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Abstract 

Tetrahydroquinoline (THQ)-type compounds are a class of potential larvicides 

against mosquitoes. The structure-activity relationships (SAR) of these compounds were 

previously investigated (Sumith et al., Bioorg. Med. Chem. Lett., 2003, 13, 1943-1946), 

and one the of cis-forms (with respect to the configrations of 2-methyl and 4-anilino 

substitutions on the THQ basic structure) was stereoselectively synthesized. However, the 

absolute configrations of C2 and C4 were not determined. In this study, four THQ-type 

compounds with cis configrations were synthesized, and two were submitted for X-ray 

crystal structure analysis. This analysis demonstrated that two enantiomers are packed into 

the crystal form. We synthesized the cis-form of the fluorinated THQ compound, according 

to the published method, and the enantiomers were separated via chiral HPLC. The 

absolute configurations of the enantiomers were determined by X-ray crystallography. Each 

of the enantiomers was tested for activity against mosquito larvae in vivo and competetive 

binding to the ecdysone receptor in vitro. Compared to the (2S, 4R) enantiomer, the (2R, 

4S) enantiomer showed 55 times higher activity in the mosquito larvicidal assay, and 36 

times higher activity in the competetive receptor binding assay.   
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Two major classes of peripheral insect hormones, juvenile hormones (JHs) and 

molting hormones regulate insect growth. The principal molting hormone of insects is 

20-hydroxyecdysone (20E).1 20E and its agonist bind to ecdysone receptors (EcRs) in 

collaboration with the heterodimeric partner, ultraspiracle (USP), and transactivate 

molting-related genes.2 In a few arthropods, other steroid compounds such as ponasterone 

A (PonA), makisterone A, and ecdysone act as molting hormones.3 To date, the primary 

sequences of EcRs and USPs have been identified in various insects.3, 4 Three-dimensional 

structures of the ligand binding domains of EcRs with ponasterone A as the ligand 

molecule were solved by X-ray crystal analysis in three insects: Heliothis virescens,5 

Bemicia tabacii,6 and Tolibolium castaneum.7 The ligand-binding characteristics of 20E, 

which are similar to that of PonA, were also solved in H. virescens.8 The binding sites of 

non-steroidal ecdysone agonists for diacylhydrazine (DAH; BYI06830)5 and two imidazole 

type compounds, BYI08346 and PDB 3IXP,9 were also solved by X-ray analysis. However, 

these structures differ from those of PonA and 20E. 

Compounds that regulate insect molting and metamorphosis are known as insect 

growth regulators (IGRs) or more recently as insect growth disruptors (IGDs), and some of 

these compounds are used as insecticides in the agricultural field.10 IGDs can be classified 

into three major categories, juvenile hormone agonists, chitin synthesis inhibitors and 

molting hormone agonists. Among molting hormone agonists, five diacylhydrazine 

(DAH)-type compounds (tebufenozide, methoxyfenozide, chlomafenozide, fufenozide, and 

halofenozide) are used currently. Most of DAH-type compounds are selectively toxic to 

Lepidoptera, except for halofenozide, which is registered to control both Lepidoptera and 



Coleoptera. However, the binding affinity of halofenozide to coleopteran receptors is not 

stronger than that of other lepidopteran-specific DAHs.11  

 

 

Fig. 1. Structures of ecdysone agonists 

  

 

The high degree of specificity of DAHs against Lepidoptera triggered a search for 

new ecdysone agonists, in both random and rational manners. Although novel non-steroidal 

ecdysone agonists have been reported, none of these has been used commercially.12 Among 

new ecdysone agonists, tetrahydroquinoline (THQ)-type compounds are reported to be 

dipteran-specific,13 particularly to the mosquito EcR.14 These compounds have a unique 

specificity toward mosquitos, which may offer a more selective and environmentally 

friendly pest-management option. Therefore, THQs are promising leads to develop into 

larvicides for mosquito control. A previous structure-activity relationship (SAR) study of 

THQs focused on the optimization of the substituents X and Y, and showed that a 

fluorinated THQ (X=F, Y=4-Cl: THQ in Fig. 1) had the highest ecdysone agonistic activity 

for the Aedes aegypti EcR among the 35 compounds tested.13 We initially synthesized a 
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few THQ analogs according to the published method,13, 15 and compared the binding and 

insecticidal activity of the analogs with the reported activities as shown in Table 1. We also 

reported that compounds lacking the benzene ring of the quinoline structure and the aniline 

moiety, as well as the trans isomer of the 2,4-positions of quinoline moiety were inactive.15  

