog of the Maurer–Cartan equation,

X BQ = (−1)X Q BQ BX . (22)

Although we can obtain the explicit forms of these basic quantities by solving some differential
equations order by order in κ [2], here we give only their first few terms as

BQ(V) = G(V)

= QV + κ

2
[V, QV] + κ2

3!
([V, (QV)2] + [V, [V, QV]])+ · · · ,

BX (V) = XV + κ

2
[V, XV] + κ2

3!
(2[V, QV, XV] + [V, [V, XV]])+ · · · , (23)

which are enough for later use.
Using these “Maurer–Cartan forms,” the NS sector action of the heterotic string field theory is

written in the form [2]

SN S =
∫ 1

0
dt〈ηB∂t , BQ〉. (24)

From Eq. (22), we can show that an arbitrary variation of this action can be written as

δSN S = −〈B̄δ, η B̄Q〉, (25)

where the string fields with a bar denote those evaluated at t = 1, such as B̄δ = Bδ(V(1)) = Bδ(V ).
In particular, we denote hereafter B̄Q = G(V ) ≡ G, for simplicity. As a result, the equation of
motion becomes

ηG = 0. (26)

By use of (25), one can also show that the action (24) is invariant under the gauge transformations,

B̄δ(V ) = QG	0 + η	1, (27)

which are the non-linear extensions of (3a).2 Here the operator QG is the nilpotent BRST oper-
ator (16) shifted by the G(V ). One can easily find that the equation of motion (26) and gauge
transformations (27) coincide with (2a) and (3a), respectively, in the lowest order in κ .

We note that the string field ηG(V ) in the left-hand side of the equation of motion (26) satisfies
two identities,

QG(ηG) ≡ 0, (28)

η(ηG) ≡ 0, (29)

following from (22) and the nilpotency η2 = Q2
G = 0. These identities give quite powerful con-

straints to determine the equations of motion in the next section.

2 Hereafter, the gauge transformations of V are given in the form of B̄δ(V ), which can be solved for δV
order by order in κ [2].
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3. Equations of motion including the R sector

The full equations of motion for the NS and the R sectors of the heterotic string field theory are
non-polynomial not only in the NS string field V but also in the R string field �. In this section
we find their explicit forms order by order in � by imposing some consistency conditions. We also
determine a subset of the terms to all orders.

We start with the equation of motion for the NS sector3 (the NS equation of motion),

ηG − κ

2
[(η�)2]G = 0, (30)

including the leading-order coupling to the R string �. This is a straightforward extension of that of
the open superstring field theory [10]. We use here the string product shifted by G(V ), on which the
shifted BRST operator QG acts as derivation. As a result, (30) becomes consistent with the identity
(28) by taking

QGη� = 0 (31)

to be the equation of motion for the R sector (the R equation of motion), a non-linear extension of
(2b). In contrast, (30) is not consistent with another identity (29) because η fails to be the derivation
of the shifted string products. If we apply η on the left-hand side of (30), we obtain

η
(
ηG − κ

2
[(η�)2]G

)
= κ2

2
[ηG, (η�)2]G, (32)

where the right-hand side is non-zero under (30) although it is higher order in�. This inconsistency
can be improved order by order in � by adding the correction terms to the equations of motion.

Before looking for the next order corrections, we consider here the gauge transformations. We first
note that (30) and (31) are invariant under the 	0-gauge transformation,

B̄δ	0
(V ) = QG	0, δ	0� = 0, (33)

since it keeps G(V ) invariant:

δ	0 G(V ) = QG B̄δ	0
(V ) = QG(QG	0) = 0. (34)

From the leading order 	1-gauge transformation of V , (27), we can determine that of � so that
the R equation of motion (31) is invariant up to higher-order terms in �. The leading-order gauge
transformation is, in total, given by

B̄
δ
(0)
	1

(V ) = η	1, δ
(0)
	1
� = −κ[�, η	1]G, (35)

where we explicitly indicated, as the superscript on δ, the fermion number difference between
before and after the transformation. In fact, the R equation of motion (31) is transformed under

3 A factor −1/2 in the second term, or equivalently the normalization of �, is chosen in such a way that
fermion amplitudes are reproduced with the correct normalization as shown in the next section.
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this transformation as

δ
(0)
	1
(QGη�) = −κ[QGη�, η	1]G + κ2 QG ([ηG, �, η	1]G) , (36)

where the second term is O(�3) under (30). The next order correction,

B̄
δ
(2)
	1

(V ) = −κ
2

2
[�, η�, η	1]G, (37)

has to be included in the transformation of V to keep the NS equation of motion (30) invariant, except
for the O(�4) terms, as

(δ
(0)
	1

+ δ
(2)
	1
)
(
ηG − κ

2
[(η�)2]G

)
= −κ

[(
ηG − κ

2
[(η�)2]G

)
, η	1

]
G

+ κ2[QGη�, η�, η	1]G

+ κ3

2
[ηG, [�, η�, η	1]G]G − QG

(
κ3

2
[ηG, �, η�, η	1]G

)

− κ3[η�, [ηG, �, η	1]G]G + O(�4). (38)

The leading-order 	1/2-gauge transformation can similarly be determined as

B̄
δ
(0)
	1/2

(V ) = 0, δ
(0)
	1/2

� = QG	1/2, (39)

so that the R equation of motion (31) is invariant:

δ
(0)
	1/2

(QGη�) = −κ[ηG, QG	1/2]G . (40)

The right-hand side is equal to zero except for O(�3) terms4 under (30). The invariance of the NS
equation of motion (30) requires the next order correction

B̄
δ
(2)
	1/2

(V ) = κ[η�,	1/2]G . (41)

Then,

(δ
(0)
	1/2

+ δ
(2)
	1/2

)
(
ηG − κ

2
[(η�)2]G

)
= κ2

[(
ηG − κ

2
[(η�)2]G

)
, η�, QG	1/2

]
G

− η
(
κ[QGη�,	1/2]G

)+ O(�4). (42)

The invariance under the leading-order 	3/2-gauge transformation,

B̄
δ
(2)
	3/2

(V ) = 0, δ
(0)
	3/2

� = η	3/2, (43)

is exact in this order since � appears only in the form of η� so far.
In order to consider further corrections, we assume that the	0-gauge transformation (33) receives

no more correction and the NS string field V only appears in the correction terms through G(V ) in
the quantities QG and [· · ·]G , which keeps the equations of motion invariant under (33). We call this

4 We denote the terms with n R string fields, including not only � but also 	1/2, 	3/2, and �, by O(�n) in
this paper.
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assumption the G-ansatz in this paper. Then the consistency with the identity (28) requires the full
equations of motion to be in the form of

ηG − κ

2
[�2]G + QG� = 0, (44a)

QG� = 0, (44b)

as explained in detail in Appendix B, where the string fields � and the � have (G, P) = (2,−1/2)
and (2,−1), respectively, and can be expanded in � as

� =
∞∑

n=0

�(2n+1), � =
∞∑

n=0

�(2n+2), (45)

with the leading terms

�(1) = η�, �(2) = 0. (46)

The number in the parentheses of the superscript denotes the fermion number, that is the number of
�, of the terms included. One can see, by counting the ghost and the picture numbers using (13), that
the fundamental possible terms in the �(2n+1) and the �(2n+2) at each order n (≥ 1) take the form,

