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Abstract: During the 1920 Haiyuan earthquake, numerous catastrophic landslides were triggered in the loess 35 

area in Northwest China. We investigated in detail a large example of these landslides, referred to as Dangjiacha 36 

landslide in this paper. This landslide originated from a slope of about 20 degrees, and the displaced soil mass 37 

traveled about 3200 m, damming a valley. We performed a field survey and found that standing water existed in 38 

the landslide area and the loess had high porosity. We infer that it was the liquefaction of the water-saturated 39 

loess layer rather than the suspension of silt in the pore-air in the loess that caused the great mobility of this 40 

landslide. To test this inference, we performed undrained triaxial compression and ring shear tests on loess 41 

samples to examine the shear behavior of loess saturated by either air or water. The test results showed that the 42 

water-saturated loess soil was highly susceptible to flow liquefaction failure. Fast shear tests on naturally 43 

air-dried loess samples revealed that the generated pore-air pressure was small under the “undrained condition” 44 

and no significant reduction in the shear resistance was observed, implying that air entrapped in the loess was 45 

unlikely to be the main contributor to the high mobility of this large-scale landslide. 46 

 47 

Keywords: loess landslide, Haiyuan earthquake, liquefaction, excess pore-water pressure, air-pressure, high 48 

mobility 49 
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1. Introduction 50 
Due to their disastrous consequences, rapid landslides with long runout distance pose a great challenge to both 51 

geologists and geotechnical researchers. Much research has been performed in attempts to better understand the 52 

mechanism of this kind of landslide. Different assumptions were proposed for the mechanisms of these rapid 53 

landslides, and they can be categorized into the following five groups (Lucchitta, 1979): (1) flow involving 54 

debris and air (Kent, 1966; Varnes, 1978); (2) flow involving debris alone (Howard, 1973; Hsü, 1975; ); (3) flow 55 

involving debris and water (Plafker and Erickson, 1978); (4) debris sliding on a cushion of air (Shreve, 1968); 56 

and (5) debris sliding on a cushion of steam (Pautre et al., 1974; Habib, 1975). Although the assumptions (1), (3), 57 

(4), and (5) are somewhat different from each other, they all suggest that the involvement of entrained fluid (air 58 

or water) plays a key role in the rapid, long-distance movement. 59 

During the 1920 Haiyuan earthquake (M=8.5), a great number of catastrophic landslides was triggered in 60 

the loess area of the northwestern part of China (Fig. 1) that killed more than 100,000 people (Close and 61 

McCormick, 1922) and formed many landslide-dams (Zhu, 1989a, b; Derbyshire, 1991; Derbyshire et al, 2000; 62 

Dijkstra et al, 1994). Up to present, many research studies have been performed and different hypotheses have 63 

been proposed to improve understanding of catastrophic landslides. Generally, it has been widely accepted that 64 

catastrophic earthquake-induced landslides were mainly caused by soil liquefaction (Seed, 1966). For example, 65 

Ishihara et al. (1990) investigated the large-scale landslides triggered by an earthquake in the suburb of 66 

Dushanbe, the capital of the Tajikistan Republic (January 23, 1989, M = 5.5), and concluded that liquefaction 67 

occurred in the landslides masses due to the high collapsibility of the loess soil that may have been saturated by 68 

irrigation water. However, for the loess landsides triggered by the 1920 Haiyuan earthquake, different views 69 

appear to exist. Varnes (1978) regarded these landslides as dry loess flows in his landslide classification. 70 

Ter-Stepanian (1998) thought that these landslides were dry loess flows due to the generation of high pore-air 71 

pressure. Keefer (1984) studied the landslides triggered by 40 major earthquakes that occurred throughout the 72 

world and classified loess landslides as a kind of rapid soil flow. 73 

The mechanisms above proposed for the loess landslides appear to be reasonable, because the loess plateau 74 

is generally in a semi-arid environment and the loess has large porosity. In addition, the loess soil is composed 75 

mainly of fine grains and its liquefaction potential during earthquakes is usually considered to be low (Yoshimi, 76 

1991). Nevertheless, recent studies revealed that soils composed almost entirely of silt are liquefiable (Fletcher et 77 

al., 2002; Wang and Sassa, 2002; Wang et al., 2007; Zhang et al., 2013). Zhang and his colleagues (Zhang et al., 78 

1995; Zhang and Sassa, 1996; Zhang and Wang, 2007) performed detailed geomorphologic studies of the loess 79 

landslides triggered by the 1920 Haiyuan earthquake and found that slopes in the landslide source areas were 80 

gentle and most landslides occurred on concave slopes. Hence, they concluded that these highly mobile loess 81 

landslides mainly resulted from liquefaction during the earthquake. 82 

To further clarify the mechanisms of these loess landslides, we investigated a large-scale landslide that 83 

occurred in Dangjiacha area, Xiji county, Ningxia Province, China (hereinafter termed Dangjiacha landslide). 84 

