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ABSTRACT. Homogenous strontium titanate (SrTi03) nanofibers were prepared via the 

electro spinning of precursor solutions with both strontium and titanium salts. Photocatalytic 

activities of these SrTi03 nanofibers for hydrogen generation from water were examined and 

compared to that of SrTi03 nanoparticles. The nanofibers calcined at 700 °C showed the highest 

photocatalytic activity of 167 µmol h-1g-1 among the SrTi03 samples tested. The high activity 

was attributed to the ideal stoichiometric ratio of Ti/Sr, small crystallite size, high crystallinity, 
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mesoporous structure, large surface area, and appropriate energy gap. These were confirmed 

through field emission scanning electron microscopic with energy dispersive spectroscopic 

observations, X-ray diffraction patterns, N2 gas absorption-desorption isotherm measurements, 

photo-electron yield spectroscopy in air, and UV -visible spectrophotometry. 

INTRODUCTION 

Hydrogen is recognized as an alternative to fossil fuel since it has a high heat of 

combustion and its by-product is water instead of carbon dioxide. However, there are no 

significant natural deposits of hydrogen gas; thus the currently viable technologies for its 

production, like the reforming of natural gas or the use of electricity from renewable energy in 

the electrolysis of water must be improved since these methods are still inefficient in terms of 

carbon and energy usage.1 Among the two methods mentioned, water-splitting via electrolysis 

has the potential for a low carbon emission energy cycle. Interest in the development of 

semiconductor photocatalysts which can absorb light and convert it to an electron-hole pair in the 

right energy level to catalyze the direct splitting of water has increased since hydrogen was first 

produced from water over titanium dioxide (Ti02) electrodes without the application of electric 

power.2 Strontium titanate (SrTi03), like anatase Ti02 , has band levels suitable for 

photocatalytic water splitting since its valence band and conduction band is lower and higher 

than the oxidation-reduction levels of water respectively. But unlike Ti02 , the perovskite 

structure of SrTi03 facilitates for easier doping for electronic modification.3·4 

The use of inorganic semiconductor materials in the powder form instead of bulk 

photoanodes have been considered due to difficulties in construction, issues of stability under 

light, and lower surface areas of bulk photoanodes.5 Pure SrTi03 powders have been shown to 
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evolve hydrogen in the presence of sacrificial reagents that act as hole scavengers like methanol,6 

with higher evolution rates or visible light photocatalysis achieved upon metal doping.7
' 

8 

Photocatalytic decomposition of water without the use of sacrificial agents had also been 

reported using nickel oxide-9
'

10 and platinum-11 loaded SrTi03 powders. Among nanostructures, 

the use of a nanofiber morphology is of interest since we had previously found that anatase Ti02 

nanofibers have higher hydrogen production over nanoparticles .12 However, the preparation of 

homogenous SrTi03 nanofibers has been difficult. SrTi03 nanofibers prepared via the 

hydrothermal reaction of electrospun Ti02 nanofiber with strontium salts have led to 

heterogenous structures.13
' 

14 In this report we improved and modified the methods for 

preparation and photophysical characterization of pure and homogenous SrTi03 nanofibers via 

the electrospinning of precursor solutions containing both the titanium and strontium salts. We 

likewise examined the photocatalytic performance in terms of hydrogen production rates of 

SrTi03 nanofibers prepared through the electrospinning of precursor solutions with both 

strontium and titanium salts. 

EXPERIMENTAL SECTION 

Preparation of Spinning Solutions 

SrTi03 nanofibers were prepared with a modification from the previously reported 

procedure.15 Instead of strontium acetylacetonate (SrAcAc), strontium acetate (SrAc, 1.3 g, 

W ako) was used to prepare inorganic load solutions by mixing with equimolar amounts of 

titanium butoxide (2.0 g; Aldrich) in acetylacteone (0.6 g; Aldrich). These solutions were then 

separately mixed with a solution of polyvinylpyrrolidone (0.80 g; Mw = 1,300,000; Aldrich; 

PVP) in acetic acid ( 10 .0 mL; W ako) and stirred for 1 h to obtain precursor spinning solutions. 
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Preparation of SrTi03 Nanofibers 

The prepared precursor solutions were then loaded into a plastic syringe with a stainless 

steel needle (1 cm long; 22-gauge). This needle is connected to the positive electrode of a high 

voltage power supply (15 V; Gamma High Voltage Research). An aluminum sheet was used as 

the collector plate and was set 15 cm away from the needle and was connected to the grounding 

electrode of the high voltage power supply. A syringe pump (KDScientific 100) was used to 

control the flow rate at 1 mL h-1
• The nanofibers that were collected were exposed to atmospheric 

moisture for 5 h for complete hydrolysis . Organic content were then removed from the 

electrospun fibers via calcination at 500, 600, 700, and 800 °C for 3 h. The ramping time for all 

calcination regimes were set at 30 minutes. 