κ2n+α[�, (QG�)
k1, (η�)l1, [�, (QG�)

k2, (η�)l2, [· · · , [�, (QG�)
km , (η�)lm ]G · · · ]G]G]G,

(47)
under the G-ansatz, with α = 0 (1) for �(2n+1) (�(2n+2)). Each term is made by use of m
(1 ≤ m ≤ n) string products5 with the non-negative integers ki and li (1 ≤ i ≤ m) restricted by
the equations

∑m
i=1 ki = n − m,

∑m
i=1 li = n + 1 + α, and km + lm 
= 0. More general possible

terms, appearing for (n ≥ 3), can be obtained by replacing the η�s in these fundamental terms with
fundamental terms in �, such as

κ2n+α[�, (QG�)
k1, (η�)l1−3, �

(2n1+1)
1 , (�

(2n2+1)
2 )2,

× [�, (QG�)
k2, (η�)l2−1, �

(2n3+1)
3 , [· · · , [�, (QG�)

km , (η�)lm ]G · · · ]G]G]G, (48)

with
∑m

i=1 ki = n − n1 − 2n2 − n3 − m,
∑m

i=1 li = n − n1 − 2n2 − n3 + 1 + α, and km + lm 
= 0,
where

�
(2n1+1)
1 = κ2n1[�, (QG�)

k11, (η�)l11, [�, (QG�)
k12, (η�)l12,

× [· · · , [�, (QG�)
k1m1 , (η�)l1m1 ]G · · · ]G]G]G, (49)

�
(2n2+1)
2 = κ2n2[�, (QG�)

k21, (η�)l21, [�, (QG�)
k22, (η�)l22,

× [· · · , [�, (QG�)
k2m2 , (η�)l2m2 ]G · · · ]G]G]G, (50)

�
(2n3+1)
3 = κ2n3[�, (QG�)

k31, (η�)l31, [�, (QG�)
k32, (η�)l32,

× [· · · , [�, (QG�)
k3m3 , (η�)l3m3 ]G · · · ]G]G]G, (51)

with
∑mi

j=1 ki j = ni − mi ,
∑mi

j=1 li j = ni + 1, and kim + lim 
= 0 for i = 1, 2, 3. We can further
replace the η�s in these more general terms with fundamental terms in � and obtain the possi-
ble terms for n ≥ 5. All the possible terms are obtained by repeating similar replacements as many
times as possible for given n.

5 Hereafter we refer to the shifted quantities, QG and [· · ·]G , as simply the BRST operator and the string
product, respectively.

9/28

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on M

ay 15, 2014
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2014, 043B01 H. Kunitomo

From these general considerations, we can find that the possible next-to-leading-order corrections
to the equations of motion are given by

�(3) = −κ
2

3!
[�, (η�)2]G, �(4) = κ3

4!
[�, (η�)3]G, (52)

where the numerical coefficients were fixed by solving the consistency equation,

η
(κ

2
[�2]G − QG�

)
= 0, (53)

with the identity (29).
As in the case of the leading order, we can obtain the gauge transformations in the next-to-

leading order, δ(2)� and B̄δ(4) , by imposing the invariance of the R and the NS equations of motion,
respectively. The results are

B̄
δ
(4)
	1

(V ) = −κ
4

4!
[�, QG�, (η�)

2, η	1]G − κ4

8
[[�, η�]G, �, η�, η	1]G

+ κ4

4!
[[�, (η�)2]G, �, η	1]G + κ4

4!
[�, [�, (η�)2, η	1]G]G

+ κ4

8
[�, η�, [�, η�, η	1]G]G,

δ
(2)
	1
� = −κ

3

3!
[�, QG�, η�, η	1]G − κ3

3
[[�, η�]G, �, η	1]G

+ κ3

3!
[�, [�, η�, η	1]G]G, (54)

for 	1-transformation,

B̄
δ
(4)
	1/2

(V ) = κ3

8
[�, (η�)2, QG	1/2]G − κ3

3!
[[�, (η�)2]G,	1/2]G,

δ
(2)
	1/2

� = κ2

3
[�, η�, QG	1/2]G, (55)

for 	1/2-transformation, and

B̄
δ
(4)
	3/2

(V ) = −κ
3

4!
[�, (η�)2, η	3/2]G, δ

(2)
	3/2

� = −κ
2

3!
[�, η�, η	3/2]G, (56)

for 	3/2-transformation.
The next-to-next-to-leading corrections, the �(5) and the �(6), are further determined by solving

(53) as

�(5) = −κ
4

5!
[�, QG�, (η�)

3]G + κ4

5!
[�, [�, (η�)3]G]G + 4

5!
κ4[�, η�, [�, (η�)2]G]G

− 4

5!
κ4[�, (η�)2, [�, η�]G]G,

�(6) = κ5

6!
[�, QG�, (η�)

4]G − κ5

6!
[�, [�, (η�)4]G]G − 5

6!
κ5[�, η�, [�, (η�)3]G]G

− 10

6!
κ5[�, (η�)2, [�, (η�)2]G]G + 5

6!
κ5[�, (η�)3, [�, η�]G]G . (57)

The gauge transformations B̄δ(6) and δ(4)� are also obtained similarly and their explicit forms are
given in Appendix A since they are lengthy.
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In general, we conjecture that the full equations of motion can be constructed order by order in� in
a similar manner. In order to show that this is actually the case, we have to prove the existence of a non-
trivial, but not necessarily unique, solution to the consistency equation (53). If it has a unique solution,
we can, in principle, obtained the full equations of motion and also the gauge transformations in any
order in � in the same way as above. If a non-trivial solution exists but is not unique, we must take
into account the further gauge invariance(s) to find the full equations of motion, where the equations
of motion and the gauge transformation(s) have to be determined simultaneously.

While we have not explicitly found all the terms of the full equations of motion, we have completely
determined a subset of the terms built with one string product in the� and the� and those with two
string products in the � to all orders in � similarly by solving (53). The result is

� = η� −
∞∑

n=1

κ2n

(2n + 1)!
[�, (QG�)

n−1, (η�)n+1]G + · · · , (58a)

� =
∞∑

n=1

κ2n+1

(2n + 2)!
[�, (QG�)

n−1, (η�)n+2]G

+
∞∑

n=2

n−2∑
m=0

n+2∑
l=0

(m,l)
=(0,0)

gn,m,lκ
2n+1[�, (QG�)

n−m−2, (η�)n−l+2, [�, (QG�)
m, (η�)l ]G]G + · · · ,

(58b)

with

gn,m,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l∑
k=0

(
n − 1

m + l + 1 − k

)(
n + 3

k

)
1

(2n + 2)!
for (0 ≤ l ≤ m + 1),

−
m∑

k=0

(
n − 1

k

)(
n + 3

m + l + 1 − k

)
1

(2n + 2)!
for (m + 2 ≤ l ≤ n + 2).

(59)

The dots in the right-hand side of (58) represent the terms built with more string products and ( n
m )

is the binomial coefficient defined by

(
n
m

)
=

⎧⎪⎨
⎪⎩

n!