Evidence for abundant groundwater in the landslide source area was found during our field investigation. We 85 

then conducted a series of laboratory tests to examine loess samples taken from the landslide source area. This 86 

paper presents the field survey and laboratory findings, and then discusses the possible mechanisms contributing 87 

to the rapid, long-distance runout of loess landslides. 88 
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 89 
2. Dangjiacha landslide 90 

Located approximately 25 km southwest of Xiji city, Dangjiacha landslide was the most catastrophic one 91 

triggered by the 1920 Haiyuan earthquake. Figs. 2 and 3 present an airphoto (taken in 1966) and the topography 92 

of the landslide area, respectively. The landslide was composed of two big blocks (left and right, referring to 93 

viewing the landslide area in the downhill direction), both originating from the same side of a mountain ridge. 94 

We surveyed the landslide during 1994, 2002, 2003 and 2005. We used a total-station surveying instrument to 95 

create a transverse cross section along I-I’ and longitudinal sections along lines II-II’ and D-E-F-G (Figs. 2, 4). 96 

The left block of the landslide originated from a slope of about 20 degrees and nearly all of it evacuated the 97 

source area, while the right block stopped after moving a relatively shorter distance. The left block has a 98 

maximum width of about 520 m and length of 2000 m, while the right block has a maximum width of 400 m and 99 

length of 1500 m. The locations of the sliding surfaces of these two blocks were inferred from field observations 100 

and present topography, and by assuming that the ridges that form the block boundaries (Fig. 2) had not been 101 

greatly disturbed. As shown in Fig. 4, the maximum thicknesses were inferred to be approximately 50 m and 40 102 

m for the left and right blocks, respectively. The total volume of the landslide was estimated to be approximately 103 

2.1×107 m3, assuming an average deposit thickness of 20 m. Our observations suggest that the right block moved 104 

about 230 m (assuming that the materials at point P in Fig. 4b originated from the uppermost part of the scar) and 105 

did not experience much deformation during movement. In contrast, the left block was nearly entirely displaced 106 

out of the source area, moved northwards for a distance of about 2000 m before turning westwards for an 107 

additional 1100 m, and its deposit dammed the valley. A barrier lake formed that is about 5 km long and 380 m 108 

wide; it is the largest of the recorded impounded lakes formed by this earthquake (Derbyshire et al., 2000). 109 

We observed standing water (Fig. 5) and shallow groundwater (Points W1 and W2 in Fig. 2) in the landslide 110 

source areas, even 80 years after the 1920 earthquake. Point W2 references a well that supplies water for several 111 

families, with a water table 22 m (measured on March 26, 2003) below the present ground surface. We were told 112 

that the groundwater table in W2 was usually higher during summer. Well W1 is very shallow. To examine the 113 

aquifer location, we dug a pit near W1 on March 20, 2005, and found groundwater at a depth of about 2 m (Fig. 114 

5c). 115 

Although the groundwater condition may be different from that of 80 years ago, it is reasonable to believe 116 

that the displaced landslide mass was rich in groundwater before the earthquake, because: (1) for this area, the 117 

annual potential evapotranspiration is about 1500 mm, while the annual precipitation is less than 400 mm 118 

(Derbyshire et al., 2000; Chen et al., 2003). This unbalance has led to a severe water deficit resulting in the area 119 

being drier at present than during 1920; (2) the groundwater table might have dropped due to the removal of the 120 

landslide mass; and (3) long-term groundwater withdrawal by area residents using the wells in the landslide 121 

source area might have further lowered the groundwater table. 122 

We measured the in-situ densities of the loess soils at multiple heights on the main scarp (along line D-E in 123 

Fig. 2), and then calculated the void ratios of these soil layers after measuring the specific gravity of the loess 124 

(see Fig. 6). The soil layers at different elevations had different void ratios, ranging from 0.79 to 1.31. Generally, 125 

soils at lower elevation had lower void ratio, and the minimum void ratio (highest density) was measured for 126 

location S1. To study the initiation and movement mechanisms of the landslide in the laboratory, we took intact 127 
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samples (two blocks, each sized 50 cm × 40 cm × 40 cm) at location S1 and disturbed samples (about 80 kg) at 128 

location S2 from the main scarps (see Figs. 2 and 4). These samples were taken from two pits that were dug 129 

approximately 1 m deep. We hypothesized that liquefaction failure of the water-saturated loess was the main 130 

reason for this long-runout landslide, and if the soil at location S1 was liquefiable, then all soil layers would be 131 

liquefiable as they had higher void ratios than at S1.  132 

The liquefaction potential of the loess samples was examined by means of undrained triaxial compression 133 

tests and undrained ring shear tests. Undrained triaxial compression tests were performed on undisturbed 134 

samples to examine the possible occurrence of flow liquefaction, and ring shear tests were performed on 135 

disturbed loess samples to examine the undrained shear strength at the “real steady state” (Poulos, 1981; Wang 136 

and Sassa, 2002). Compared with the ring shear test, the strain level in the triaxial test is limited and the real 137 

steady state as defined by Poulos (1981) may not be reached by the end of a triaxial test. In addition, we also 138 

performed fast undrained ring shear tests on naturally air-dried loess samples with entrapped pore air to examine 139 

the possible role of air in the rapid movement of loess landslides. 140 
 141 
3. Undrained shear test results 142 
3.1 Characteristics of loess sample 143 

