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Quark tensor charge and electric dipole moment within the Schwinger-Dyson formalism
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We calculate the tensor charge of the quark in the QCD-like theory in the Landau gauge using the
Schwinger-Dyson formalism. It is found that the dressed tensor charge of the quark is significantly
suppressed against the bare quark contribution, and the result agrees qualitatively with the analyses in
the collinear factorization approach and lattice QCD. We also analyze the quark confinement effect with the
phenomenological strong coupling given by Richardson and find that this contribution is small. We show
that the suppression of the quark tensor charge is due to the superposition of the spin flip of the quark arising
from the successive emission of gluons that dress the tensor vertex. We also consider the relation between
the quark and the nucleon electric dipole moments by combining with the simple constituent quark model.
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L. INTRODUCTION

The analysis of the nucleon parton structure plays an
essential role in the fundamental study of the quantum chro-
modynamics. The quark distribution of the nucleon in the
leading twist is given by the momentum distribution f, the
spin distribution g;, and the transversity distribution /;
functions of the quark and has been studied in high-energy
experiments. The transversity distribution gives the spin
distribution of the quark carrying the momentum fraction x
of the total momentum of the transversely polarized nucleon.
The total transversity of the quarks inside the nucleon is given
by the quark tensor charge, defined by the relation

5g = [0 Ll () — iy (0] (1)

where A, (x) and &, (x) are the transversity distribution of the
quark and antiquark in the nucleon. The quark transversity
distribution has been the focus of many theoretical investi-
gations [1-5]. In the nonrelativistic limit, the tensor charge is
the spin of the particle. In the nonrelativistic constituent
quark model, which considers three massive quarks in the
nucleon, the tensor charge of the quark in the proton is thus
given by Su = % (u quark) and 6d = — 1 (d quark) [6].
The transverse polarization of the quark in nucleons can
be extracted from experimental observables involving the
simultaneous polarization of the beam and the target, such
as the semi-inclusive deep inelastic electron-nucleon scat-
tering or the polarized Drell-Yang process. The single-spin
asymmetries for semi-inclusive deep-inelastic scattering
with pion production can probe the quark transversity
and were measured experimentally by the HERMES [7]
and COMPASS [8] collaborations. Recently, the first ex-
traction of the quark transversity distribution from these
experimental data using the collinear factorization ap-
proach became available [4], and the total tensor charge
(at the renormalization point 4 = 1 GeV) was given by
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Su = 0.57 +0.21, 8d = —0.18+0.33. (2

Despite the large theoretical uncertainty, this result shows a
suppression compared with the constituent quark model
prediction.

Also, the lattice QCD studies of the quark tensor charge
have been done so far [5], and they also predict values
suppressed against the constituent quark model prediction.
The typical result with the lattice QCD simulation (S. Aoki
et al. in Ref. [5]) is

Su = 0.839 = 0.060,
8d = —0.231 = 0.055, 3)
8s = —0.046 = 0.034,

where the renormalization point was fixed to w =
1.4 GeV. This suppression is consistent with the tensor
charge extracted from the experimental data [Eq. (2)]. It is
now of importance to clarify the source of this suppression.

The importance of the investigation of the tensor charge
is not restricted in the study of the nucleon structure
function. This quantity is actually useful in the analysis
of the neutron electric dipole moment (EDM). The neutron
EDM is an observable sensitive to the CP violation of the
hadronic system and is thus an excellent probe of new
physics beyond the standard model [9]. The current ex-
perimental data of the neutron EDM are given by d,, <
2.9 X 107 2°¢ cm [10], which can provide many con-
straints on the CP violation of the new physics such as
the supersymmetric models [9,11]. In many candidates of
theories beyond the standard model, CP-violating interac-
tions give a large contribution to the electric dipole mo-
ment of quarks. In such situations, we need to know the
dependence of the quark EDM on the neutron EDM. Many
works with this motivation exist in the literature [12—15].
The EDM of the neutron d,, is defined by the limit of zero
momentum transfer of the CP-odd nucleon form factor.
The dependence of the neutron EDM on the quark EDM d,,
is related to the tensor charge by [16]

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.88.074036

YAMANAKA et al.

d,=>d,8q. 4)
q

This means that the sensitivity of the neutron EDM on the
new physics beyond the standard model depends on the
tensor charge of the quarks, so whether the quark tensor
charge is small or not thus becomes one of the main points
of interest.

In watching the suppression of the quark tensor charge
extracted from the experimental data or from the lattice
QCD simulations against the constituent quark model
prediction, we note two sources of suppression can naively
be inferred. The first source is the dressing of the bare
quark tensor charge by gluons, and the second possibility is
the spin-dependent bound state effect. The first case was
not discussed previously and should be treated nonpertur-
batively to extract the physics.

As a powerful nonperturbative way to investigate the
dynamics of the quantum field theory and, in particular, the
low energy QCD, we have the Schwinger—Dyson (SD)
formalism, and many studies such as the dynamical quark
mass, the meson masses, etc., have been done so far
[17-25]. The effect in question, the vertex gluon dressing,
is also well within the applicability of the SD formalism. In
this paper, we will therefore try to clarify the physics
involved in the vertex dressing by gluons and analyze the
source of the suppression of the quark tensor charge.