(n − m)!m!
for (0 ≤ m ≤ n),

0 for (m < 0, or m > n).
(60)

The derivation of (58) is presented in more detail in Appendix C. The gauge transformations in the
corresponding approximation are also found in a similar way to those in the fermion expansions as

B̄δ	1
(V ) = η	1 −

∞∑
n=1

κ2n

(2n)!
[�, (QG�)

n−1, (η�)n, η	1]G + B̄[2]
δ	1
(V )+ · · · ,

δ	1� = −
∞∑

n=0

κ2n+1

(2n + 1)!
[�, (QG�)

n, (η�)n, η	1]G + · · · , (61)
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B̄δ	1/2
(V ) = κ[η�,	1/2]G +

∞∑
n=1

(n + 2)κ2n+1

(2n + 2)!
[�, (QG�)

n−1, (η�)n+1, QG	1/2]G

+ B̄[2]
δ	1
(V )+ · · · ,

δ	1/2� = QG	1/2 +
∞∑

n=1

(n + 1)κ2n

(2n + 1)!
[�, (QG�)

n−1, (η�)n, QG	1/2]G + · · · , (62)

B̄δ	3/2
(V ) = −

∞∑
n=2

(n − 1)κ2n−1

(2n)!
[�, (QG�)

n−2, (η�)n, η	3/2]G + B̄[2]
δ	1
(V )+ · · · ,

δ	3/2� = η	3/2 −
∞∑

n=1

nκ2n

(2n + 1)!
[�, (QG�)

n−1, (η�)n, η	3/2]G + · · · , (63)

where the terms built with two string products are denoted by the B̄[2]
δ (V )s and explicitly given in

Appendix C. We regard these results as evidence that the consistency equation (53) actually has a
non-trivial solution and we can construct the full equations of motion and gauge transformations to
all orders in �.

4. Action with constraint

As in the case of the open superstring field theory [11], one can construct an action by introducing
an auxiliary R string field � with a constraint. The above equations of motion can be obtained from
those derived from this action after eliminating � using the constraint.

Let us start with the bilinear action

S(2)R = 1

2
〈η�, QG�〉, (64)

which is a natural extension of the action in the open superstring field theory [11].6 In order for this
action (64) to be non-zero, the auxiliary string field � must have the properties:

� : Grassmann odd, (G, P) =
(

1,−1

2

)
. (65)

From the action SN S + S(2)R , we can derive the three equations of motion,

ηG − κ

2
[η�, QG�]G = 0, QGη� = 0, ηQG� = 0, (66)

which are equivalent to the equations of motion with the leading-order coupling, (30) and (31), if we
impose the constraint, QG� = η�.

In general, the full R action is given by the infinite series

SR =
∞∑

n=1

S(2n)
R , (67)

6 See also Sect. 5.1.
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where S(2n)
R includes 2n R string fields, the �, and the �, in total. If we take the first three terms as

(64) and

S(4)R = κ2

4!
〈η�, [�, (QG�)

2]G〉, (68)

S(6)R = κ4

6!
〈η�, [�, (QG�), (QG�)

3]G〉 − 2

6!
κ4〈η�, [�, [�, (QG�)

3]G]G〉

+ 2

6!
κ4〈η�, [�, (QG�), [�, (QG�)

2]G]G〉

+ 3

6!
κ4〈η�, [�, (QG�)

2, [�, (QG�)]G]G〉, (69)

the action SN S + S(2)R + S(4)R + S(6)R yields the equations of motion,

ηG − κ

2
[�̃, (QG�)]G + QG�̃ = 0, QG�̃ = 0, η�+� = 0, (70)

with

�̃ = η� − κ2

3!
[�, η�, (QG�)]G

− κ4

5!
[�, (QG�), η�, (QG�)

2]G + κ4

5!
[�, [�, η�, (QG�)

2]G]G

− 2

3 · 5!
κ4[�, η�, [�, (QG�)

2]G]G + 4

3 · 5!
κ4[�, (QG�), [�, η�, (QG�)]G]G

− 2

5!
κ4[�, η�, (QG�), [�, (QG�)]G]G − 2

5!
κ4[�, (QG�)

2, [�, η�]G]G, (71)

�̃ = κ3

4!
[�, η�, (QG�)

2]G

+ κ5

6!
[�, (QG�), η�, (QG�)

3]G − κ5

6!
[�, [�, η�, (QG�)

3]G]G

− 2

6!
κ5[�, η�, [�, (QG�)

3]G]G − 3

6!
κ5[�, (QG�), [�, η�, (QG�)

2]G]G

+ 2

6!
κ5[�, η�, (QG�), [�, (QG�)

2]G]G − 2

6!
κ5[�, (QG�)

2, [�, η�, (QG�)]G]G

+ 3

6!
κ5[�, η�, (QG�)

2, [�, (QG�)]G]G + 2

6!
κ5[�, (QG�)

3, [�, η�]G]G, (72)

� = QG�+ κ2

3!
[�, (QG�)

2]G

+ κ4

5!
[�, (QG�), (QG�)

3]G − κ4

5!
[�, [�, (QG�)

3]G]G

+ κ4

45
[�, (QG�), [�, (QG�)

2]G]G + 4

5!
κ4[�, (QG�)

2, [�, (QG�)]G]G, (73)
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� = κ4

3 · 5!
[η�, (QG�), [�, (QG�)

2]G]G − κ4

3 · 5!
[(QG�)

2, [�, η�, (QG�)]G]G

+ κ4

3 · 5!
[�, η�, [(QG�)

3]G]G − κ4

3 · 5!
[�, (QG�), [η�, (QG�)

2]G]G

+ κ4

5!
[η�, (QG�)

2, [�, (QG�)]G]G − κ4

5!
[(QG�)

3, [�, η�]G]G

+ κ4

5!
[�, η�, (QG�), [(QG�)

2]G]G − κ4

5!
[�, (QG�)

2, [η�, (QG�)]G]G . (74)

One can show that if we impose the constraint

QG� = �, (75)

these quantities become

�̃ = �, �̃ = �, � = η�, � = 0, (76)

with (46), (52), and (57), and thus the equations of motion (70) reduce to those obtained in the
previous section.

Although we can also consider the gauge transformations, the action SN S + S(2)R + S(4)R + S(6)R has
less symmetry than the corresponding equations of motion written by the V and the �. The action
is only invariant under the transformations,

B̄δ	0
(V ) = QG	0, δ� = 0, δ� = QG	− 1

2
. (77)

This symmetry enhancement (decline) also happens in the open superstring field theory [11], but the
action symmetry (77) is smaller. The gauge symmetry generated by	−1/2 requires that the auxiliary
field � have to take the form of QG� in the action.

We have also completely determined a subset of terms, built with the one string product, in the full
action (67) to all orders in � as

SR = 1

2
〈η�, QG�〉 +

∞∑
n=1

κ2n

(2n + 2)!
〈η�, [�, (QG�)

n−1, (QG�)
n+1]G〉 + · · · . (78)

This reproduces the terms with one string product in (58) by imposing the constraint (75) with (58a).

5. Feynman rules and four-point amplitudes

We propose in this section the Feynman rules to compute tree-level amplitudes in the heterotic string
field theory by extending those for the open superstring [11]. We show that these rules actually
reproduce the correct on-shell four-point amplitudes with external fermions.

5.1. Feynman rules for tree-level amplitudes

Let us first focus on the kinetic terms

S0 = 1

2
〈ηV, QV 〉 + 1

2
〈η�, Q�〉 (79)

in the action, which are invariant under the transformations

δV = Q	0 + η	1, δ� = Q	1/2 + η	3/2, δ� = Q	− 1
2

+ η	′
1/2. (80)

The non-trivial point is that not all of these symmetries can be extended to those of the full action.
In particular, it may be worthwhile to note that even the NS propagator cannot be derived by means
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of the conventional method in the heterotic string field theory since the action symmetry (77) does
not include that generated by 	1.