Following the standards of JGS (Japanese Geotechnical Society), the basic properties of the loess were 144 

measured, and some characteristics are listed in Table 1. Note that the minimum and maximum densities in Table 145 

1 were obtained following ASTM procedures for sands, although the loess sample is a silty soil. The grain size 146 

distribution (shown in Fig. 7) was obtained following ASTM standard D422-63 (2007). As shown, the sample 147 

consists of about 93% silt, 2% sand, and 5% clay. 148 

The microstructures of the undisturbed and remolded loess samples were observed using the SEM 149 

technique (Fig. 8 and Fig. 9). Both samples consist of a loosely packed silt skeleton with finer particles coating 150 

larger particles forming aggregates. However, the aggregates in the undisturbed loess form bigger clusters (like 151 

pupa), while those in the remolded loess form a relatively homogenous structure. 152 

 153 
3.2 Undrained triaxial compression tests 154 

A series of consolidated-undrained triaxial compression tests was performed on undisturbed samples. The 155 

specimens had a height of 10 cm and a diameter of 5 cm. All specimens were saturated with de-aired water 156 

assisted by CO2 saturation. Water saturation was ensured by obtaining a B value (Skempton, 1954) of at least 157 

0.95. After saturation, the specimens were consolidated under a given cell pressure, and then compressed under 158 

undrained conditions following the strain-controlled method. Axial strain was increased at a rate of 0.01% per 159 

minute. The specimens were consolidated and tested at cell pressures of 100, 200, 300, and 400 kPa. Note that 160 

these cell pressures were used for observing the collapse behavior at different initial consolidation stresses, as 161 

done in many studies (Sladen et al., 1985; Ishihara, 1993). The triaxial compression at each cell pressure was 162 

terminated when the axial strain reached 30%. Fig. 10 presents the test results in the form of pore-water pressure 163 

against axial strain (Fig. 10a) and effective stress path (Fig. 10b). It can be seen that high pore pressure was 164 

generated, resulting in a remarkable decrease in effective stress. The final pore pressures in the tests were as 165 

great as 65% of the initial cell pressures. The locus of peak points in the effective stress paths can be well fitted 166 

by a straight line passing through the origin. This line is widely known as the flow liquefaction line (FLL) (Vaid 167 
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and Chern, 1983, 1985; Lade, 1993; Ishihara, 1993; Kramer, 1996; Yang, 2002), which indicates the initiation of 168 

flow deformation. The stress ratio, defined as the ratio of q (=(1-3)/2) to p’ (=( 1+3)/2), is approximately 169 

0.4, which corresponds to a mobilized friction angle of about 21.8 degrees. From these test results (Fig. 10b), we 170 

can conclude that the loess is susceptible to flow liquefaction failure. 171 

 172 
3.3 Undrained ring shear apparatus 173 

The ring shear apparatus allows the residual shear strength of soil to be obtained at large shear 174 

displacements and, therefore, has been widely used in landslide studies (e.g., Bishop et al., 1971; Bromhead, 175 

1979; Gibo, 1994; Tika and Hutchinson, 1999; Liao et al., 2011). A series of undrained ring shear apparatus 176 

(DPRI-4, 5, 6, and 7) developed by Kyoto University (Sassa et al., 2004) has been used to study landslides 177 

triggered by rainfall, earthquakes, impoundment of reservoir water, irrigation, etc. (e.g., Wang et al., 2002; 2003; 178 

Okada et al, 2004; Zhang and Wang, 2007; Zhang et al., 2013; Miao et al., 2014). In this research, DPRI-5 and 179 

DPRI-7 were used. DPRI-5 has a shear box with 120 mm inner diameter, 180 mm outer diameter, and 115 mm 180 

height, an available maximum shear velocity of 10 cm/s and an available maximum normal stress of 2,000 kPa. 181 

DPRI-7 has a larger shear box that is transparent (270 mm inner diameter, 350 mm outer diameter, and 115 mm 182 

height) and can produce a higher shear velocity (as much as 300 cm/s) under an available maximum normal 183 

stress of 500 kPa. Tests can be conducted with both ring shear apparatuses by controlling shear torque or shear 184 

speed under undrained conditions with the ability to measure pore-water pressure. In this study, DPRI-5 was 185 

used for all tests on water-saturated samples, while DPRI-7 was used for the fast shear tests on air-dried samples. 186 