Characterization of SrTi03 Nanofibers 

The prepared SrTi03 nanofibers and a sample of commercially available SrTi03 

nanoparticles (NPs; W ako) were characterized for various properties related to hydrogen 

production activity. Thermogravimetry-differential thermal analysis (TG-DTA: Rigaku TG812 

Thermoplus 2) was performed to determine the contents of the electrospun nanofibers after 

calcination. The nanofiber samples were measured against an Al20 3 sample under argon 

atmosphere. The temperature profiles for the TG-DTA analysis followed the calcination regimes 

used. The morphology and ratio of titanium to strontium (Ti/Sr) were characterized by field­

emission scanning electron microscopy with energy dispersive spectroscopy (FE-SEM/EDS; 

JEOL JSM-6500FE). X-ray diffraction (XRD; Rigaku RINT 2100) spectroscopy was used to 

measure crystalline properties such as relative perovskite content and crystallite size. The surface 

areas were estimated by the Brunauer-Emmett-Teller (BET) technique and the average pore size 
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was estimated by the Non-localized Density Functional Theory (NLDFT) method from the 

adsorption-desorption plots obtained using an automatic water vapor adsorption apparatus (BEL 

Japan; BELSORP 18). The optical energy gap (Eg) was estimated from the absorbance spectra 

obtained using a UV-visible spectrophotometer (Shimadzu; UV-2450) fitted with an IRS-2200 

integrating sphere attachment following a modified version of the Tauc model.16 The valence 

band levels of the nanofibers were measured via photo-electron yield spectroscopy in air (Riken 

Keiki; AC-3) with the irradiating intensity of the light source set at 100 nW. 

Photocatalytic Hydrogen Production 

The hydrogen production activity of the nanofibers and NP samples were measured by 

dispersing 1 g of a sample in an 800 mL solution (40% v/v methanol:water) inside an inner­

irradiation type Pyrex photoreactor with a headspace of 700 mL. A 450 W high-pressure 

mercury lamp (Ushio; UM 452) was contained inside the inner cylindrical water-jacket cooled at 

30°C. The Pyrex water-jacket cut-off most of the ultraviolet and infrared radiation of the light 

source. The reactor was purged with argon gas before the start of the photoreaction and the 

light was stabilized for 10 min before sampling. The concentration of hydrogen and oxygen gas 

was measured simultaneously with the photoreaction using a gas chromatograph fitted with a 

thermal conductivity detector (Shimadzu; GC-8A; molecular sieve SA; argon carrier gas). 

RESULTS AND DISCUSSION 

In the previously reported optimization of the spinning solution, SrAcAc was used as the 

strontium salt since it is soluble in a wider range of inorganic solvents. In the same optimization, 

acetic acid was found to be the ideal spinning solution solvent for solutions containing 20 

(w/v)% titanium salt load, equimolar amounts to titanium of strontium salt, and 8 (w/v) % of 
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PVP polymer guide.15 In this report, SrAc was used instead as it is more soluble in acetic acid 

compared to Sr Ac Ac. Through the SEM observations as shown in Figure 1, it was confirmed 

that the electrospun fibers from SrAc solutions were also homogenous and were without rods and 

beads. The average diameters of the nano fibers significantly decreased when the calcination 

temperature was raised from 500 °C to 600 °C (243 nm to 142 nm) . The average diameter did not 

change significantly with the further rise of calcination temperature to 700 °C or 800 °C (138 and 

136 nm, respectively). This may be largely attributed to the degradation of the organic contents; 

specifically the PVP polymer guide. This is supported by the TG plots obtained for the different 

calcination regimes (Figure 2). The nanofibers obtained after 500 °C calcination were 44.2 wt% 

of the original while the nanofibers obtained after 600 °C were 40.7 wt% of the original. The 

nanofibers obtained after 700 and 800 °C calcination were 38.8 wt% and 38.6 wt% of the 

original. This indicates that the majority of the organic matter is eliminated upon calcination at 