This paper is organized as follows. In Sec. II, we give the
formulation of the SD formalism, the renormalization im-
proved running couplings used in this work, and a brief
explanation of the derivation of the dynamical quark mass.
In Sec. III, we formulate the SD equation for the quark
tensor charge and give the result of the calculation. In
Sec. IV, we compare our result with the collinear factori-
zation approach and lattice QCD results, analyze the effect
of the gluon dressing to the tensor vertex, and give the
dependence of the neutron EDM on the quark EDM. The
renormalization of the quark EDM will also be discussed
there. The final section is devoted to the summary.

I1. BASIC FORMALISM

In this section, we present the detail of the QCD-like
theory and the quark propagator used in this paper. We
assume the rainbow-ladder approximation in which the
nonperturbative effect of the gluon is included by improv-
ing the momentum dependence of the quark-gluon vertex
[26] by the one-loop level renormalization group. This
gives the replacement

g% 2\ A M v 2\ A M v

EZg(q )y X T7(q, k) = a(g®)y* X", (5)
where Z,(¢?) is the gluon dressing function, and I'”(g, k) is
the dressed quark-gluon vertex. In this work, we use the
Landau gauge, which minimizes the unphysical momentum
fluctuation of the gluons in the Euclidean space-time.
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FIG. 1 (color online). The running strong couplings of QCD-
like theory. We use the running couplings with the simple
infrared regularization, the smooth infrared regularization, and
the Richardson ansatz.

To compare and discuss the result obtained, we use three
different renormalization group improved strong couplings:
the QCD running coupling (one-loop level, Ny = 3) with IR
regularization a la Higashijima [17], the smooth IR regulari-
zation [19], and the running coupling with the Landau pole
shifted to zero momentum (Richardson ansatz) [27]. We use
the QCD scale parameter Agcp = 900 MeV for the analysis
without approximation, and Agcp = 500 MeV when the
Higashijima-Miransky approximation is used. (The ordinary
QCD scale parameter is around Agcp = 200-300 MeV. In
this paper, the large scale parameter is taken to reproduce the
chiral quantities.)

The first running strong coupling with the simple IR
regularization is defined by [17]

s 111\/2{,.4172Nf (P <pw)
S — l (p=pr) ©

LIN.=2N; In(p*/Adcp)

where N, = 3, and prg satisfies In (pfp/Adcp) = 5. As it
can be seen in Fig. 1, this running coupling has one cusp in
the infrared region. This IR regularization was introduced
to avoid the divergent Landau pole at p = Agcp.

The second running strong coupling with smooth IR
regularization is defined by [19]

¢ (p=po)
O V0 )
a,(p?) _3GW) | € 2 12 iy P/ 73 (po<p <pIR)’
1677'30 AéCD
1
In(p?/Adcp) (P = pIR)

(7
where the lowest coefficient of the B function of the
renormalization group is given by

5 = 11N, — 2N;
0 4872
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Here, we have set In (pfy /Adcp) = 3 and In (p§/Aep) =
—2. For this running coupling, the discontinuity of the
derivative of the running coupling is removed, and we
have no cusps in the IR region.

The running strong coupling with the Landau pole shifted
to the zero momentum point p = 0 (the Richardson ansatz)
is given by

127 1
1IN, = 2N, In(1 + p2/Adep)’

ay(p?) = ®)

This running coupling generates a linear confining potential
V(r) = or — 4 in a phenomenological manner, where the

' 3)A2
Cz;; ﬁSCD and the Coulomb

Itis thus possible to analyze

string tension is given by o =
G(3)

8By *
the effect of the quark confinement within this framework.

The string tension in this model is o = 1.2 GeV/fm. This
value is slightly larger than the physical string tension
Tpnys = 0.89 GeV/fm. In treating this running coupling
numerically, we shift the pole by a very small number to
avoid the divergence at p = 0 MeV. The shapes of the three
running couplings are plotted in Fig. 1.

We now solve the quark propagator SD equation in the
Landau gauge. In this paper, we consider the SD equation
with the effect of the dressed gluon propagator and dressed
quark-gluon vertex included in the RG improved strong
coupling [see Eq. (5)]. The SD equation is a system of two
integral equations,

coefficientis givenby A =

20, SN [ ellp = 1P) Z050)
27y " (p k7 -y
9)
1 _ CZ(NC) as[(p - k)z]
sz) =1 1 8773[)2 d4kk2—722(k2)2(k2)
3 p2 +k2 3 (pZ _k2)2
- ) (4

where Z(k?) and 2(k?) are the wave function renormaliza-
tion and the self-energy of the quark, respectively. In this
paper, we take the chiral limit m, = 0. The quark wave
function renormalization and the quark self-energy are plot-
ted in Figs. 2 and 3, respectively. We see that the self-energy
is generated dynamically even in the chiral limit.

Taking the Higashijima—Miransky approximation

a,[(pg — kp)*] = a[max (pg, k)] (11)
with pg and kg the Euclidean momenta, we have
Z(pp) =1, (12)
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FIG. 2 (color online). The quark self-energy 3(p%) solved
with the Schwinger—Dyson equation.