Additional details of the design and construction of these apparatus, as well as the operation method, can be 187 

found in Sassa et al. (2003, 2004).  188 

3.3.1 Test results for water-saturated loess  189 
Because all of the samples were consolidated under the same initial normal stress, the dry-deposition 190 

method (Ishihara, 1993) was used to prepare the samples to different initial densities. The oven-dried soil was 191 

poured into the shear box freely in several layers, and each layer was tamped. Different initial densities were 192 

obtained by tamping differently. 193 

The samples were saturated with de-aired water assisted by carbon dioxide. For all tests, the degree of 194 

saturation was checked by measuring the BD parameter, which was proposed by Sassa (1985) for use in the 195 

direct-shear state. BD is defined as the ratio between the increment of generated excess pore pressure (Δu) and 196 

normal stress (Δσ) in the undrained condition, and formulated as BD =Δu/Δσ. If BD ≥ 0.95, this indicates that the 197 

sample is approximately fully saturated. In this study, all samples were saturated with BD ≥ 0.95. After saturation, 198 

samples were consolidated at a given normal stress. Because the purpose of this study was to examine the 199 

liquefaction characteristics of loess, a consolidation normal stress of 200 kPa was used for all tests because at 200 

this value our ring shear apparatus can performs best; also, we have accumulated many results from undrained 201 

shear tests performed on different types of soils under this normal stress. After consolidation, samples were 202 

brought to failure by increasing the shear stress at a loading rate of 0.098 kPa/s under undrained conditions. All 203 

samples were sheared until the shear resistance became constant. 204 
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The results of a test on a water-saturated loess sample with initial void ratio of 1.06 are shown in Fig. 11, 205 

where normal stress, pore-water pressure, and shear resistance are plotted against shear displacement (Fig. 11a). 206 

Fig. 11b shows the effective-stress path. It is noted that pore pressures are measured by pore pressure transducers 207 

connected to a gutter (4×4 mm) located along the entire circumference of the inner wall of the outer ring in the 208 

upper cylinder pair of the specimen chamber, 2 mm above the shear surface. More details on the pore-water 209 

pressure monitoring system can be found in Sassa et al. (2003). From Fig. 11a, it can be seen that the pore-water 210 

pressure increased with increasing shear displacement before reaching a great value (about 85% of the applied 211 

normal stress), while shear resistance decreased to a small, nearly constant value (about 10 kPa) after about 1000 212 

cm of shear displacement; hence, steady-state resistance was reached. 213 

Cyclic loading tests were also conducted on a water-saturated loess sample. After saturation, the sample was 214 

consolidated under a normal stress of 200 kPa while a shear stress of 80 kPa was applied. After consolidation, a 215 

cyclic shear loading was applied under undrained conditions with an amplitude of 60 kPa and frequency of 0.25 216 

Hz, while the normal stress was kept constant. Fig. 12 presents the test results in the form of time-series data of 217 

normal stress, shear resistance and pore-water pressure (Fig. 12a), and in the form of the effective stress path 218 

(Fig. 12b). Shear failure was triggered during the first cycle and pore-water pressure increased continuously 219 

thereafter, while shear resistance decreased until reaching a small, constant value (about 7.6 kPa). It is noted that 220 

the measured shear resistance before the occurrence of shear failure represented the applied shear loading, but 221 

after failure shear loading greater than the shear resistance of soil could not be applied (Wang et al., 2007). 222 

Hence, the intended amplitude of the cyclic loading is not apparent in Fig.11, although the frequency of the 223 

applied cyclic loading is. From Figs. 11 and 12, it can be concluded that the water-saturated loess samples are 224 

highly liquefiable under undrained monotonic or cyclic shearing. 225 

 226 
3.3.2 Test results for loess with entrapped air 227 

Because the landslide area is located in an arid region and the loess has high porosity, one may argue that 228 

the low permeability of the loess prevents air from readily escaping so liquefaction can be triggered in dry loess 229 

(Ter-Stepanian, 1998). However, this hypothesis has never been examined by laboratory tests. Here, to evaluate 230 

the possible effect of entrapped air on the high mobility of displaced loess, a series of fast shear tests was 231 

conducted on a loess sample at its natural water content (measured as 8.5%). The loess (some of which was in 232 

undisturbed blocks) was first placed into the shear box without tamping such that the specimen was in a very 233 

loose state with high porosity. After the sample was normally consolidated under a normal stress of 100 kPa, the 234 

shear box was switched to the undrained condition and the sample was sheared by increasing the shear speed 235 

quickly (up to 2 m/s within 4 seconds). The results are shown in Fig. 13. It can be seen that air pressure increased 236 

relatively quickly during the initial 4 seconds, and then tended to reach a constant value with further shearing 237 

(Fig. 13a). During shearing, the specimen showed significant height reduction due to collapse of the soil 238 

structure and the compression of pore air. Fig. 13c presents photos transferred from video records. Before 239 

shearing, the specimen was rich in void space with a void ratio of 1.42. During shearing, shear was localized in 240 

the shear zone and some big void spaces in the soil above the shear zone (upper layer) still remained even after 241 

the shear resistance reached steady state at a shear velocity of 2 m/s. The generated air pressure was about 25% 242 

of the normal stress, which could not lead to a significant loss of shear resistance. The mobilized minimum shear 243 
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strength ( r ) was about 55 kPa, which gave a mobilized friction angle (arctan(r/n)) of 28 degrees. However, 244 

the slope angle is about 20 degrees in the source area and is less than 2 degrees in the runout area (e.g., from 245 