Here we simply assume that we can “effectively” fix these symmetries (80) by the gauge conditions

b+
0 V = ξ0V = 0, b+

0 � = ξ0� = 0, b+
0 � = ξ0� = 0. (81)

Then, by inverting the kinetic terms (79), the propagators in this gauge are given by

V V ≡ �N S = ξ0
b+

0 b−
0

L+
0

δ(L−
0 ) = ξ0b+

0 b−
0

∫ ∞

0
dT
∫ 2π

0

dθ

2π
e−T L+

0 −iθL−
0 , (82)

��=�� ≡ �R = 2ξ0
b+

0 b−
0

L+
0

δ(L−
0 ) = 2�N S. (83)

As in the open superstring field theory [11], the constraint can be taken into account by replacing
the Q� and the η� with their self-dual part ω = (Q�+ η�)/2 in the vertices. However, the� and
the � do not always appear in the action (67) in the form of the Q� and the η�, respectively. Some
preparation is needed in advance of the replacement.

First, we point out that the open superstring action can be written in a similar form of the heterotic
string action by using the relation,

Q′ A = Q A + [(e−�Qe�), A} = e−�(Q Ã)e�, (84)

with Ã = e�Ae−�. It is reasonable to expect that a similar relation enables us to rewrite the action
(67) in the opposite direction so that the redefined auxiliary field �̃ always appears in the form of
Q�̃. Actually, we can show, up to O(κ3), that the relation

QG� = Q�̃+ κ[V, Q�̃] + κ2

2
[V, QV, Q�̃] + κ2

2
[V, [V, Q�̃]]

+ κ3

3!
[V, (QV )2, Q�̃] + κ3

3!
[V, [V, QV, Q�̃]] + κ3

3
[V, QV, [V, Q�̃]]

+ κ3

3!
[[V, QV ], V, Q�̃] + κ3

3!
[V, [V, [V, Q�̃]]] + · · · (85)

holds, where

�̃ = �− κ[V, �] − κ2

2
[V, QV, �] + κ2

2
[V, [V, �]] − κ3

3!
[V, (QV )2, �] + κ3

3
[V, [V, QV, �]]

+ κ3

3!
[V, QV, [V, �]] − κ3

3!
[[V, QV ], V, �] − κ3

3!
[V, [V, [V, �]]] + · · · . (86)

If we also note that � = ξ0(η�) under the gauge conditions (81), the action (67) can be rewritten in
such a way that all the �̃ and the� appear in the form of Q�̃ and η�, respectively. As a consequence,
we can completely project out the component which does not satisfy the (linearized) constraint Q�̃ =
η� by replacing Q�̃ and η� with ω = (Q�̃+ η�)/2.

In the end of this subsection, we must mention that the prescription proposed here can give definite
rules but has an ambiguity coming from the fact that η� = ηξ0(η�) but ω 
= ηξ0ω. We take here a
convention that η�, �, and Q� are replaced with ω, ξ0ω, and Qξ0ω, respectively. We expect that
this ambiguity does not affect the on-shell physical amplitudes.
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5.2. Four-point amplitudes with external fermions

As evidence that the above Feynman rules work well, we show that they actually reproduce the on-
shell physical four-point amplitudes with external fermions.

The external states are the on-shell states |V 〉 and |�〉 satisfying linearized equations of motion (2)
and gauge conditions (81). Since they have to also satisfy the linearized constraint, we can replace ω
and ξ0ω connected to external legs with the on-shell states η|�〉 and |�〉, respectively. The vertices
for computing four-point amplitudes can be read from the action as follows.

The three-boson vertex is obtained from the NS action (24) as

SB B B = κ

3!
〈ηV, [V, QV ]〉. (87)

The boson–fermion–fermion (Yukawa) vertex in (64) is given by

SB F F = κ

2
〈η�, [V, Q�̃]〉

∼ κ

2
〈ω, [V, ω]〉, (88)

where the above replacement was made in the second line.
The boson–boson–fermion–fermion coupling and four-fermion coupling are similarly read from

(64) and (68), respectively, as

SB B F F = κ2

4

(
〈η�, [V, QV, Q�̃]〉 + 〈η�, [V, [V, Q�̃]]

)

∼ κ2

4
〈ω, [V, QV, ω]〉, (89)

SF F F F = κ2

4!
〈η�, [�, (Q�̃)2]〉

∼ κ2

4!
〈ω, [ξ0ω,ω

2]〉 = κ2

4!
〈ξ0ω, [ω3]〉. (90)

We used in (89) the fact that

〈ω, [V, [V, ω]]〉 = 〈[V, ω], [V, ω]〉 = 0. (91)

Now let us first calculate the four-fermion amplitude AF F F F . In general, a four-point amplitude in
the heterotic string field theory has contributions from the four Feynman diagrams depicted in Fig. 1
and Fig. 3. The first three diagrams, in Fig. 1, the s-channel, t-channel, and u-channel diagrams
for AF F F F , can be drawn using the two Yukawa vertices (88) and the NS propagator (82). Their
contributions to the amplitudes are given by

Astu
F F F F = κ2

∫ ∞

0
dT
∫ 2π

0

dθ

2π

(
〈(η�1)(η�2)ξsb+

s b−
s (η�3)(η�4)〉s

+ 〈(η�1)(η�3)ξt b
+
t b−

t (η�2)(η�4)〉t + 〈(η�1)(η�4)ξub+
u b−

u (η�2)(η�3)〉u

)
, (92)
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(a) (b) (c)

Fig. 1. Three Feynman diagrams composed of two three-point vertices and a propagator called (a) s-channel,
(b) t-channel, and (c) u-channel diagrams. The external legs should be read as semi-infinite cylinders. The line
winding around the propagator denotes the contour along which ξ and b± are integrated.

where the correlation function 〈· · · 〉i=s,t,u is evaluated as the conformal field theory (CFT) in the
large Hilbert space on the i-channel Feynman diagram. The operators ξi and b±

i inserted in each term
are integrated along the contour winding around the propagator as depicted in Fig. 1. We can remove
this ξ -insertion using an η on an external state,for example η�1. As a result, the contribution (92)
becomes

Astu
F F F F = κ2

∫ ∞

0
dT
∫ 2π

0

dθ

2π

(
〈�1(η�2)b

+
s b−

s (η�3)(η�4)〉s

+ 〈�1(η�3)b
+
t b−

t (η�2)(η�4)〉t + 〈�1(η�4)b
+
u b−

u (η�2)(η�3)〉u

)
,

= κ2
∫

Fs∪Ft∪Fu

d2z1〈ξU (−1/2)
F (z1)V

(−1/2)
F (0)V (−1/2)

F (1)V (−1/2)
F (∞)〉C , (93)

where, in the second equality, we conformally mapped the Feynman diagram to the complex plane
[14,15] depicted in Fig. 2. The external strings, one, two, three, and four, are mapped to z = z1, 0,
1, and ∞, respectively. The operator V (−1/2)

F is the conventional on-shell physical fermion vertex in

the −1/2-picture [16] and related to the on-shell physical R state |�〉 as |�〉 = ξ0V (−1/2)
F (0)|0〉.