3C2(NL) A k%‘dkEz(k%) ax[max (P%;y k%f)]

2) =
() 2@ Jo kL+232(k%) max(pi, k%)

(13)

The resulting quark self-energy is plotted in Fig. 4. We
should note that the quark propagator SD equation is not
calculable with the Richardson ansatz, due to the singularity
at p — k = 0 (this forms a singular line in the phase space of
p* and k*). In the Higashijima—Miransky approximation,
however, this singularity is avoided by max (p%, k%), the
only remaining singularity is the point p* = k* = 0.
Numerically, this remaining singularity was avoided by
shifting the pole by a small number, and we have verified
that this shift does not change the resulting quark self-energy
3(p?). We can say that the Higashijima—Miransky approxi-
mation acts as a regularization in the Richardson anzatz.

The quark self-energy can be related to the chiral
condensate with

N, [A Z(k%) 2 (k?
G =15 [ By 2K gy

2 212
2 ks + 22(k%)
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FIG. 3 (color online). The quark wave function renormaliza-
tion Z(p?%) solved with the Schwinger-Dyson equation.
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FIG. 4 (color online). The quark self-energy 2 (pjy) solved
with the Schwinger-Dyson equation with the Higashijima—
Miransky approximation.

The parameter A is the ultraviolet cutoff (not to be con-
fused with Agcp). In our numerical calculation, the cutoff
was taken as A = 20 GeV. To obtain the chiral condensate
renormalized at u = 2 GeV, we use the formula

(Az) lCi(N(
@a = (% (Mz))‘é (g, (15)
where 31?(]2) =2 The above renormalized chiral conden-

sate is stable in the variation of the cutoff scale A.
[Numerically, we have verified that the variation is small,
of O(1073). See Tables III and IV.] This proves that the
high-energy behavior of the quark propagator is well

TABLE I. The chiral condensate and the pion decay constant
obtained from the self-energy calculated in the Schwinger—
Dyson formalism. The unit is in MeV [in (MeV)? for the chiral
condensate]. The chiral condensate was calculated with Eq. (15)
at the renormalization point u = 2 GeV. The pion decay con-
stant was obtained from the Pagels—Stokar approximation (16)
with the cutoff A = 20 GeV.

IR behavior Aqep aq), [
Simple 900 —(248)3 70
Smooth 900 —(221)3 60

TABLE II. The chiral condensate and the pion decay constant
obtained from the self-energy calculated in the Schwinger—
Dyson formalism with the Higashijima—Miransky approxima-
tion. We have used the same parameters as Table 1.

IR behavior Agep @), fa
Simple 500 —(242)3 90
Smooth 500 —(243)3 96
Richardson 500 —(193)3 66
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described in the SD formalism with the Higashijima—
Miransky approximation.

From the quark self-energy, it is also possible to give
the pion decay constant f, with the Pagels—Stokar
approximation [28]:

N (A, S(R)ZR)
) k?d"Em
[E(k) T s )] (16)

The pion decay constant is an observable, so its renormal-
ization is not required. The chiral condensate and the pion
decay constant obtained in this framework are shown in
Table I. We have also calculated the same physical quan-
tities in the Higashijima—Miransky approximation, which
are given in Table II.

III. SCHWINGER-DYSON EQUATION FOR THE
QUARK TENSOR CHARGE

Let us consider the SD equation of the quark tensor
charge (or the quark EDM) depicted diagrammatically in
Fig. 5. The SD equation for the quark tensor charge is
given by

17(p) = ok +iCy(N,)

4
X f%“s[(p — kPIDyu(p — BZ(K)y*

K+ E(kz) uviy KT 2E)
e Wy D
where D ,,(q) = ;—2' (gpr — q”q;“) is the gluon propagator in

the Landau gauge (the color index was factorized), and
347 is the dynamical tensor charge in the zero limit of
the momentum transfer. As for the quark propagator SD
equation, we consider the rainbow-ladder approximation
[see Eq. (5)], in which the effect of the dressed gluon
propagator and the dressed quark-gluon vertex included
in the renormalization group (RG) improved strong cou-
pling given in the previous section.

In Eq. (17), there are three relevant Lorentz structures:
ohr, {p. o= pot + o). and  ahop,pt
a”? p,p*. The dynamical tensor charge is thus written as

31 (p) = Si(pP)at” + Sy (p* P, o+'}
+ 85(p*)(a** p,p” — 0"’ p,p*). (18)

FIG. 5. The Schwinger—Dyson equation for the quark tensor
charge expressed diagrammatically.
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The SD equation (17) can thus be rewritten in a set of the dressed and bare quarks (it will be called
of integral equations with the S,(p?), S,(p?), and  simply “quark tensor charge” from now on). After
S5(p?) functions. The zero momentum point of the S, some algebra, we find the following set of integral
function indicates the ratio between the tensor charges  equations:

J

2y — CZ(NC) A 3 ) ax[(pE kE)] 72 (k2
Sip) =1+ =25 ﬁ K dkg [0 sin200 0V S )

S2(k) (2 2 2 2

2 2 _g2y2 E(pz —2k%) +2p2 — k

x 18,2) (2 (kp) 1)(1 P kE)4> T B EE
PE (pe — kp)

(pe — kE)2

2 (P2 — K2)? p%—k%-ﬁ-k—%
+ 28, (k%)X (k%) —(1 +—§)(1 + £ E )+z i

PE (PE - kE)4 (PE - kE)2
s + 22w ("2 )(1 + (P ke "92) 2 PR (19)
2 PITEE P (pe—kp)*)  “(pe— k) | [