600 °C and the nanofibers calcined at 700 °C and 800 °C had most of the carbonates removed as 

confirmed by the prominent endothermic curves during the temperature maintaining region in the 

TGA plots (Figure 2). The electrospun fibers were confirmed to be of the perovskite crystalline 

structure of SrTi03 via their XRD patterns (Figure 3). Samples for all calcination temperatures 

tested have a prominent (110) perovskite peak at 32° of 28. However, the nanofibers calcined at 

500 °C have SrC03 peaks also present in the XRD spectra with the most prominent peak at 25° of 

28. As the calcination temperature is further raised, the carbonate contents were removed such 

that the SrC03 peaks gradually subsided in the XRD patterns of the electropsun fibers calcined at 

700 °C and 800 °C. The XRD patterns of the nanofibers calcined at 700 °C and 800 °C were 

similar to the XRD pattern of the NP sample and the SrTi03 diffraction data of JCPDS 35-0734. 

The relative amount of the perovskite phase from the XRD patterns were determined from the 
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peak intensities of the major characteristic peak for the perovskite (28 = 32°, JP) and the impurity 

(28 = 25°, /) following the equation: 17 

Perovskite phase (wt%) = 100 * IP I (IP+ Ji) ( 1) 

The peak at 28 = 25° was selected as the impurity peak since anatase Ti02 is also 

manifested at the peak. The nanofibers calcined at 500 °C contain 49.8 wt% perovskite. At a 

higher calcination temperature of 600 °C, most of the organic contents were removed from the 

nano fibers such that the weight percent of the perovskite phase reached 98 .8 wt%. In the cases of 

calcination at 700 °C and 800 °C, all the samples were mostly of the perovskite phase (100 wt%) 

indicating that the crystalline phase of nanofibers were almost pure SrTi03 • The obtained 

patterns for the NP sample also shows almost an exact match of the standard diffraction data of 

SrTi03 , indicating that the perovskite phase of the NPs is of 100 wt%. EDS analysis also 

supported the confirmation of the presence of both strontium and titanium in the nanofibers and 

that the atom ratio of titanium to strontium (Ti/Sr) is near to the stoichiometric ratio of 1 for the 

perovskite structure of SrTi03 • Figure 4b shows that the fabricated nanofibers have Ti/Sr ratios 

that are 0.01 to 0.13 away from the ideal stoichiometric ratio, confirming that indeed SrTi03 

nanofibers were fabricated. 

The photocatalytic activities in terms of hydrogen production rate for the electrospun 

nanofibers calcined at 500, 600, 700 and 800 °C were considerably higher (81 - 167 µmol h-1g-1
) 

than that of the NP sample (32 µmol h-1g-1
) (Figure 4a). The photocatalytic hydrogen production 

rate of the fibers calcined at 500 °C is 85 µmol h-1g-1
• The rate slightly decreased for the fibers 

calcined at 600 °C (81 µmol h-1g-1
). The nanofibers calcined at 700 °C have the highest hydrogen 

production rate of 167 µmol h-1g-1
, and those calcined at 800 °C have a slightly lower activity of 
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141 µmol h-1g-1
• Electrospun nanofibers from SrAcAc were also tested for photocatalytic activity 

for comparison (Supporting Information 3). The best performing fibers from SrAcAc solutions 

were those calcined at 800 °C with a significantly lower hydrogen production rate of 14 µmol h-

1 -1 g . 

The photocatalytic activity of the SrTi03 catalysts depends on the interplay of a number 

of factors that are affected by the calcination temperature. One of these factors is the 

stoichiometric ratio of Ti to Sr. Reported SrTi03 films were found to be more active for the 

photodegradation of Victoria Blue dye if the Ti/Sr ratio were more equimolar and not Ti- or Sr-

rich.18 As can be seen in Figure 4a and 4b, the photocatalytic activity follows the inverse of the 

trend of the difference of Ti/Sr ratio with the equimolar value of 1. The NP sample with Ti/Sr 

ratio of 1.35, which was the farthest away from the stoichiometric ratio of 1, showed the lowest 

activity. The electrospun nanofibers, which had closer to stoichiometric Ti/Sr ratio of 1 have 

higher activities. The calcined sample at 700 °C with Ti/Sr ratio of 0.99 had the highest activity, 

followed by the one calcined at 800 °C with Ti/Sr ratio of 1.03. While the photocatalytic 

activities of the calcined sample at 500 °C with Ti/Sr ratio of 1.08, and the calcined one at 600 °C 

with Ti/Sr ratio of 1.13 were relatively lower. These Ti/Sr ratios of nanofibers from SrAc 

solutions are improvements from the Ti/Sr ratios of SrAcAc fibers (1.36, 1.37, 1.33, and 1.26 for 

fibers calcined at 500 to 800 °C respectively)15
• The improvement of the Ti/Sr ratios of the 

nanofibers from SrAc solutions maybe due to less steric hindrance of the acetate salt compared 

to that of the acetylacetonate salt in the interaction with PVP and the higher solvent interaction of 

SrAc compared to SrAcAc. 