The integrated vertex operator UF is also the conventional one: VF = cc̄UF . The correlation
function 〈· · · 〉C of these operators is evaluated as the CFT on the complex plane, where the param-
eters {T, θ} of the Feynman diagram are mapped into the single complex moduli parameter z1.
The integration region coming from the i-channel (i = s, t, u) contribution are depicted as Fi

in Fig. 2.
For AF F F F , the last Feynman diagram, depicted in Fig. 3, is drawn using the four-fermion

interaction (90). The contribution from this diagram is

A4
F F F F = κ2

4

∫
dθadθb

(
〈bCa bCb�1(η�2)(η�3)(η�4)〉4 +

4∑
i=2

〈�(1) → �(i)〉4

)

= κ2
∫

D4

d2z1〈ξU (−1/2)
F (z1)V

(−1/2)
F (0)V (−1/2)

F (1)V (−1/2)
F (∞)〉C , (94)
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Fig. 2. Complex plane.

1

2

3

4

Fig. 3. Feynman diagram using the four-point interaction.

where the correlation function in the first line is evaluated as the CFT on the diagram in Fig. 3. The
moduli parameters {θa, θb} and corresponding anti-ghost insertions, {bCa , bCb}, are the same as those
given in Ref. [8]. In the second equality, we mapped the Feynman diagram to the complex plane and
used the fact that the position of the ξ(z) is irrelevant [16]. This contribution fills the shaded region
D4 in Fig. 2.

By summing up all of these contributions, the four-fermion amplitude AF F F F is finally given
by integrating over the complete moduli space M(0,4) = Fs ∪ Ft ∪ Fu ∪ D4, the whole complex
plane:

AF F F F = Astu
F F F F + A4

F F F F

= κ2
∫
M(0,4)

d2z1〈ξU (−1/2)
F (z1)V

(−1/2)
F (0)V (−1/2)

F (1)V (−1/2)
F (∞)〉C . (95)

This coincides with the well-known four-Ramond string amplitude [16].
We can similarly show that the two-boson–two-fermion amplitude coincides with the well-known

result. We suppose that the initial strings, strings one and two, are the NS strings and the final strings,
strings three and four, are the R strings. In this case, the s-channel Feynman diagram consists of the
three-boson vertex (87), the Yukawa vertex (88), and the NS propagator (82). Its contribution to the
amplitudes is

As
B B F F = κ2

2

∫ ∞

0
dT
∫ 2π

0

dθ

2π

(
〈(ηV1)(QV2)ξsb+

s b−
s (η�3)(η�4)〉s

+ 〈(QV1)(ηV2)ξsb+
s b−

s (η�3)(η�4)〉s

)
,
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= κ2

2

∫ ∞

0
dT
∫ 2π

0

dθ

2π

(
〈V1(QV2)b

+
s b−

s (η�3)(η�4)〉s

+ 〈(QV1)V2b+
s b−

s (η�3)(η�4)〉s

)
,

= κ2

2

∫
Fs

d2z1

(
〈ξU (−1)

B (z1)V
(0)
B (0)V −1/2

F (1)V −1/2
F (∞)〉C

+ 〈U (0)
B (z1)ξV (−1)

B (0)V (−1/2)
F (1)V (−1/2)

F (∞)〉C

)
. (96)

Here, in a similar way to the four-fermion amplitudes, we eliminated ξ -insertion in the second equal-
ity by using the η on the external NS state ηV1, and mapped the Feynman graph to the complex plane
in the third equality. The boson vertex operator V (−1)

B is the conventional one in the (−1)-picture
and related to the on-shell physical NS state |V 〉 as |V 〉 = ξVB(0)(−1)|0〉. The vertex V (0)

B in the
0-picture also appears in (96) because Q|V 〉 = V (0)

B (0)|0〉 [16]. The integrated vertex UB is given
by VB = cc̄UB .

The other two, t-channel and u-channel, diagrams consist of the two Yukawa vertices (88) and the
R propagator (83). Their contributions are

Atu
B B F F = κ2

2

∫ ∞

0
dT
∫ 2π

0

dθ

2π

(
〈(ηV1)(η�3)ξt b

+
t b−

t (QV2)(η�4)〉t

+ 〈(QV1)(η�3)ξt b
+
t b−

t (ηV2)(η�4)〉t

+ 〈(ηV1)(η�4)ξub+
u b−

u (QV2)(η�3)〉u + 〈(QV1)(η�4)ξub+
u b−

u (ηV2)(η�3)〉u

)
,

= κ2

2

∫ ∞

0
dT
∫ 2π

0

dθ

2π

(
〈V1(η�3)b

+
t b−

t (QV2)(η�4)〉t + 〈(QV1)(η�3)b
+
t b−

t V2(η�4)〉t

+ 〈V1(η�4)b
+
u b−

u (QV2)(η�3)〉u + 〈(QV1)(η�4)b
+
u b−

u V2(η�3)〉u

)
,

= κ2

2

∫
Ft∪Fu

d2z1

(
〈ξU (−1)

B (z1)V
(0)
B (0)V (−1/2)

F (1)V (−1/2)
F (∞)〉C

+ 〈U (0)
B (z1)ξV (−1)

B (0)V (−1/2)
F (1)V (−1/2)

F (∞)〉C

)
. (97)

The missing integration region D4 is again filled by the contribution of the graph consisting of the
four-string interaction (89),

A4
B B F F = κ2

2

∫
dθadθb

(
〈bCa bCb V1(z)(QV2)(η�3)(η�4)〉4 + 〈bCa bCb(QV1)V2(η�3)(η�4)〉4

)
,

= κ2

2

∫
D4

d2z1

(
〈ξU (−1)

B (z1)V
(0)
B (0)V (−1/2)

F (1)V (−1/2)
F (∞)〉C

+ 〈U (0)
B (z1)ξV (−1)

B (0)V (−1/2)
F (1)V (−1/2)

F (∞)〉C

)
. (98)
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As a result, the two-boson–two-fermion amplitude becomes the well-known form as

AB B F F = As
B B F F + Atu

B B F F + A4
B B F F

= κ2

2

∫
M(0,4)

d2z1

(
〈ξU (−1)

B (z1)V
(0)
B (0)V (−1/2)

F (1)V (−1/2)
F (∞)〉C

+ 〈U (0)
B (z1)ξV (−1)

B (0)V (−1/2)
F (1)V (−1/2)

F (∞)〉C

)
,

= κ2
∫
M(0,4)

d2z1〈ξU (−1)
B (z1)V

(0)
B (0)V (−1/2)

F (1)V (−1/2)
F (∞)〉C , (99)

where in the last equality we used a ξ manipulation [16] which is only available if the moduli z1 is
integrated over the whole complex plane, M(0,4).

6. Open questions and discussion

An important remaining problem is to prove the existence of a non-trivial solution to Eq. (53). If it
has no non-trivial solution at some order in �, we must relax the G-ansatz, for example by allowing
the string field B̄η(V ) in (23) to appear in the correction terms. Then the general form (44) has to be
modified.

A more important task is to give the complete equations of motion and the gauge transformations
in a closed form. The general form (44) determined so as to be invariant under the 	0-gauge trans-
formation (33) and consistent with the identity (28), or its alternative in the case mentioned above,
will give an important clue in this study. In particular, the � seems to play an important role since it
also appears in the constraint (75) and can be considered as a kind of non-linear extension of the R
string field η� in the open superstring field theory.