C,(N,) a[(pg — kp)*] 5 pptkp 1 (pp — k)
S,(p%) = 37 f k3dkE[0 s1n2¢9dt9—[k2 S 72 (k%) - |: ~3 r —%0)? +§ (pp = kE)4]

X {2 (kp)S1(kp) — [kg — 22 (kp)1S2(kp)}, (20)

_GW,) a,[(pg — kg)’] Pt~ 2ki  (pg — k)
S3 P%) 37 5 2 f k3dkE'[0 SlnzedemZZ(k ) [ ( — kE)2 + (pE — kE)4}

x[ E;(" ) s,02) - 4302 )"%szac 2) — [+ 3202)] Esg(k >} 1)

E

For the derivation of the above integral equations, see the Appendix. The result of the SD equation for the quark tensor
charge is plotted in Fig. 6.

Applying the Higashijima—Miransky approximation (11) to the quark tensor charge SD equations (19)—(21), we obtain

CQ(NC) A as[maX (P%, k%j)]
Si(pp) =1+ > . kEdkEm( - k%){S (k%) + 23(k2)S, (k% )_—[kz + 32(kz) 185 (kg )}
Co(N,) [re a,[max (pg, k%)] ki {22(k )
+ c k 2 —9 2) — [k + 32 }
. (22)
Cz(N) a[max (pg, kE)]
CZ(N) [max (pE, k2)] kE
kdks— k2)S (k%) + [k% — 32(k2)]S, (k2 23
C>(N,) (re a [max (p%, k)] 32(k2)
S3(p2) ~ kpdkp X PE KB 2 )—{2 S1(2) — 43(2)8,(2) — [k + S2(2)15: (K2 )}
3\PE EYNE [k%+22(k%)]2 PE p% k% 2 3
(24)
|
Here, we note that the quark wave function renormaliza-  the quark. The result of the SD equation for the quark
tion factor was set to 1 since we have solved the SD  tensor charge in the Higashijima—Miransky approximation
equation of the quark propagator with the Higashijima—  with three different running couplings is plotted in

Miransky approximation (11) to obtain the self-energy of  Fig. 6.
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FIG. 6 (color online).

N
—
0.9 / b
«
R
s J
Simple (Aqcp=500MeV) ——
Smooth (Aqcp=500MeV) |
R|chardson (AQCD_SOOMeV) e
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
p(MeV)
0 ‘ /r ;
[a)
o
3 J
<
o
o J
N
(%5}
Simple (Aqcp=500MeV) ——
0.3 Smooth (Aqcp=500MeV) 1
Richardson (Aqcp=500MeV) -----
-0.35 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
p(MeV)
0.045 T T T T
Simple (Aqcp=500MeV) ——
0.04r Smooth (Aqcp=500MeV) 1
Richardson (A, =500MeV) --mmm
0.035| (Aaco ) |
0.03 E
o«
o 0025 .
(nt")
o 0.02 |
a
0.015 R
0.01 l
0.005 :

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
p(MeV)

The S, S, and S3, functions (not renormalized) solved with the Schwinger—Dyson equation for the quark

tensor charge with the integral cutoff A = 20 GeV. The left column shows the results calculated without approximation and the right
column with the Higashijima—Miransky approximation. The S5 function was resized with p.

IV. ANALYSIS AND DISCUSSION

The solution of the SD equation for the quark tensor
charge (Fig. 6) shows a similar shape among different RG
improved strong couplings (simple IR regularization,
smooth IR regularization, and the Richardson ansatz),
which suggests the good description of the quark tensor
charge within this framework. The quark tensor charge
calculated in the Higashijima—Miransky approximation
becomes larger than the result without it. Since the results

are similar in the simple, smooth, and Richardson
cases, the confinement effect, which is phenomenologi-
cally introduced in the Richardson ansatz, is expected
to be small at least within the Higashijima—Miransky
approximation.

We must note, however, that the S, S,, and S5 functions
obtained after solving Egs. (19)—(21) are dependent on the
cutoff A, and we need to renormalize the tensor charge at
some fixed scale. To renormalize the tensor charge S, (0) at
some renormalization point u, we use the formula [29]
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)

_Co(Ne)

10§, (0)4, (25)

&mu=(

where §,(0),, is the renormalized tensor charge and S, (0) 5
is the tensor charge given as the solution of the cutoff (A)

dependent SD equation. The exponent is — 1(’;2;12\’ Bl = — 24—7

for N, =3 and N, = 3. This renormalization of §,(0)
obtained from the SD equation [Egs. (19)—(21)] shows a
very good stability against the change of the cutoff A (see
Tables IIT and IV). This formula is also consistent with the
analysis of the running of the Wilson coefficient of the
quark EDM [14] (note that, in that analysis, the operator
involves the current quark mass, which shifts the exponent
by % for Ny = 3). From the above formula, we obtain the

renormalized tensor charge at © = 2 GeV:

§1(0),,=> gev = 0.588  (Simple IR regularization),
51(0) =2 Gev = 0.575  (Smooth IR regularization).
(26)

With the Higashijima—Miransky approximation, we obtain

$1(0),,—» gev = 0.624  (simple IR regularization),
81(0),,=2 gev = 0.653  (simple IR regularization),  (27)
51(0) 4= gev = 0.588 (Richardson ansatz).