Another factor in determining the photocatalytic activity of inorganic photocatalysts is 

the crystallite size. Generally, inorganic photocatalysts with smaller crystallite sizes have higher 
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activities because smaller crystallite sizes can lead to quantum size effects in semiconductors.19 

The trend in photocatalytic activity of the nanofibers followed the inverse of the trend of 

crystallite sizes (Figure 4a and 4c). The crystallite sizes of the nanofiber samples at each 

calcination temperature and that of NPs were estimated from the (110) peak (Figure 2) according 

to the Scherrer equation. The NPs had the largest crystallite size of 49.2 nm and the lowest 

activity. The electrospun nanofibers have considerably smaller crystallite sizes than that of NPs 

and considerably exhibited higher activities. The crystallite size of the nanofibers generally 

increased with the rise in calcination temperature' from 23 .6 nm (calcined at 500 °C) to 26 .8 nm 

(800 °C) . A relatively large increase is observed when the temperature is raised from 500 °C to 

600 °C. This increase is expected as a larger amount of organic content was removed from the 

fibers, leading to the increase in the weight percent of perovskite as confirmed by TG-DT A 

curves and XRD patterns. The size increase plateaued as the temperature was raised from 600 °C 

to 700 °C then continued to increase when the temperature was further raised to 800 °C. The 

plateau may be due to the small difference of the perovskite phase weight percent between the 

nanofibers obtained after the calcination at 600 °C and 700 °C. The increase of crystallite size of 

the nanofibers obtained after the calcination at 800 °C as compared to the case of the calcination 

at 700 °C may be due to the partial sintering and the growth of the fine SrTi03 crystallites, as 

confirmed by the DT A curves, since all of the crystalline material is already of the perovskite 

phase. The largest crystallite size of the electrospun fibers from SrAc solutions is similar to the 

crystallite size of the best performing nanofibers from SrAcAc solutions (26.6 nm). 

The trend in crystallite sizes is closely related to that in pore sizes. Inorganic materials 

can be macroporous/non-porous, microporous, or mesoporous. The nitrogen adsorption­

desorption isotherms of the nanofibers and NPs show that the nanofibers maybe of a mesoporous 
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structure smce they have the characteristics of a Type IV isotherm and that NP is of a 

macroporous/non-porous structure (Type II) (Figure 5).20 Mesoporous materials have been 

shown to have higher activity due to higher surface interaction.11 The hysteresis loop of the 

isotherms for all electrospun nanofibers are of the type H3. H3 loops are usually observed for 

materials in aggregates of plate-like particles resulting to slit-shaped pores20
• The slit widths, W, 

and pore volume, Vp, of the nanofibers are obtained using NLDFT analysis. W for all nanofiber 

samples is lower than the respective crystallite size. W decreased from 2.36 nm to 1.18 nm, while 

Vp remained relatively constant (0.094 cm3 g-1 and 0.098 cm3 g-1
, respectively) when the 

calcination temperature was raised from 500 °C to 600 °C. The decrease in pore width may be 

due to the crystal growth as can be seen in the trend in crystallite size, while the organic content 

still present in both the 500 °C and the 600 °C samples may be the reason why the pore volume is 

stable. W then increased from 1.18 nm to 1.95 nm while Vp decreased from 0.098 cm3 g-1 to 

0 .039 cm3 g-1 when the calcination temperature was raised from 600 °C to 700 °C. This may be 

due to the removal of organic content while the crystallite size remains relatively constant. A 

significant decrease in W from 1.95 nm to 0 .46 nm accompanied by a large increase in VP from 

0.039 cm3 g-1 to 0.214 cm3 g-1 can be seen when the calcination temperature was raised from 700 

°C to 800 °C. This is largely attributed to the sintering and growth of the crystallites.21 Although 

the Vp of the 800 °C nanofibers is relatively larger than that of the 700 °C calcined nanofibers, a 

W of 0 .46 nm can only accommodate less than four water molecules passing together, which 

may be the reason why the activity for the sample calcined at 700 °C is higher than the activity 

for the one calcined at 800 °C. 