Point D to E in Fig. 4). Therefore, this mobilized friction angle would not lead to the long runout movement. 246 

4. Discussion 247 
4.1 Liquefaction potential of loess  248 

In the analysis of liquefaction potential of fine-grained soils, the Chinese criteria (Wang, 1979) have been 249 

widely used. Based on site observations, Wang (1979) concluded that a clayey soil is susceptible to liquefaction 250 

if it consists of less than 15–20% of grains finer than 0.005 mm and the water content (Wc) to liquid limit (WL) 251 

ratio is greater than 0.9. Based on the work of Wang (1979), Seed and Idriss (1982) suggested that a soil is 252 

susceptible to liquefaction if the following conditions are met: (1) the fraction of grains finer than 0.005 mm ≤ 253 

15%, (2) liquid limit (WL) ≤ 35%, and (3) natural water content (Wc) ≥ 0.9×WL. A recent study by Bray and 254 

Sancio (2006) of fine-grained soils suggested that loose soils with plasticity index (PI) less than 12 and Wc/WL > 255 

0.85 are susceptible to liquefaction. Fig. 7 shows that grains finer than 0.005 mm comprise about 18% of the 256 

loess taken from the landslide site. The liquid limit is about 29.5% (see Table 1) and the calculated water content 257 

of the fully saturated specimen at the densest state is 32.8%; hence, Wc/WL ≥ 1.1. The liquidity index is 1.28 and 258 

the plasticity index is about 11.7. These index values suggest that the loess satisfies the conditions required for 259 

liquefaction that were identified during previous research.  260 

Through a number of dynamic triaxial tests, dynamic torsion shear tests and in-situ explosion tests on 261 

saturated loess from Lanzhou, Wang et al. (2004) examined the influence of water content on loess liquefaction, 262 

concluding that if the water content of loess is above the plastic limit, full or partial liquefaction can be triggered. 263 

They also examined the relationship between coseismic ground motion and initiation of loess liquefaction and 264 

concluded that the minimum acceleration of ground motion required to trigger loess liquefaction is 100 gal or 265 

VII degree on the seismic intensity scale of China. Zhang and Wang (1995) analyzed the geological disasters in 266 

loess areas during the 1920 Haiyuan earthquake and found that the seismic intensity of the Xiji area was X 267 

degree. Therefore, it is reasonable to infer that shear failure was triggered within the loess in the source area of 268 

Dangjiacha landslide during the earthquake.  269 

As reported by Yang (2002), the slope of the flow liquefaction line varies with both the materials and the 270 

soil state. Wen and Yan (2014) examined the influence of structure on shear characteristics of unsaturated loess 271 

and found that peak shear strength and strength parameters (cohesion and friction angle) of the loess were 272 

significantly reduced once its structure was destroyed. Considering that some loess in the lower part might have 273 

been disturbed before the earthquake by human activities, we performed three undrained triaxial compression 274 

tests on remolded loess samples to examine the possible variation of the flow liquefaction line with the soil state. 275 

The remolded samples in these tests were prepared at the same density as that of the undisturbed samples, and 276 

testing procedures were unchanged from those used during the undisturbed tests. Fig. 14 presents the test results. 277 

As can be seen, similar to results from tests on undisturbed samples, pore water pressure continuously increased 278 

with increasing axial strain, and all tests showed flow liquefaction behavior. However, the slope of the flow 279 

liquefaction line is approximately 18.4 degrees, gentler than that for the undisturbed samples shown in Fig. 11b. 280 

Therefore, we can conclude that the remolded loess is more prone to flow liquefaction than undisturbed loess 281 
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when at the same density. This change in the slope of the FLL may result from the variation in the microstructure 282 

of the samples. As seen in Figs. 8 and 9, the aggregates in the undisturbed sample are larger, probably due to the 283 

presence of cementing bonds that may be destroyed during the remolding process. 284 

If the stress path crosses the FLL during undrained shear, flow liquefaction will be initiated regardless of 285 

whether the loading is cyclic or monotonic (Void and Chern, 1983). Because the test results presented in Fig. 10 286 

were obtained from the densest undisturbed loess sample, it is reasonable to infer that once the stress condition in 287 

the loess layer reaches the FLL due to the introduction of seismic loading, flow liquefaction will be triggered and 288 

the shear resistance will rapidly drop to the steady-state strength. 289 

 290 
4.2 The steady state of loess and implications for post-failure behavior 291 

Based on the concept of critical void ratio defined by Casagrande (1936) and on the results obtained from 292 

undrained monotonic loading tests on saturated sand, Castro (1969, 1975) introduced the concept of the 293 

steady-state line. Thereafter, the steady state approach for the analysis of liquefaction susceptibility has been 294 

used in practice. The most important assumption in this analysis is that the sand has a unique steady-state line in 295 

void ratio-effective stress space; this line can be determined from the results of undrained tests on loose 296 

specimens of sand, and only those sands with their initial normal stress and void ratio located above the steady 297 

state line can experience liquefaction flow failure (Castro 1969; Castro & Poulos 1977; Poulos 1981; Kramer 298 