We see that the renormalized S, (0) is smaller than 1. This
fact shows that the tensor charge of the dressed quark is
suppressed compared with the bare quark contribution by
the gluon dressing of the vertex.

TABLE III. The stability of the tensor charge in the change of
the integral cutoff A. The tensor charge was calculated with the
simple IR regularization. The renormalization point was fixed to
= 2 GeV. The renormalization of the chiral condensate is also
shown to emphasize the stability.

A 4 GeV 20 GeV 100 GeV 1 TeV
5,(0), 0.542 0.480 0.450 0.424
5,00),, 0.594 0.588 0.586 0.584
(G —(296)° —(306)° —(316)° —(328)°
(Gq),, —(2700>  —(250)° —(243) —(238)°

TABLE IV. The tensor charge in the change of the integral
cutoff A obtained with the Higashijima—Miransky approxima-
tion. The setup is the same as for Table III.

A 4 GeV 20GeV 100 GeV 1 Tev
81(0), 0.589 0.540 0.511 0.484
5,(0), 0.626 0.624 0.623 0.623
(Gq)a —(256)° —(281)° —(297 —(314)°
@), —241  —(243)} —(244)3 —(244)}
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If we associate the dressed dynamical quark with the
constituent quark, our result can be combined with the
nonrelativistic constituent quark model prediction of
the quark tensor charge in the nucleon,

4 1
5u:§Sl(O)#z08, Sd: —§S1(O)/L=—02

(28)

In the above derivation, it is, of course, assumed that the
nucleon is composed of three constituent valence quarks
with negligible spin dependent many-body interactions.
The suppression of the tensor charge agrees qualitatively
with the results obtained from the extraction in the col-
linear factorization approach [see Eq. (2)] and from the
lattice QCD calculations [see Eq. (3)]. Additional suppres-
sion of the tensor charge may occur due to the many-body
effect, but this topic is beyond the scope of this paper. It
should be noted that the sea quark contribution is small
since the tensor charge of the antiquarks has opposite sign.
This fact is in contrast to the quark-spin distribution g (x),
which receives contribution from both quarks and anti-
quarks with the same sign. The smallness of the sea quark
effect to the tensor charge is also consistent with the lattice
QCD results. We should also add that the dressed quark
tensor charge has a small dependence on the scale parame-
ter Agcp. We show the coefficient S, (0) for several values
of Agcp in Table V. This stability is due to the fact that the
S,(0) is a dimensionless number.

Let us derive the contribution of the quark EDM to the
nucleon EDM within the above simple model assumption.
By combining the simple constituent quark model with our
result, we obtain

d, ~0.84% — 0.2d". (29)

We must note that the quark EDM is not a renormalization
group invariant quantity. In this case, the bare quark EDMs
dﬁf ) and d* are defined at the renormaliztion point of
our discussion, i.e., at 4 = 2 GeV. To relate the prediction
of the quark EDMs defined, for example, at ug = 1 TeV,
we need to connect them with the renormalization group
running of the EDM operators [14],

(w0 _ (@B ()
) = (G ), (30)
a(u?)
where ICG’;IZV Bl = 5-. The running of the quark EDM from

s =1 TeV to 2 GeV brings thus a suppression factor of
~0.8. We thus have

TABLE V. The quark tensor charge obtained with several
Aqcp- The renormalization point was fixed to u = 2 GeV.

200 MeV
0.500

500 MeV
0.541

900 MeV
0.588

1 GeV
0.600

AQCD
Sl (O)H

074036-7



YAMANAKA et al.
1

0.9}t ,

0.8} .
«—
£ o7t i
7))

06} .

L Full ,
0.5 S48y
S1+S3
04 ‘ ‘ ‘ ‘ ‘ ‘ . Sionly
"0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

p(MeV)

FIG. 7 (color online). The §; function (not renormalized)
obtained by solving the Schwinger-Dyson equation with §,
and S5 functions set to zero. The S| function solved with the
full contribution (S, S,, and S3) is also shown for comparison.

$1(0)

0 5 10 15 20
Number of iterations

FIG. 8 (color online). The convergence of S; function (not
renormalized) at the origin in the number of iterations of the
Schwinger-Dyson equation with the initial conditions S;(p?) =
1, Sz(p2) = 0, and S3([)2) =0.

d, ~ 0.6d1s~ TV — 01407 TV 31

It should be noted that, in the above discussion, we have
not considered the other CP-odd quark and gluon level
operators. In general, these CP-odd operators can mix with
each other when the operators are rescaled from the TeV
scale to the hadronic scale [14,30].

MV +
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In the formalism we have adopted, it is possible to
change the input parameters and the self-energy function
we have obtained in the intermediate steps, and this fact is
an important advantage of the SD formalism. We first
tested the contribution of the S, S,, and S5 functions doing
a fictitious manipulation by setting S,(p?) = 0 or/and
S3(p?) = 0 in solving the SD equations (19)—(21). The
result is plotted in Fig. 7. We see that the solution of the
SD equation with and without the contribution from S5,
and S; functions are close within 3%. The qualitative
features are very similar. It can be also seen that the effect
from S, is more important than S3. This result suggests that
the extra powers of momenta p (appearing in {§, c*”} and
o p,p" — o"Pp,p*) work as a suppression factor. This
shows that the leading contribution to the SD equation of
the quark tensor charge is given by the S; function and that
the omission of S, and S§; functions is a relatively good
approximation.