Another important parameter that can be measured from the adsorption-desorption 

isotherms is the BET surface area. Materials with high surface areas are expected to have higher 
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activity because of the better contact between the electron-hole pair in the photocatalyst and the 

adsorbate (viz. water molecule) at the interface.22 The BET surface area of the calcined nanofiber 

samples decreased with rise of the calcination temperature. The decrease in BET surface area 

when the calcination temperature was raised from 500 °C to 700 °C is linear and is of a larger 

slope (from 122.0 m2g-1 to 75.0 m2g-1 to 31.3 m2g-1
) than the decrease from 700 °C to 800 °C 

(from 31.3 m2g-1 to 23.5 m2g-1
). The larger slope of the decrease from 500 °C to 700 °C may be 

due to the removal of the organic contents, which have a larger surface area than the crystalline 

material. The decrease of the BET surface area from 700 °C to 800 °C may be due to the growth 

of the SrTi03 crystallites, which reduces the pore volume in the material. For all the calcination 

temperatures tested (500, 600, 700 and 800 °C) the electrospun nanofibers from SrAc solutions 

have higher BET surface areas than nanofibers from SrAcAc solutions (34.8 m2g-1
, 23 .1 m2g-1

, 

18.1 m2g-1
, and 16.0 m2g-1 respectively)15 and NPs (16.3 m2g-1

). Although the trend in BET 

surface area is decreasing with the rise of calcination temperature, nanofibers calcined at a higher 

temperature have a higher activity. This variance may be explained by the interplay between the 

trends of crystallinity and BET surface area in relation to the calcination temperature. The 

crystallinity generally increases with the increase in calcination temperature as some order is 

achieved in the initially amorphous materials. High photocatalytic activities are expected for 

materials with high crystallinities rather than materials with amorphous structure, since 

amorphous materials have been shown to lead to the recombination of the photo-generated 

electron-hole pair.21 The higher relative perovskite content of the samples calcined at higher 

temperatures may help explain the increase in photocatalytic activity with the decrease in BET 

surface area. This can be clearly seen in the increasing trend of hydrogen production rate per 

surface area unit as compared to the hydrogen production rate per mass unit (Figure 4a). The 
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interplay of the decrease in BET surface area and the increase in crystallinity can help explain 

the decrease of the hydrogen production rate per mass unit of the 800 °C from that of the 700 °C 

sample. 

Aside from these physical properties, the electronic band levels of the photocatalysts also 

affect the hydrogen production activity. Figure 6 shows the valence and conduction band levels 

of the calcined nanofibers and NP. The valence band is determined from the photo-electron yield 

spectra (Figure 7). The valence band levels for the electrospun nano fibers and the NPs are 

similar (500 °C: 6.82+0.26 eV; 600 °C: 6.85+0.46 eV; 700 °C: 6.84 +0.28 eV; 800 °C: 6.85 + 

0.35 eV; NPs: 6.75 +0.30 eV), and below the oxygen oxidation level of 5.32 eV at pH 7. The 

conduction band levels are determined from the difference of the valence band levels and the 

estimated E
8

• The E
8 

of the nanofiber samples were determined from a modified version16 of the 

Tauc plot technique wherein the total absorbance A was plotted instead of the extinction 

coefficient a following the Tauc equation for direct transitions: (hva)2 
= a(hv - E

8
). a was 

replaced by A since from the Lambert-Beer-Bouguer law, a= ln(lO) Aid where dis the thickness 

of the film which was kept constant during the measurements, thus the equation can be rewritten 

as (hvA)2 =a '(hv - E
8

) where a' represents another constant different from a. The estimated E
8 

for the nanofiber samples from the modified Tauc plots (Figure 7) are 3 .11 + 0 .08 e V for those 

that are calcined at 500 °C, 3.12+0.05 eV for those that are calcined at 600 °C, 3.06 3.19+0.08 

e V for those that are calcined at 700 °C, and 3 .06 + 0 .06 e V for those that are calcined at 800 °C. 