It is also important to find the action giving the complete equations of motion. In this regard, it is
worth noting that, in contrast to the equations of motion (i.e. � and �) (46), (52), and (57), not all
the possible terms allowed by the ghost number and the picture number counting appear in the action
(68) and (69). We conjecture, from the explicit form of S(4)R , (68), and S(6)R , (69), that each term in
the R action includes the same number of �s and �s. Then, the possible terms in S(2n+2)

R take the
form,

κ2n〈η�, [�, (QG�)
k1, (QG�)

l1, [�, (QG�)
k2, (QG�)

l2, [· · · , [�, (QG�)
km ,

(QG�)
lm ]G · · · ]G]G]G〉,

or that obtained by exchanging η� and one of the QG� in the middle (2 ≥ i ≥ m − 1) for m ≥ 3,
where 1 ≤ m ≤ n and the non-negative integers ki and li (1 ≤ i ≤ m) are restricted by

∑m
i=1 ki =

n − m,
∑m

i=1 li = n + 1 and km + lm 
= 0. Since these forms are much simpler than those of possible
terms in the equations of motion, given in Sect. 4, it is interesting to look for some guiding principle
to determine the action with the constraint without the help of the equations of motion.

Another remaining problem is to confirm that the Feynman rules constructed in Sect. 5.1 reproduce
general tree-level physical amplitudes since the proposed prescription has an ambiguity as already
mentioned. The possible difficulty due to this ambiguity occurs when the ω in question is connected
to the other vertex as an internal line, which first happens in the five-point amplitudes with the four
external fermions. It must be confirmed whether this five-point amplitude is independent of the ambi-
guity or not. We might have to modify the Feynman rules, which seems to be suggested from the
computation of the five-point amplitudes with external fermions in open superstring field theory
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[17]. Rules for computing loop amplitudes should also be found, which forces us to investigate the
gauge-fixing procedure [18,19] in more detail.

Note added in proof

The considerations, given in Sect. 3, on the general possible terms in the � and the � has
not been sufficient. There are also possible terms obtained by moving η�s in a term given in
Sect. 3. For example, the terms [�, η�, [�, η�]G, [�, (η�)2]G]G , [�, [�, η�]G, [�, (η�)3]G]G ,
and [�, (η�)2, [�, η�]G, [�, η�]G]G are also possible in �(7), which do not have the form of
Eq. (48) but are obtained by moving η�s in a term [�, [�, (η�)2]G, [�, (η�)2]G]G . After this
move, we can further replace η�s with an �(2n0+1), and repeat similar replacements and moves.
Thus the correct statement is “all the possible terms are obtained by repeating these two procedures”.

Acknowledgments

The author would like to thank one of the referees for his/her useful comments and bringing Ref. [17] to his
attention.

Appendix A. The next-to-next-to-leading order corrections to the gauge
transformations

In this Appendix, we give the explicit forms of the next-to-next-to-leading order corrections B̄δ(6)
and δ(4)� to the gauge transformations.

The next-to-next-to-leading order corrections to the 	1-gauge transformation are given by

B̄
δ
(6)
	1

(V ) = − κ6

6!
[�, (QG�)

2, (η�)3, η	1]G − κ6

6!
[[�, QG�]G, �, (η�)

3, η	1]G

− κ6

80
κ6[[�, η�]G, �, QG�, (η�)

2, η	1]G

− 4

6!
κ6[[�, QG�, η�]G, �, (η�)

2, η	1]G

+ 4

6!
κ6[[�, (η�)2]G, �, QG�, η�, η	1]G − κ6

5!
[[�, QG�, (η�)

2]G, �, η�, η	1]G

+ κ6

6!
[[�, (η�)3]G, �, QG�, η	1]G + 2

6!
κ6[[�, QG�, (η�)

3]G, �, η	1]G

+ 2

6!
κ6[�, [�, QG�, (η�)

3, η	1]G]G + κ6

6!
[�, QG�, [�, (η�)3, η	1]G]G

+ κ6

80
[�, η�, [�, QG�, (η�)

2, η	1]G]G + 4

6!
κ6[�, QG�, η�, [�, (η�)2, η	1]G]G

+ κ6

6!
[�, (η�)2, [�, QG�, η�, η	1]G]G + κ6

5!
[�, QG�, (η�)

2, [�, η�, η	1]G]G

− κ6

6!
[�, (η�)3, [�, QG�, η	1]G]G − 5

6!
κ6[[�, [�, η�]G]G, �, (η�)

2, η	1]G

+ κ6

72
[[�, [�, (η�)2]G]G, �, η�, η	1]G − κ6

48
[[�, η�, [�, η�]G]G, �, η�, η	1]G

− κ6

48
[[�, η�]G, [�, η�]G, �, η�, η	1]G − κ6

6!
[[�, [�, (η�)3]G]G, �, η	1]G
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− 4

6!
κ6[[�, η�, [�, (η�)2]G]G, �, η	1]G + κ6

80
[[�, (η�)2, [�, η�]G]G, �, η	1]G

+ 5

6!
κ6[[�, η�]G, [�, (η�)2]G, �, η	1]G

+ 5

6!
κ6[�, [�, η�]G, [�, (η�)2, η	1]G]G

+ κ6

80
[�, [[�, η�]G, �, (η�)

2, η	1]G]G + κ6

48
[�, η�, [�, η�]G, [�, η�, η	1]G]G

− 4

6!
κ6[�, [[�, (η�)2]G, �, η�, η	1]G]G + κ6

24
[�, η�, [[�, η�]G, �, η�, η	1]G]G

− κ6

72
[�, [�, (η�)2]G, [�, η�, η	1]G]G − κ6

6!
[�, [[�, (η�)3]G, �, η	1]G]G

− 5

6!
κ6[�, η�, [[�, (η�)2]G, �, η	1]G]G + 5

6!
κ6[�, (η�)2, [[�, η�]G, �, η	1]G]G

− κ6

6!
[�, [�, [�, (η�)3, η	1]G]G]G − 4

6!
κ6[�, [�, η�, [�, (η�)2, η	1]G]G]G

− 5

6!
κ6[�, η�, [�, [�, (η�)2, η	1]G]G]G − κ6

5!
[�, [�, (η�)2, [�, η�, η	1]G]G]G

− κ6

48
[�, η�, [�, η�, [�, η�, η	1]G]G]Ga

+ 5

6!
κ6[�, (η�)2, [�, [�, η�, η	1]G]G]G (A.1)

δ
(4)
	1
� = − κ5

5!
[�, (QG�)

2, (η�)2, η	1]G − κ5

5!
[[�, QG�]G, �, (η�)

2, η	1]G

− 7

5!
κ5[[�, η�]G, �, QG�, η�, η	1]G − 3

5!
κ5[[�, QG�, η�]G, �, η�, η	1]G

+ κ5

5!
[[�, (η�)2]G, �, QG�, η	1]G − 3

5!
κ5[[�, QG�, (η�)

2]G, �, η	1]G

+ 2

5!
κ5[�, [�, QG�, (η�)

2, η	1]G]G + κ5

5!
[�, QG�, [�, (η�)2, η	1]G]G

+ κ5

3 · 5!
[�, η�, [�, QG�, η�, η	1]G]G + 3

5!
κ5[�, QG�, η�, [�, η�, η	1]G]G

− κ5

5!
[�, (η�)2, [�, QG�, η	1]G]G − 4

5!
κ5[[�, [�, η�]G]G, �, η�, η	1]G

+ 4

5!
κ5[[�, [�, (η�)2]G]G, �, η	1]G − κ5

15
[[�, η�, [�, η�]G]G, �, η	1]G

− κ5

15
[[�, η�]G, [�, η�]G, �, η	1]G + 7

5!
κ5[�, [[�, η�]G, �, η�, η	1]G]G

+ 4

5!
κ5[�, [�, η�]G, [�, η�, η	1]G]G − κ5

5!
[�, [[�, (η�)2]G, �, η	1]G]G

+ κ5

45
[�, η�, [[�, η�]G, �, η	1]G]G − κ5

5!
[�, [�, [�, (η�)2, η	1]G]G]G

− 3

5!
κ5[�, [�, η�, [�, η�, η	1]G]G]Gr + κ5

45
[�, η�, [�, [�, η�, η	1]G]G]G .