We now try to understand the suppression of the quark
tensor charge with the gluon vertex dressing. Let us first see
the quark tensor charge obtained after few iterations. The
quark tensor charge S;(0) calculated after each iteration is
shown in Fig. 8. In our calculation of the SD equation, we
have taken as the initial condition S;(p?) = 1, S,(p?) = 0,
and S3(p?) = 0 and iteratively substituted the left-hand
sides of Eqs. (19)-(21) to their right-hand sides. This
procedure can be seen as a sort of perturbative truncation,
in which the number of the iteration corresponds to
the order of perturbation (see Fig. 9). The initial value
S,(p?) = 1 is the bare quark tensor charge. From Fig. 8,
we can see that the tensor charge converges by oscillating
around the true tensor charge. This means that the gluon
dressed tensor vertex is decomposed into terms that
change their sign alternatively in the perturbative expan-
sion. This fact can be understood as follows. The tensor
charge is given by the spin of the quark in the non-
relativistic limit, so the gluon emission of the quark
changes the sign of the tensor charge since the angular
momenta of the quark and the gluon are, respectively,
Sq :% and s, = 1. The above description is illustrated
schematically in Fig. 10. As the external field can only
probe the tensor charge (spin) of the quark, the superpo-
sition of the contribution of each order is always smaller
than the bare contribution.

The suppression of the quark tensor charge by the quark
spin flip can be confirmed by artificially manipulating the
self-energy of the quark. The self-energy of the quark can

o
D

sy Ny

FIG. 9. Expansion of the Schwinger—Dyson equation for the quark tensor charge. Each iteration gives the perturbative truncated

contribution to the corresponding order.
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FIG. 10. The schematic picture of the quark spin flip with the
gluon emission.
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FIG. 11 (color online). The S, function (not renormalized)
calculated with resized self-energy.

be seen as its mass, so the spin flip of the quark should be
suppressed when the quark becomes heavier. The §; func-
tion calculated with the resized quark self-energy is plotted
in Fig. 11. We can see that the quark tensor charge ap-
proaches 1 when the self-energy is taken larger. This result
is consistent with our description: as the quark spin flip is
suppressed for the heavy dressed quark, the contribution
from the higher-order dressed tensor vertex becomes
smaller, and the dressed quark tensor charge keeps a value
close to the bare quark one. On the contrary, the quark
tensor charge vanishes when the quark becomes lighter
(with smaller self-energy) since the spin flip becomes
important so that the tensor charge is averaged at zero.

V. SUMMARY

In this paper, we have calculated the tensor charge of the
quark in the QCD-like theory with the Landau gauge using
the SD formalism with three different running couplings.
As a result, the quark tensor charge is suppressed by a
factor of ~0.6 compared to the bare quark contribution. By
combining with the nonrelativistic constituent quark
model, the quark tensor charge in nucleon is given as du =
0.8 and 6d = —0.2 when the renormalization scale is taken
as u =2 GeV.

Our result agrees qualitatively with the results obtained
from the extraction of the tensor charge within the collinear

PHYSICAL REVIEW D 88, 074036 (2013)

factorization approach based on the experimental data and
also with those given by the first principle lattice QCD
studies, both suggesting the suppression of the quark tensor
charge in the nucleon.

The stability of the renormalized quark tensor charge in
the change of the integral cutoff, which is a requirement of
this framework, is also fulfilled for the calculations with and
without the Higashijima—Miransky approximation. We have
also shown that the phenomenological strong coupling of
Richardson ansatz can be used with the Higashijima—
Miransky approximation since the latter works as a regu-
larization against the singularity p — k = 0.

The result of our study gives also the contribution of
the quark EDM to the neutron EDM. The neutron EDM
receives a contribution from the quark EDM defined at
ws = 1TeV as d, ~0.6d"~ TV — 014071 TV,

Through the analysis, we concluded two important re-
sults. First, the dominant contribution of the dressed tensor
charge is given by the §; function, the coefficient of
the o*” Dirac matrix. Second, we have deduced that the
suppression of the quark tensor charge is due to the super-
position of the spin flipped states occurring in the gluon
emission. The gluon dressing of the vertex thus plays a
crucial role in the suppression of the quark tensor charge,
and this partially explains the deviation of the results
suggested by the collinear factorization approach and lat-
tice QCD from that given in the nonrelativistic constituent
quark model.

We must however note that we have only discussed the
single quark contribution to the nucleon tensor charge.
The remaining effect to the nucleon tensor charge should
be investigated in the viewpoint of the many-body physics
of partons. It is actually suggested that the orbital angular
momentum of the nucleonic partons carries a large frac-
tion of the nucleon spin [31,32], and it is strongly prob-
able that the bound state effect of the quark in nucleon
contributes to the modification of the quark tensor charge.
The study of the many-body effect will be the subject of
the next work. Here, we briefly give the prospect for the
improvement. The first possibility is to include the quark
in the nucleon with the quark model. The second possi-
bility is to the include the dressed tensor vertex in the SD
equation of the quark-diquark bound state, which was
investigated in Refs. [13,24]. The ideal way of the SD
formalism is to formulate and calculate the relativistic
Faddeev equation for the three-quark state [33].
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APPENDIX: DETAILED CALCULATION OF THE SCHWINGER-DYSON EQUATION
FOR THE QUARK TENSOR CHARGE