According to Smith and co-workers13, one of two possible cis-stereoisomers (2R, 

4S) was obtained as a final product by the Doebner-von Miller reaction. However, 

convincing data regarding the stereochemistry of this compound was not reported. In the 

present study, we observed that Smith’s synthesis method did not yield a stereochemically 

pure intermediate. Instead, it yields a racemic mixture via Doebner-von Miller reaction. We 

therefore hypothesized that the THQ reaction mixture prepared by this method also 

contained the (2S, 4R) cis enantiomer. In our preliminary study, we analyzed the X-ray 

crystal structure to determine the absolute configuration of the cis isomers of compounds 1 

(CCDC 984528: Supplement Table 1S) and 2 (CCDC 984529: Supplement Table 1S), in 

which the two enantiomers are packed, respectively. Smith and co-workers reported the 

stereochemistry of THQs based on H-NMR analysis, which is difficult13, 16 without using 

special chiral analysis techniques such as chiral NMR solvent.  

We then asked which enantiomer was biologically active. To determine this, the cis 

product of compound 4 (Y=4-Br) containing two enantiomers [4a (2S, 4R) and 4b (2R, 4S)] 

was prepared according to the reported procedure21, and analyzed by chiral HPLC.22 A 

baseline separation of the two enantiomers was achieved with an amylose-based chiral 

HPLC column,17 packed with a silica gel bound to tris (3,5-dimethylphenylcarbamate) 

derivatives of amylose and eluted with hexane/ethanol (90/10, v/v). The enantiomer excess 



was determined by chiral HPLC and found to be >99%. Each fraction was recrystallized 

from hexane-ethyl acetate and the absolute configurations were determined by X-ray 

crystallography as shown in Fig. 2 with their chemical structures.23 

 

Fig. 2. X-ray structures of enantiomer 4a and 4b. 

 

Crystal data and the data collection parameters for compounds 4a (CCDC 984530) and 4b 

(CCDC 984531) are listed in Table 1.  

 

 



 
Table 1. X-ray crystallographic data for enantiomers 4a and 4b 
 

 Retension time (HPLC)  
 4.3 min 5.8 min 
 4a 4b 

Empirical formula C23H19BrF2N2O C23H19BrF2N2O 
Formula weight 457.32 457.32 
Crystal system orthorhombic orthorhombic 
Space group  P212121 (#19)  P212121 (#19) 

a (Å) 7.726 (1) 7.7240 (2) 
b (Å) 11.425 (1) 11.423 (3) 
c (Å) 23.284 (2) 23.288 (5) 

V (Å3) 2055.4 (3) 2054.8 (8) 
Z, Dcalc (g/cm3) 4, 1.478 4, 1.478 

F (000) 928.00 928.00 
µ (Cu Kα) (mm-1) 3.024 3.025 

T (K) 243 243 
no. obsd  

(I > 2.00 σ (I))  
3506 3338 

no. parameters 265 265 
R1, wR2 0.040, 0.156 0.043, 0.145 

Flack parameter 0.01(2) 0.01(2) 
GOF 1.300 1.031 

 

The structure-activity relationships for compounds 1–3 were consistent with the 

previously reported structure-activity relationships (SAR).13 The newly synthesized 

compound 4 is three times more toxic against mosquitoes than compound 3, as shown in 

Table 2. The cis-(2R, 4S) enantiomer (4b) showed 55 times higher larvicidal activity 

against mosquito Culex pipiens pallens than the cis-(2S, 4R) enantiomer (4a).24 The 

concentration-response relationships for the larvicidal activity of these enantiomers are 

shown in Fig. 3. Consistently, the active compound 4b had approximately two times higher 

larvicidal activity than the racemic compound 4.  



 

 

Fig. 3. Concentration-response relationships for 4a (○) and 4b (●) against the 
survival of mosquito larvae. 
 

The EcR-THQ interaction was then investigated to understand the specific larvicidal 

activity of these enantiomers in vitro. We performed a competitive binding assay using 

[3H]PonA as a radioactive ligand for Aedes albopictus (AeAl) cell (NIAS-AeAl-2) 

binding.18,19,25 The results revealed that 4b has a binding affinity for EcR that is 36 times 

more potent than 4a (Table 2). These data indicate that differences in binding affinity 

toward EcR account for the observed larvicidal activity. 