(A.2)
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The same order corrections to the 	1/2-gauge transformations are obtained as

B̄
δ
(6)
	1/2

(V ) = 2

3 · 5!
κ5[�, QG�, (η�)

3, QG	1/2]G − κ5

5!
[[�, QG�, (η�)

3]G,	1/2]G

+ κ5

5!
[[�, [�, (η�)3]G]G,	1/2]G + 4

5!
κ5[[�, η�, [�, (η�)2]G]G,	1/2]G

− 4

5!
κ5[[�, (η�)2, [�, η�]G]G,	1/2]G + κ5

48
[[�, η�]G, �, (η�)

2, QG	1/2]G

− κ5

36
[[�, (η�)2]G, �, η�, QG	1/2]G − κ5

144
[[�, (η�)3]G, �, QG	1/2]G

− 2

3 · 5!
κ5[�, [�, (η�)3, QG	1/2]G]G − κ5

48
[�, η�, [�, (η�)2, QG	1/2]G]G

+ κ5

72
[�, (η�)2, [�, η�, QG	1/2]G]G + κ5

144
[�, (η�)3, [�, QG	1/2]G]G, (A.3)

δ
(4)
	1/2

� =κ
4

40
[�, QG�, (η�)

2, QG	1/2]G

+ κ4

15
[[�, η�]G, �, η�, QG	1/2]G − κ4

30
[[�, (η�)2]G, �, QG	1/2]G

− κ4

40
[�, [�, (η�)2, QG	1/2]G]G + 2

45
κ4[�, η�, [�, η�, QG	1/2]G]G

+ κ4

30
[�, (η�)2, [�, QG	1/2]G]G . (A.4)

Those to the 	3/2-gauge transformations are

B̄
δ
(6)
	3/2

(V ) = − 2

6!
κ5[�, QG�, (η�)

3, η	3/2]G + 2

6!
κ5[�, [�, (η�)3, η	3/2]G]G

+ κ5

80
[�, η�, [�, (η�)2, η	3/2]G]G + κ5

6!
[�, (η�)2, [�, η�, η	3/2]G]G

− κ5

6!
[�, (η�)3, [�, η	3/2]G]G − κ5

80
[[�, η�]G, �, (η�)

2, η	3/2]G

+ 4

6!
κ5[[�, (η�)2]G, �, η�, η	3/2]G + κ5

6!
[[�, (η�)3]G, �, η	3/2]G, (A.5)

δ
(4)
	3/2

� = − 2

5!
κ4[�, QG�, (η�)

2, η	3/2]G + 2

5!
κ4[�, [�, (η�)2, η	3/2]G]G

+ κ4

3 · 5!
[�, η�, [�, η�, η	3/2]G]G − κ4

5!
[�, (η�)2, [�, η	3/2]G]G

− 7

5!
κ4[[�, η�]G, �, η�, η	3/2]G + κ4

5!
[[�, (η�)2]G, �, η	3/2]G . (A.6)

Appendix B. Derivation of Eq. (44)

Let us start to consider the correction to the equations of motion

ηG = 0, (B.1)

QGη� = 0. (B.2)
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Since the left-hand sides of these equations are identically annihilated by QG , the correction terms
have to be also annihilated by QG , at least up to the equations of motion. We can classify the correc-
tion terms into two categories depending on whether they are annihilated by QG without using the
equations of motion or not. Since the terms, composed of general off-shell string fields, identically
annihilated by QG have to be QG-exact, let us write them QG� and QG(�− η�) for the NS and
the R equations of motion, respectively. Then the full equations of motion become the form

ηG + QG� + EN S = 0, (B.3a)

QG�+ ER = 0, (B.3b)

where EN S and ER are the correction terms in the second category, which have to be self-consistently
determined in such a way that QG EN S and QG ER are proportional to (the left-hand side of) these
equations of motion (B.3) themselves.

Now let us first determine ER . Under the G-ansatz, we can suppose, without loss of generality, that
the possible terms in ER take the form of those obtained by replacing one of the �s in the general
possible terms in �, given in Sect. 3, with QG�. One can deduce that QG ER must be proportional
to the R equation of motion (3b) from the form of these general terms. Then, from the (non-)linearity
of QG acting on the two (more than two) string products, the possible form of ER has to be

ER = [�, QG A]G + [[�, A]G, QG A]G + · · · , (B.4)

where A is a string field with Grassmann odd and the ghost and picture numbers (G, P) = (1, 0).
The terms represented by dots can be iteratively determined so that QG ER is proportional to the R
equation of motion (3b). We cannot, however, construct such a string field A with the desired ghost
and picture numbers, and hence ER ≡ 0. We can similarly determine the EN S , using the fact that
ER ≡ 0, as

EN S = −κ
2

[�2]G, (B.5)

where the numerical coefficient is fixed to reproduce the leading correction term (30).
In conclusion, consistency with the identity (28) requires the full equations of motion to be in the

form of (44) under the G-ansatz.

Appendix C. Derivation of Eq. (58) and the explicit forms of B̄[2]
δ

From the forms of the fundamental possible terms (47), the terms built with the one string product
in the �(2n+1) and the �(2n+2), and the terms with two string products in the �(2n+2) can be written
for n ≥ 1 as

�(2n+1) = κ2n fn[�, (QG�)
n−1, (η�)n+1]G + · · · , (C.1)

�(2n+2) = κ2n+1gn[�, (QG�)
n−1, (η�)n+2]G

+ κ2n+1
n−2∑
m=0

n+2∑
l=0

(m,l)
=(0,0)

gn,m,l [�, (QG�)
n−m−2, (η�)n−l+2,

[�, (QG�)
m, (η�)l ]G]G + · · · , (C.2)

where fn , gn , and gn,m,l are the numerical coefficients to be determined and the dots represent the
terms with greater numbers of string products. The terms built with the two string products in the
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�(2n+2) only exist for n ≥ 2. The consistency equation (53) requires, neglecting the terms with more
than two string products, that the following equations hold:

f1 = −4g1, g1 = 1

4!
,(

n − 1
m

)(
n + 3

l

)
gn + gn,m,l−1 − gn,m−1,l

+ 2(n − m + 1)gn−m fmδl,m+1 − gn−m−1gmδl,m+2 = 0,

(n ≥ 2, 0 ≤ m ≤ n − 2, 1 ≤ l ≤ n + 2),(
n + 3

l

)
gn − gn,n−2,l + 1

3!
fn−1δl,n − 1

2
gn−1δl,n+1 + fnδl,n+2 = 0,

(n ≥ 3, 1 ≤ l ≤ n + 2),(
n − 1
m + 1

)
gn − gn,m,0 = 0, (n ≥ 3, 1 ≤ m ≤ n − 2),

(
n − 1

m

)
gn + gn,m,n+2 = 0, (n ≥ 3, 1 ≤ m ≤ n − 2). (C.3)