The Schwinger—Dyson equation for the quark tensor charge [Eq. (17)] is rewritten as

4 o AV _ _ AV
ser(p) = v v [ U e e - N v + 0 ()0
+ S,(R0K o7} + S5 (k) Pk k" — ok k) K + (k)] y 5. (AD)

The Lorentz and Dirac structures of the term with S; (k%) of Eq. (A1) can be transformed as

[ - (p —(1;)!:( - k)A]

= —(k> + 2ot + 32k + P, o**} + 2[o T p k¥ — o p kH] —

Yok + 2o K + Sy,

p3 v
TR [(k* — pP) K — B, o*"}
— it = RO LA K+ " = Ry LA R+ s ——{(p?* + Z)[e*(p = k) (p — k)"
—o"(p = k),(p — D*] = (p*> — k)[o*"(p — k)np — 0" (p — k)yp*] +20°7k,p, (K" p* — k*p”)}.  (A2)

For simplicity, we have omitted the argument of the self-energy 2. Similarly, the Lorentz and Dirac structures of the term
with S, (k%) can be obtained as

[g,M _(p—kP(p—

k))L MY 4 Y
= Ptk + S1om + ootk + 31y,

(K2 + 22

= —AZKIGH 4 (K + ZD0U+ o} + AR (oM kT — 0 pp k) = Ty

=
43

—ilp =y LB K+ ilp — )"y [A K+ ——5 T [2k*[o*?(p = k),p" = 0" (p = k), p*]

—(p* + K)o’ (p — k) k" — 07P(p — k) ,k*] + 20k, p ,(p*k” — p*k*)] (A3)

[(p* = NP — K o7}

and the S5(k?) contribution as

— N AVY
R AT avpkpkﬂ[;e + 3y,

2

o )2 {(p — K)[o#*(p — k) k" — " (p — k) ,k*]

—20°"k,p,(p*k” — pkH)}. (A4)

= (k2 - 22)(0'#’717,)]‘” - O-Vpppk'u) -

In the transformation of the above equation, we have used  g(Kor” + o f)p = —p>(Ka™” + o*"}) + 2(p - k)
the following identities:

Yot y? =0, (AS)

X (po*” + otV p) — ip*
X{y”, 6 K} + ip{y*, (4, K1}
Jo*' g = g?ot’ — 2047 q,q" + 20" q,q",  (A6) (A9)

We have also used the cyclic property {y*, [v*, y*]} =

{y?.[y*, v"1;, which implies {$, [$, KI} = {K.[#, ]} = O
By substituting Eqgs. (A2)—(A4) into Eq. (Al), we can
further transform the integral equation (A1) as

Yo (Kot + gk fyyr = 2o + gk, (AT)

KKotr + o K = K*(Ko*” + oK), (A8)
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al(p— 0% C(N)
- 320F (p— 0?2

SHY(p) = ghV — ij% 7 .S (kz)‘ 0'/“’|:2p — 2+ 22(k2)<2]]j—22 -~ 1)

2+22k2 k2_ 2)2 2+22k2 1 k2_
T k)2] £ 3, aﬂV}-G—pZ[W - C20F
2 2)\2
—4(p — k)z] + éﬁz(kz)(a“pppp” - ff””p,)p“)[(p2 —2k%) + (p — k)* + %“
¢k al(p— k2 (N Pk

) Wk Sz<k2>[ 2<k2>aw[ (7 + )L

4 [I2=S2OF (p— k)? (p— k)?
2 2\2 2 2] 2 2(1,2 [ 2 4 (K —p*)? 2]
2(p? + K*)? — 6k*p? | + [K* + 22(K>)|{p, o7} - 5k + p*) ————5 —4(p— k)
6p* (k—p)

2 2 . 2)\2
§k4 S(k*) (o p,p” — tf””ppp")[% —2k* + (p — k)zi”
4 a _ 2 1.2 2 .2)\2
% [(pzz(lzz)] (CZ(Nk))z Sg(k2)[p £ 0"“’|:— 7(](; _i)g +2(k +p?) = (p - k)2i|

2

k (p2 _ k2)2
+—— (" p,p* — aPp,pP)| 2k — p* ———— — (p — k)* |}.
p4(ff pop’ = "’p,p )[ N P e (p—k)

— (k* + pH)(p — k)?

(A10)

Here, we have used the formulas of the loop integral developed by Passarino and Veltman [34] to reduce into a Lorentz

scalar loop integral. The rank-1 (k*) integral can be reduced as
[ ook = 717,

where

2 2 _ 2 2 _ 2
T](pz) _ fd4kF1(p, k)l:p +k 2p2(]7 k) j|=%fd4kF1(p, k)I:I +];_ (P pzk) i|

The rank-2 (k* k") integral can be reduced as

[ dKE>(p, KA = Top(pH)gh* + 1y (pD)ph p*,

where

! 1Tk2 + p2 — (p — k)2
Too(p?) =+ [ a*kry(p, 0| 2 — L P~ (0 O]
3 2 .