1996; Yang 2002). We performed a series of monotonic shear tests on water-saturated loess specimens at 299 

different initial void ratios. Probably due to the small value of the applied initial normal stress (200 kPa) and the 300 

specimen preparation method, the void ratios of tested specimens ranged from 0.9 to 1.1, showing no significant 301 

difference. Each specimen was sheared to steady state. The steady-state points for all the tests are shown on the e 302 

versus log(s) plot (Fig. 15). Based on these data, a steady-state line was obtained by regression. Using the 303 

measured in-situ unit weight (d) of 15.0 kN/m3 (the largest value, which corresponds to a void ratio of 0.79) for 304 

the loess layer in the source area, a possible maximum thickness (H) of about 50 m (from the cross section along 305 

I-I’ shown in Fig. 4a), and the slope angle () of 20 degrees, we estimate that the shear stress acting on the 306 

potential sliding surface ( sin cosdH    ) before the sliding was about 180 kPa. This initial shear stress and 307 

the in-situ void ratio will plot above the steady-state line shown on Fig. 15. Hence, once shear failure occurred 308 

during the earthquake, the shear resistance of the water saturated loess layer near the sliding surface would drop 309 

to a very small value due to liquefaction, and then the great difference between the driving shear stress and the 310 

lowered shear resistance would result in the accelerating movement of displaced landslide materials.  311 

 312 
4.3 Role of air in the movement 313 

In the analysis of landside mobility, the parameter of travel angle (a) has been widely used (Scheidegger, 314 

1973; Cruden and Varnes, 1996; Legros, 2002; Crosta, et al., 2005). a is defined as tana = H/L, where H is the 315 

vertical landslide height of and L is the horizontal landslide length measured from the crest to the toe of the 316 

landslide (Fig. 16). This value of tana is also called apparent friction, and a apparent friction angle. Low 317 

apparent friction angles indicate high mobility. According to Sassa (1996), this apparent friction angle can also 318 

be obtained from undrained ring shear test results as the mobilized friction angle at steady state m=arctan(s/i), 319 

where s is shear strength at steady state and i is initial consolidation normal stress. 320 
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Based on the concept of the mobilized friction angle, the possible effect of entrained air on the landslide 321 

movement was examined by conducting a series of undrained fast shear tests on air-dried loess samples. The 322 

samples were normally consolidated under initial effective normal stresses (i) of 50 and 100 kPa. In these tests, 323 

the observed pore-air pressures were within a narrow range (20-27 kPa), but the mobilized friction angles were 324 

different (Fig. 17). The test under i = 100 kPa indicated a mobilized friction angle of 30 degrees during the 325 

shear process, whereas the test under i = 50 kPa showed a significantly lower value of m of about 13 degrees.  326 

For flow liquefaction cases, it has been found that water-saturated specimens initially consolidated at the 327 

same void ratio but at different confining stresses display equivalent steady-state shear resistance (Sladen et al 328 

1985; Ishihara 1993; Kramer 1996; Yang 2002; among others). Hence, the mobilized friction angle will decrease 329 

with increasing initial normal stress. However, the results shown in Fig. 17 indicate that, for the air-saturated 330 

specimens, the mobilized friction angle increased with increased initial normal stress. This may result from the 331 

following facts: (1) air is more compressible than water and, consequently, more compressible space is needed 332 

for air-saturated samples to ensure the generation of the same magnitude of pore pressure as for water-saturated 333 

samples; and (2) the limited compressible space does not allow the generation of higher pore-air pressure and 334 

consequent significant reduction in shear resistance. 335 

From Fig. 17, we can conclude that increased pore-air pressure would have less effect on the mobility of 336 

deep-seated landslides because the reduction of effective normal stress from elevated pore-air pressure is 337 

negligible when the normal stress is large (i.e., the landslide thickness is great). Moreover, it is worth nothing 338 

that the test shown in Fig. 17b was performed under an idealized undrained condition. In the field condition, 339 

high permeability of soil with large pore spaces and abundant cracks may enable the quick dissipation of 340 

generated air pressure. Hence, any shear-induced generation of air pressure in the field would be smaller than in 341 

the laboratory to the extent that its contribution to the high mobility of shallow landslides may be ignored. 342 

From Fig. 2, it is apparent that the landslide materials that underwent long-runout movement mainly came 343 

from the left block where a valley existed, while the main body of the displaced material on the right block 344 

remained in the source area after moving about 230 m. Although the groundwater condition at the time of 345 

landsliding is not available, it is reasonable to infer that the soil layers near or above the sliding surface of the 346 

left block may have been fully or highly saturated, while those of the right block may have been partially 347 

saturated. Zhang and Wang (2007) examined the effect of the saturation degree on the steady-state strength of 348 

loess and found that the apparent friction angles of unsaturated loess were 31º and 26.6º at saturation degrees of 349 