All the coefficients fn , gn , and gn,m,l are uniquely determined by solving these equations as

fn = − 1

(2n + 1)!
, gn = 1

(2n + 2)!
,

gn,m,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l∑
k=0

(
n − 1

m + l + 1 − k

)(
n + 3

k

)
1

(2n + 2)!
, for 0 ≤ l ≤ m + 1,

−
m∑

k=0

(
n − 1

k

)(
n + 3

m + l + 1 − k

)
1

(2n + 2)!
, for m + 2 ≤ l ≤ n + 2,

(C.4)

with the help of the formula:

p∑
r=0

(
n
r

)(
m

p − r

)
=
(

n + m
p

)
for p ≤ n + m. (C.5)

The explicit forms of the terms with two string products, B̄[2]
δ (V ), in the gauge transformations of

V are given by

B̄[2]
δ	1
(V ) = −

∞∑
n=3

n−2∑
m=1

n+1∑
l=0

(
gn,m,l +

(
n − 1

m

)(
n + 2

l

)
gn

)

× κ2n+2[�, (QG�)
n−m−1, (η�)n−l+1, [�, (QG�)

m, (η�)l , η	1]G]G

+
∞∑

n=2

n+1∑
l=1

(
n + 2
l + 1

)
gnκ

2n+2[�, (QG�)
n−1, (η�)n−l+1, [�, (η�)l , η	1]G]G

−
∞∑

n=3

n+1∑
l=0

(
n + 2

l

)
gnκ

2n+2[�, (η�)n−l+1, [�, (QG�)
n−1, (η�)l , η	1]G]G
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+
∞∑

n=3

n−2∑
m=1

gn−m−1gm

× κ2n+2[�, (QG�)
n−m−1, (η�)n−m, [�, (QG�)

m, (η�)m+1, η	1]G]G

−
∞∑

n=3

n−2∑
m=1

(n − m)gn−m fm

× κ2n+2[�, (QG�)
n−m−1, (η�)n−m+1, [�, (QG�)

m, (η�)m, η	1]G]G

−
∞∑

n=1

fnκ
2n+2[�, [�, (QG�)

n−1, (η�)n+1, η	1]G]G

+
∞∑

n=1

1

2
gn−1κ

2n+2[�, η�, [�, (QG�)
n−1, (η�)n, η	1]G]G

−
∞∑

n=3

1

4!
fn−1κ

2n+2[�, (η�)2, [�, (QG�)
n−1, (η�)n−1, η	1]G]G

− 3

4!
κ4[�, [�, (η�)2, η	1]G]G − 3

4!
κ4[�, η�, [�, η�, η	1]G]G

− 4

6!
κ6[�, [�, QG�, (η�)

3, η	1]G]G − κ6

5!
[�, η�, [�, QG�, (η�)

2, η	1]G]G

+ κ6

6!
[�, (η�)2, [�, QG�, η�, η	1]G]G − κ6

6!
[�, (η�)3, [�, QG�, η	1]G]G

−
∞∑

n=3

n−2∑
m=1

n+1∑
l=0

(
gn,m,l +

(
n − 1

m

)(
n + 2

l

)
gn

)

× κ2n+2[[�, (QG�)
m, (η�)l ]G, �, (QG�)

n−m−1, (η�)n−l+2, η	1]G

+
∞∑

n=2

n+1∑
l=1

(
n + 2
l + 1

)
gnκ

2n+2[[�, (η�)l ]G, �, (QG�)
n−1, (η�)n−l+1, η	1]G

−
∞∑

n=3

n+1∑
l=0

gnκ
2n+2[[�, (QG�)

n−1]G ,(η�)
l
, �(η�)n−l+1]G, η	1]G

−
∞∑

n=2

1

2
gn−1κ

2n+2[[�, η�]G, �, (QG�)
n−1, (η�)n, η	1]G

− 3

4!
κ4[[�, η�]G, �, η�, η	1]G + κ4

4!
[[�, (η�)2]G, �, η	1]G

− κ6

6!
[[�, QG�]G, �, (η�)

3, η	1]G − 4

6!
κ6[[�, QG�, η�]G, �, (η�)

2, η	1]G

− κ6

5!
[[�, QG�, (η�)

2]G, �, η�, η	1]G + 2

6!
κ6[[�, QG�, (η�)

3]G, �, η	1]G

(C.6)
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for the 	1-gauge transformation,

B̄[2]
δ	1/2

(V ) =
∞∑

n=1

fnκ
2n+1[[�, (QG�)

n−1]G, (η�)
n+1,	1/2]G

+
∞∑

n=2

n−2∑
m=0

n+1∑
l=0

(n − l + 2)gn,m,l

× κ2n+1[[�, (QG�)
m, (η�)l ]G, �, (QG�)

n−m−2, (η�)n−l+1, QG	1/2]G

+
∞∑

n=2

n−2∑
m=0

n+2∑
l=0

lgn,m,l

× κ2n+1[�, (QG�)
n−m+2, (η�)n−l+2, [�, (QG�)

m, (η�)l−1, QG	1/2]G]G

−
∞∑

n=2

n−2∑
m=0

(n − m + 1)(m + 2)gn−m−1 fm+1

× κ2n+1[�, (QG�)
n−m+2, (η�)n−m, [�, (QG�)

m, (η�)m+1, QG	1/2]G]G (C.7)

for the 	1/2-gauge transformation, and

B̄[2]
δ	3/2

(V ) = −
∞∑

n=3

n−2∑
m=1

n+1∑
l=0

(
(n − m − 1)gn,m,l + (n − 1)

(
n − 2

m

)(
n + 2

l

)
gn

)

× κ2n+1[[�, (QG�)
m, (η�)l ]G, �, (QG�)

n−m−2, (η�)n−l+2, η	3/2]G

+
∞∑

n=2

n+1∑
l=1

(n − 1)

(
n + 2
l + 1

)
gn

× κ2n+1[[�, (η�)l ]G, �, (QG�)
n−2, (η�)n−l+1, η	3/2]G

−
∞∑

n=2

1

2
(n − 1)gn−1κ

2n+1[[�, η�]G, �, (QG�)
n−2, (η�)n, η	3/2]G

−
∞∑

n=3

n−3∑
m=0

n+2∑
l=1

(
(m + 1)gn,m,l − (n − 1)

(
n − 2

m

)(
n + 2

l

)
gn

)

× κ2n+1[�, (QG�)
n−m−2, (η�)n−l+2, [�, (QG�)

m, (η�)l−1, η	3/2]G]G

+
∞∑

n=3

n−3∑
m=0

(n − m + 1)(m + 1)gn−m−1 fm+1

× κ2n+1[�, (QG�)
n−m−2, (η�)n−m, [�, (QG�)

m, (η�)m+1, η	3/2]G]G

−
∞∑

n=2

n+2∑
l=1

(n − 1)

(
n + 2
l − 1

)
gn

× κ2n+1[�, (η�)n−l+2, [�, (QG�)
n−2, (η�)l−1, η	3/2]G]G

−
∞∑

n=2

(n − 1) fnκ
2n+1[�, [�, (QG�)

n−2, (η�)n+1, η	3/2]G]G
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+
∞∑

n=2

1

2
(n − 1)gn−1κ

2n+1[�, η�, [�, (QG�)
n−2, (η�)n, η	3/2]G]G

−
∞∑

n=2

1

4!
(n − 1) fn−1κ

2n+1[�, (η�)2, [�, (QG�)
n−2, (η�)n−1, η	3/2]G]G (C.8)

for the 	3/2-gauge transformation.
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