1 1 1 1 12+ K -2 1 — k)
=§[d4kF2(p,k)|:§k2——pz————{——(p )(p ) __(P )jl’

4 4 p2 2 p2 4 p2
1 k2 + 2 _ —k 272
Th(p») = [d4kF2( k)|:[ P pz(p I kz:l
1 K K+p)p -k (p-k*

By taking the trace after multiplying by o*”, Eq. (A10) can be rewritten as

_ _ Cr(N.) a,[(pg — kg)?] 22—k (ph— K2
25(1) = Sspbor =2+ 5 [k 02 + 307 [ [ Py kJ‘}[Zs o)

+ 43(kp)Sy(ky) — [k + 22 (k3)1S5 (k)]
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where we have used the following trace formulas:

Trlo*a,,] = 48, (A17)

Tr[o-'uv(a-,uppppv - U'vapP,u)] = 24172 (A18)

By taking the trace after multiplying by {§, o#”}, Eq. (A10) can be rewritten as

b OWN) [ allpr—k)?T [, 5 PRt 1 (ph— K
S>(p%) FAp E e+ SR)P 2-3 e =) +3 (s = kp)? [2(kE)S, (kE)
—[kg — 22(k3)1S,(k3)]. (A19)
In deriving the above equation, we have used
Td{p, o*"}o,,] = 0, (A20)
Ti{{p, o Hp, .11 = 96p%, (A21)
Til{p, o*" Ny’ Py — T0pp’ Pu)] = 0. (A22)

By taking the trace after multiplying by o*”p,p” — o p,p*, Eq. (Al) can be rewritten as

Co(N) [ 4, alpe—kg)*]
127 p2 I+ 32(2)P

PE(Ez(k )— 2PE)+k (PE Ez(k%))
(pe— kE)2

p% +k% | (pE— k%)z]

S1(p2) —S3(pR)pr=1— [S (k2 )[pEJrEz(k )+

2 (PE E)2 2
+(p2 +32(k2) —E—L |+ 23 (k%) (p2 — k%) S, (k2)| 1

( PE kE)4 ( PE— kE)2 (PE - kE)4
4 2k2 k4 k2 2
——[k2 +32(k2)]S; (k2 )|:pE - 2%+( P2+ kg)%]] (A23)

In the derivation of the above equation, we have used Eq. (A18) and

Tr[(o-ﬂppppll - O-Vpppp'u)(o-,u,npnpv - O-V'rypnp,u,)] = 24[?4 (A24)

By equating Eqgs. (A16) and (A23), we obtain the system of integral equations for Sy, S5, and S5,

Gy (N, T . 5 — kg)? S2(k2 2 _ k2)2
Si(p2) =1 +%LAk3EdkEfo szmM Z2(k ){S (k% )|:< p( £) 1><1 +(PE E))

(kg + Z2(kp) ] E (pe — kp)*
EZ(kZ) k4
o (p2 — 2k%) + 2p2 — k% 12 (p% — k2)> pr— ki + =%
P 28, (k2) 3 (k2 1 | +-PE"%E ) 2 P
i (Pe — kE)2 :| + 25 )E( ) ( ! PE)( " (pe — kE)4 " (pe — kE)2
k4
2 2 2 2 (pi" B ktz’;")z sz B 17_%
Sg(k k2 + 32 (k2)] ( )(1 + (s — k) + 2(pE 7 |1 (A25)
Sy ( 2)—C2(N)f kidk j smzedﬁMZZ(k 2) . _S5 itk +l(pi~—ki~)2
2PE T 3 £ (12 + S2(2)P 2 (pe — kp?® 2 (pg — kp)*
X {2(k3)S (k%) — [k3 — 22(k%)1S,(k3)}, (A26)
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Cy(N,) a,[(pg — kp)*] P% — 2k (pp— kp)’
S03) = 3oy, Btk [ s o0 e e 20 [ (pe— ke (pe kEr‘]

E

x[ 22D ¢ 2 — s iz Jf kD) = [+ X)) ES(k >} AT
@ 2 3 (A27)

where (pg — kg)? = p% + k% — 2pgkg cos 6.

By using the Higashijima—Miransky approximation (11), it is possible to erase the angular dependence of the running
strong coupling a,[(pg — kg)?] so that the angular integration of Eqs. (A16), (A19), and (A23) can be performed
analytically. We thus obtain

C Nc a, 2,k2
p) =1+ G0 [ ey G R 0 ké)[s () +23)5,() — 1[4 + TS, )]
CZ(N) s[maX(Pz’kz)] k4 Ez(k ) . _
5 kyﬂmmw E)pJ @ Sike) —23(kp)Sa(kp) —[k2+22(k 1S3 (k )]
(A28)
2l a[max (p}, )
Sa(pp) == pfﬂ@%{—z(ké)sl(ké)+[k%;—22(k 1S2(2)}
Cy(N.) ([re a [max (p%, k%)
+ S0 [y G AL By <1 - 20l @2

PE O 4 2
5:02) = 0 [kt ST E] 7 —ipy K LM s 00) - axapysid) - g + s
E E E

(A30)

To integrate the angular variable 6, we have used the following formulas:

j‘# dfsin?6 _mal, l_bj ffr dfsin?6 I - l_bi (A31)
0o a+tbcos b2 a’ |’ 0o (a+bcosh)? a? [_ 2 b? a’ |
2

We therefore obtain Egs. (22)—(24).
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