 
Table 2. In vivo and in vitro biological activities of ecdysone agonistsa  
     Compounds 
 No.         (THQ)b 

Larvicidal activity Binding activity 
pLC50 (M) pIC50 (M) 

 X      Y   
1 CH3   4-CH3 5.33 n.d.c 
2 CH3   4-Cl 5.38 5.93 
3 F      4-Cl 6.52 n.d. 
4 F     4-Br 6.92d 6.65 ± 0.13 (n=3) 
4a  F     4-Br 5.65 ± 0.42 (n=2) 5.70 ± 0.16 (n=2) 
4b  F    4-Br 7.40 ± 0.04 (n=2) 7.26 ± 0.04 (n=2) 

Ponasterone A n.d. 9.01 ± 0.01 (n=2)  
Tebufenozide n.d. 7.12 ± 0.03 (n=2) 



a Mean values with standard deviation. Number of experiments. 
b Basic structure is shown in Fig. 1. 
c n.d. not determined. 
d The trans-type compound (2S,4S + 2S,4S) is inactive (<4.52). 
 
 

Figure 4 shows a summary of the SARs of THQs. The methyl group in position 2 is 

required to be in the 2R conformation, and the methyl substituent can be replaced with 

hydrogen. Conversely, the 2S methyl substituent leads to lower activity. This implies that 

the 2S methyl group has a steric collision with the receptor, whereas the 2R methyl group 

and the hydrogen do not. The aniline moiety in position 4 is essential for the larvicidal 

activity as reported previously15 and the 4S chiral conformation is also critical for activity. 

The phenyl group on tetrahydroquinoline ring is also required for activity, but the 

substituent R3 is not essential.13 The larvicidal potency was improved approximately 3 fold 

by changing R4 from 4-chloro to 4-bromo, which can be further optimized in future studies. 

This SAR summary provides valuable information for the molecular design of novel 

ecdysone agonists. 

 

Fig. 4. Structural requirements of THQs for ecdysone agonist activity 
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Table S1. X-ray crystallographic data for enantiomers 1 (cis) and 2 (cis)  

 1 (cis) 2 (cis) 

Empirical formula C26H28N2O C25H25N2OCl 
Formula weight 384.52 404.94 
Crystal system Triclinic Triclinic 
Space group 

P1
-
 (#2) P1

-­‐
 (#2) 

a (Å) 9.614 (2) 9.602 (2) 
b (Å) 14.574 (3) 14.447 (3) 
c (Å) 16.551 (3) 16.622 (3) 
α (deg) 93.57 (1) 93.47 (1) 
β (deg) 93.72 (1) 95.23 (1) 
γ (deg) 107.20 (1) 108.37 (1) 
V (Å3) 2202.7 (7) 2169.5 (7) 

Z, Dcalc (g/cm3) 4, 1.159 4, 1.240 
F (000) 824.00 856.00 

µ (Cu Kα) (mm-1) 0.546 1.688 
T (K) 253 253 

No. obsd 
(I > 2.00 σ (I)) 

6216 9700 

No. parameters 639 588 
R1, wR2 0.039, 0.104 0.048, 0.123 

GOF 0.862 1.005 
 

  



 

 
Table S2. X-ray crystallographic data for enantiomers 9a and 9b 

 4.3 min 5.8 min 
 9a 9b 

Empirical formula C23H19BrF2N2O C23H19BrF2N2O 
Formula weight 457.32 457.32 
Crystal system orthorhombic orthorhombic 
Space group  P212121 (#19)  P212121 (#19) 

a (Å) 7.726 (1) 7.7240 (2) 
b (Å) 11.425 (1) 11.423 (3) 
c (Å) 23.284 (2) 23.288 (5) 

V (Å3) 2055.4 (3) 2054.8 (8) 
Z, Dcalc (g/cm3) 4, 1.478 4, 1.478 

F (000) 928.00 928.00 
µ (Cu Kα) (mm-1) 3.024 3.025 

T (K) 243 243 
no. obsd  

(I > 2.00 σ (I))  
3506 3338 

no. parameters 265 265 
R1, wR2 0.040, 0.156 0.043, 0.145 

Flack parameter 0.01(2) 0.01(2) 
GOF 1.300 1.031 
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