5.4% and 32.6%, respectively. These values are much greater than the saturated friction angle we obtained from 350 

our test results (about 2.9º, Fig.11). Therefore, it is reasonable to infer that liquefaction of the fully or highly 351 

saturated loess layer was the main reason for the high mobility. Due to the introduction of seismic load during 352 

the earthquake, high pore-water pressure was generated within the loess near the sliding surface, resulting in 353 

initiation of the landslide. Further increase of pore-water pressure with increasing shear displacement after shear 354 

failure occurred may have elevated the mobility of displaced landslide materials. 355 

It is also reasonable to infer that a considerable depth of unsaturated loess above the water table existed 356 

within the displaced mass. The unsaturated loess could not liquefy under seismic loading, but could be 357 

dynamically fragmented due to the rapid downslope movement. Downslope travel of the moving mass could be 358 
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further accelerated if shear failure and subsequent liquefaction occurred. Strong vibration within the sliding mass 359 

could also be initiated, resulting in widespread fluidization, due to following reasons (Iverson, 1997; Iverson et 360 

al.,1997): (1) the downslope movement of the sliding mass supplies bulk translational energy which converts to 361 

grain/aggregate fluctuation energy when grains/aggregates are under shear along irregular surfaces; and (2) the 362 

slope-parallel moving velocity can convert into slope-normal fluctuation velocity when soil layers interact with 363 

the rough sliding bed. Continued occurrence of this process can mobilize the whole displaced landslide mass into 364 

a flow. In this sense, two reasons may be proposed for the differing movement of the two sub-blocks: (1) the 365 

moisture content may have differed at the time of the earthquake. The left sub-block in the pre-existing valley 366 

may have had higher moisture content, which promoted the occurrence of fragmentation; (2) the runout lengths 367 

of the two blocks were different. Greater runout length would promote the occurrence of the above-mentioned 368 

processes and enable fluidization of the entire sliding mass. 369 

Although some researchers consider air lubrication as the reason for the rapid movement of landslides 370 

where the displaced landslide materials slide on a thin layer of compressed air after topographic jumps (Kent, 371 

1966; Shreve, 1968), it should be noted that the air pressures needed to support the overburden sliding mass are 372 

unrealistically high (Erismann and Abele, 2001) and the agitated sliding mass is relatively permeable so that air 373 

pressure is likely to dissipate quickly through the debris. The test results shown in Fig. 17 were obtained under 374 

an idealized undrained condition with the introduction of an initial air pressure of 50 kPa, which elevated the 375 

potential for shear-induced generation of pore-air pressure. However, in the field condition the loess is cut by 376 

many vertical joints, which favors the quick dissipation of generated pore-air pressure. Furthermore, 377 

fragmentation of the displaced landslide mass would also disenable generation of high air-pressure. Therefore, 378 

we consider that the formation of an air cushion would not be possible during the movement of this landslide. 379 

5. Conclusions 380 
This paper presents the results of field surveys and experimental investigation of the Dangjiacha landslide 381 

triggered by the 1920 Haiyuan, China earthquake. Based on findings of the field surveys and results of undrained 382 

triaxial compression tests and ring-shear tests on loess samples taken from the source area, the mechanisms 383 

underlying this landslide were evaluated in detail. The following conclusions can be drawn. 384 

(1) Dangjiacha landslide was triggered by the flow liquefaction of loess soil, characterized by high mobility 385 

and a large runout distance but along a very gently sloped travel path. 386 

(2) Standing water and shallow groundwater existed in the source area even 80 years after the occurrence of 387 

the landslide, providing evidence for the high probability of water saturation of the loess layer near the sliding 388 

surface and of the occurrence of liquefaction within this soil layer after the shear failure occurred. 389 

(3) Laboratory tests on the loess samples from the landslide source area showed that they were liquefiable. 390 

The water-saturated loess could be liquefied after the slope instability was triggered by the strong earthquake. 391 

The big difference between the driving shear stress and the lowered shear resistance of the sliding surface 392 

enabled the displaced landslide mass to accelerate, resulting in rapid movement. The rapid downslope movement 393 

enabled more soil layers above the sliding layer to be fluidized, finally bringing the whole displaced landslide 394 

mass into flow. 395 
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(4) The fast ring shear tests showed that the loess at its natural moisture content with entrapped air had 396 

slightly reduced shear strength due to the increase of pore-air pressure. Although the generated pore-air pressure 397 

may play a role in the mobility of shallow landslides under an ideal undrained condition, it is unlikely to cause 398 

high mobility of large-scale landslides. The high mobility of Dangjiacha landslide was due mainly to the 399 

liquefaction failure of the water-saturated loess layers, not to the involvement of air in the movement. 400 

 401 
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Figure Caption: 537 

Fig. 1. Location of loess landslides area on the map of China 538 

Fig. 2. Dangjiacha landslide in Xiji, Ningxia, triggered by the 1920 Haiyuan Earthquake (photo was taken in 539 