Therefore the conduction band levels of the nanofibers were determined to be above the 

hydrogen reduction level of 4.08 e V at pH 7. Since the valence and conduction bands for all 

samples are below and above the oxygen oxidation and hydrogen reduction level at pH 7, 
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respectively, the samples with narrower Eg are expected to have higher activity. The nanofibers 

calcined at a higher temperature have a slightly narrower Eg than the nanofibers calcined at a 

lower temperature. This is consistent with the trend in photocatalytic activity. This narrower Eg 

may be due to the presence of SrC03 peaks in the samples calcined at a lower temperature and 

the higher amount of amorphous phase.23 All the Eg of the electrospun nanofibers though are 

slightly larger than that of NPs (3.03 +0.06 eV). Since other physical properties discussed above 

for NPs are inferior compared to that of the nanofibers, the photocatalytic activity of NPs is 

significantly lower than that of the nanofibers. 

CONCLUSIONS 

Homogenous SrTi03 nanofibers were reproducibly prepared via the electrospinning of 

clear precursor solutions, which contained both the strontium and the titanium salts . 

Photocatalytic properties in terms of BET surface area, Ti/Sr ratio, and crystallinity were 

improved when the strontium salt was changed from SrAcAc to Sr Ac. This improvement may be 

largely attributed to better interaction of the strontium salt with PVP and the acetic acid solvent. 

The electrospun nanofibers from SrAc solutions calcined at 700 °C gave the best photocatalytic 

performance of 167 µmol h-1g-1 among all the calcination temperatures tested. This value is 

significantly higher than that of the best performing nanofibers from SrAcAc solutions with an 

activity of 14 µmol h-1g-1 which is calcined at 800 °C. More importantly, it is significantly higher 

than that of NPs with 32 µmol h-1g-1
• This is because the nanofibers electrospun nanofibers from 

SrAc solutions calcined at 700 °C have better if not comparable photocatalytic properties as 

compared to NPs. Although the electrospun nanofibers have a slightly wider Eg (3.06 eV for 

nano fibers calcined at 700 °C vs. 3 .03 e V for NPs), the Ti/Sr ratio is closer to the ideal 
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stoichiometric ratio (0 .99 for nanofibers calcined at 700 °C vs. 1.35 for NPs) and the crystallite 

size is smaller (23 .6 nm for nanofibers calcined at 700 °C vs. 49 .2 nm for NPs). The electro spun 

nanofibers are mesoporous (W = 1.95 nm for nanofibers calcined at 700 °C) as compared to the 

macroporous/non-porous NPs. In addition they have a larger BET surface area (31.3 m2 g-1 for 

nanofibers calcined at 700 °C vs. 11.6 m2 g-1 for NPs) and comparable crystallinity. The 

photocatalytic activity for hydrogen production for nanofibers calcined at 700 °C (167 µmol h-1 g-

1
) is even higher than the reported hydrogen production of Ti02 nanoparticles (ST-01, Ishihara) 

and anatase nanofibers, which is attained as 18 µmol h-1g-1 and 54 µmol h-1g-1 respectively.12 
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FIG.I. SEM images of the electrospun nanofibers calcined at (a) 500, (b) 600, (c) 700, and (d) 

800 °C and ( e) of the NP sample. The average diameters are indicated. 
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FIG. 2. TG-DTA plots of the electrospun fibers following the temperature regime used for 

calcination at (a) 500, (b) 600, (c) 700, and (d) 800 °C. 
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FIG. 3. XRD patterns for the electrospun nanofibers calcined at 500, 600, 700, and 800 °C and 

for the NP sample. Standard diffraction data of JCPDS 35-0734 for SrTi03 , JCPDS 05-0418 for 

SrC03 , JCPDS 12-1276 for rutile Ti02 , and JCPDS 6-0510 for SrO are also marked. 
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FIG. 5. Nitrogen adsorption (solid black line) - desorption (dashed black line) isotherms of the 

electrospun nanofibers calcined at (a) 500, (b) 600, (c) 700, and (d) 800 °C, and (e) of the NP 

sample. The computed pore volume VP and the slit widths W for the mesoporous nanofibers are 

shown in (f) using NLDFT analysis (inset). 
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FIG. 6. Band diagrams of the electrospun nanofibers calcined at 500, 600, 700, and 800 °C, and 

of the NP sample. The reduction-oxidation potential levels of hydrogen (blue dashed line) and 

oxygen (red dashed line) at pH = 7 are also indicated. The valence band levels are estimated 

from photo-electron yield spectra in air, errors are indicated as black dotted lines. The 

conduction band levels are determined from the valence band levels and the estimated Eg, errors 
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