1966). W1, W2: locations of Well 1 and Well 2; S1, S2: sampling locations of undisturbed and disturbed loess, 540 

respectively. 541 

Fig. 3. Topographic map of the Dangjiacha landslide area. 542 

Fig. 4. Cross section along Line I-I’ (a), longitude section along Line II-II’ (b) and Line D-E-F-G (c) in Fig. 2, 543 

respectively. 544 

Fig. 5. Wells located in the right (a) and left (b) sliding blocks and the investigation pit (c) near the well W1 545 

Fig. 6. Void ratios of loess soils at different elevations along line D-E in Fig. 2. S1: Sampling location of 546 

undisturbed loess. 547 

Fig. 7. Grain size distribution of loess from the source area of the right sliding block. 548 

Fig. 8. Microstructures of undisturbed sample. (a)×300, and (b) ×500. 549 

Fig. 9. Microstructures of disturbed sample. (a)×300, and (b) ×500. 550 

Fig. 10. Results from undrained triaxial compression tests performed on saturated, undisturbed loess samples 551 

(e=0.79). (a) Pore-water pressure against axial strain; (b) Effective stress path. FLL: Flow Liquefaction Line. 552 

Fig. 11. Undrained response of water-saturated loess sample to monotonic shearing. (a) Normal stress, shear 553 

resistance and pore-water pressure versus shear displacement; (b) Effective stress path (e = 1.06) 554 

Fig. 12. Undrained response of water-saturated loess sample to cyclic loading in the ring shear test. (a) Time 555 

series of normal stress, shear resistance, pore-water pressure and shear displacement; (b) Effective stress path 556 

(e = 0.99) 557 

Fig. 13. Undrained response to fast shearing of loess at its natural water content with entrapped air. (a) Time 558 

series data; (b) Mobilized friction angle and reduction in sample height versus shear displacement; (c) 559 

Specimen states before shearing (left) and after 6 seconds of shearing (right) (e = 1.42). 560 

Fig. 14. Undrained triaxial compression tests on remolded sample (e=0.79). (a) Pore-water pressure against axial 561 

strain; (b) Effective stress path. FLL: Flow Liquefaction Line. 562 

Fig. 15. Shear resistance at steady state versus void ratio for water-saturated loess samples 563 

Fig. 16. Definition of the travel angle (a) for a landslide 564 

Fig. 17. Results of tests on air-dried loess samples that were consolidated under the initial stress of (a) 100 kPa 565 

(e = 1.42), and (b) 50 kPa (e = 1.43). 566 
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Fig. 1. Location of loess landslides area on the map of China 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Dangjiacha landslide in Xiji, Ningxia, triggered by the 1920 Haiyuan Earthquake (photo was taken in 

1966). W1, W2: locations of Well 1 and Well 2; S1, S2: sampling locations of undisturbed and disturbed 

loess, respectively.  
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Fig. 3. Topographic map of the Dangjiacha landslide area. 
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Fig. 4. Cross section along Line I-I’ (a), longitude section along Line II-II’ (b) and Line D-E-F-G (c) in Fig. 2, 

respectively. 

 

 
 
 
 
 
 
 
 
 
 
Fig. 5. Wells located in the right (a) and left (b) sliding blocks and the investigation pit (c) near the well W1 
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Fig. 6. Void ratios of loess soils at different elevations along Line D-E in Fig.2. S1: Sampling location of 

undisturbed loess. 

 

 

 

 

 

 

 

Fig. 7. Grain size distribution of loess sample from the source area of the right sliding block. 
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Fig. 8. Microstructures of undisturbed sample. (a)×300, and (b) ×500. 

 

 

 

 

Fig. 9. Microstructures of disturbed sample. (a)×300, and (b) ×500. 
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Fig. 10. Undrained triaxial compression test results on saturated undisturbed loess samples (e=0.79). (a) 

Pore-water pressure against axial strain; (b) Effective stress path. FLL: Flow Liquefaction Line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Undrained response of water-saturated loess sample to monotonic shearing. (a) Normal stress, shear 

resistance and pore-water pressure versus shear displacement; (b) Effective stress path (e = 1.06) 
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Fig. 12. Undrained response of water-saturated loess sample to cyclic loading in ring shear test. (a) Time 

series data of normal stress, shear resistance, pore-water pressure and shear displacement; (b) Effective 

stress path (e = 0.99) 
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Fig. 13. Undrained response to fast shearing of loess sample in natural water content state with entrapped air. 

(a) Time series data; (b) Mobilized friction angle and reduction in sample height versus shear 

displacement; (c) Specimen states before shearing (left) and after 6 seconds of shearing (right) (e = 1.42). 
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Fig. 14. Undrained triaxial compression tests on remolded sample (e=0.79). (a) Pore-water pressure against 

axial strain; (b) Effective stress path. FLL: Flow Liquefaction Line. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Shear resistance at steady state versus void ratio for water-saturated loess samples 
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Fig. 16. Definition of the travel angle (a) for a landslide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Results of tests on air-dried loess samples that were consolidated under the initial stress of (a) 100 

kPa (e = 1.42), and (b) 50 kPa (e = 1.43), respectively. 
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