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 First-principles study in Fe grain boundary with Al segregation: 

Variation in electronic structures with straining 

First-principles fully relaxed tensile tests were performed on a Σ3 (111)/[11
_

0] tilt 

Fe grain boundary (GB) segregated with Al. The effects of Al segregation on 

bond breaking in the GB were compared with those of Cu and P, which are 

typical GB embrittlers because of charge transfer and covalent-like characteristics, 

respectively. It was suggested by first-principles tensile tests that the 

intergranular embrittling potency of Al is as strong as that of Cu. However, this 

result disagreed with an estimation based on the Rice-Wang thermodynamic 

model. The first bond breaking site in the Al-segregated GB was the Fe-Fe bond 

neighbouring the Al atom, as in the Cu-segregated GB. This is typical of bond 

breaking due to charge transfer. However, no charge transfer was observed from 

the Fe atom to the Al atom, while the Fe atom neighbouring the Al atom showed 

covalent-like characteristics. It was suggested from investigations of the charge 

density at the bond critical point that the effect of covalent-like characteristics of 

Al on the Fe-Fe bond was small in the initial stage of straining, but it increased as 

the charge density of the Fe-Fe bond decreased with increasing strain. The 

investigation of the dynamic change in electronic structure also shed light on the 

difference of bond breaking behaviour in metallic and covalent-like bonding in 

metallic materials. 

Keywords: First-principles calculations; embrittlement; interfacial segregation; 

grain boundaries 

 

1. Introduction 

Enhancement of grain boundary (GB) embrittlement by impurity segregation is a 

critical problem from both industrial and scientific viewpoints, and its mechanism has 

been discussed for several decades [1-7]. Rice and Wang [1] investigated segregation 

effects on GB embrittlement from the thermodynamic viewpoint, and showed that the 

difference in binding energy between the GB and the fracture surface is critical in 

determining whether an impurity is an embrittler or a cohesion enhancer. Recent 
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significant progress in computational technology enables accurate determination of the 

binding energies by first-principles calculation [6-12]. More recently, first-principles 

fully relaxed tensile tests have been performed to investigate the variation in the atomic 

and electronic structures of the GB in relation to strain [13-19]. For example, it has been 

found by first-principles fully relaxed tensile tests that charge transfer occurs during 

straining, resulting in a change in mechanical properties [17]. A dynamic change in 

atomic and electronic structures with straining can give physical insight into the 

mechanisms for GB embrittlement enhanced by impurity segregation.  

A variety of elements have always been added to advanced steels to impart high 

materials performance. There have been many reports on effects of various elements on 

Fe GB embrittlement [7,8,10-12,18-22]. Mintz et al. [23] experimentally demonstrated 

that Al induces a decrease in ductility of Fe alloys, while Al play a vital role in 

strengthening of Fe alloys. Seah [21] suggested that Al induces GB embrittlement of Fe, 

on the basis of thermodynamic data and the atomic size. On the other hand, Geng et al. 

[22] investigated the effects of 42 additional elements on Fe GB decohesion based on 

first-principles calculations, and showed that Al is a weak cohesion enhancer, which is 

different from the systematic trend of other additive elements. Consequently, it is of 

interest to investigate the decohesion of the Fe GB segregated with Al. In addition, Al 

exhibits the covalent-like characteristics due to p electrons [24], although it is a metal 

element. The present authors studied embrittlement in an Fe GB segregated with P and 

Cu [18,19]. In the P-segregated Fe GB [18], the first atomic bond breaking occurs at an 

atomic bond between a segregated P atom and a neighbouring host Fe atom when the 

mobility of the bond is reduced because of covalent-like bonding. In contrast, in the Cu-

segregated Fe GB [19], it occurs at a bond of host Fe atoms neighbouring a segregated 

Cu atom in the case that the bond of the host atoms is weakened because of charge 
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transfer. That is, the bonding states exhibit not only metallic but also covalent-like 

characteristics with segregation, even if in metal such as Fe. As mentioned above, Al 

has covalent-like characteristics, but its covalent-like characteristics are weaker than 

those of P. It is also of interest to elucidate the effect of Al on the bond breaking in the 

Fe GB. 

In the present work, first-principles fully relaxed tensile testing was performed 

on a Σ3 (111)/[11
_

0] tilt Fe GB segregated with Al, and the effects of Al on GB 

decohesion are compared with those of Cu and P from the dynamic variation in 

electronic structures with straining. According to the Rice and Wang thermodynamic 

(R-W) model, Al is a weak cohesion enhancer, while Cu and P are strong embrittlers 

(see Table 1). However, the first-principles fully relaxed tensile test showed that the 

effect of Al as an embrittler was as strong as that of Cu in the present work. The change 

in electronic structures with straining is critical in Fe GB embrittlement enhanced by Al, 

and may lead to the nature of bond breaking in metallic and covalent-like bonding. 

 

2. Computational method 

BCC Fe cells with a Σ3 (111)/[11
_

0] tilt GB were used: one was a cell without 

segregation at the GB (the clean GB), the others were cells with Al, Cu or P segregation 

at the GB (the Al-, Cu-, or P-segregated GBs), in which an Fe atom (Fe2) at the GB was 

substituted by the segregation atom, as shown in Fig. 1. To estimate if Al has a tendency 

to segregate into an Fe GB, the segregation energy of Al was investigated by calculating 

the total energies in the cases with substitution of an Al atom for Fe2 atom (in the GB) 

and with substitution of an Al atom for Fe4 atom (in the bulk). The segregation energy 

of Al in the Fe GB was -0.56 eV/atom, indicating that the Al-segregated Fe GB is 

energetically stable. Also, the segregation energy of another Al-segregated GB where an 
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Al atom was substituted for the Fe3 atom was calculated, and its segregation energy was 

-0.22 eV/atom. Thus, the substitution for the Fe2 was energetically favorable. The Cu- 

and P-segregated GBs were the same as those used in the previous work [18,19]. The 

initial cell size was 4.05×7.02×14.89 Å
3
. Geometry optimization calculations were 

performed using the Cambridge Serial Total Energy Package (CASTEP) [25], in which 

density functional theory [26,27] was used with a plane wave basis set to calculate the 

electronic properties of solids from first principles. The exchange–correlation 

interactions were treated using the spin-polarized version of the generalized gradient 

approximation within the scheme due to Perdew-Burke-Ernzerhof [28]. All calculations 

were done on the ferromagnetic state. The ultrasoft pseudopotentials [29] represented in 

reciprocal space were used for all elements in the calculations. The Kohn-Sham wave 

functions of valence electrons were expanded to the plane wave basis set within a 

specified cutoff energy (300 eV). The Brillouin zone was sampled using a Monkhorst-

Pack 6×4×2 k-point mesh and Gaussian smearing with 0.1 eV width.  

After the geometry optimization calculation including cell optimization, a 

uniaxial tensile strain with an increment of 2% in the [111] direction, which was normal 

to the GB plane, was applied to the cells for the first-principles fully-relaxed tensile 

tests. The lattice dimensions in the GB plane were fixed, neglecting Poisson’s ratio to 

simplify the calculation [13-16,18,19]. This step was repeated until GB fracture 

occurred. In each step, all atomic positions were optimized in accordance with Hellman-

Feynman forces until all forces were less than 0.03 eV/Å. In the present study, a 

difference in binding energy between the GB and the free surface was calculated in the 

static case where the fracture surface was arbitrarily set between the two atomic layers 

in the GB, and the dynamic case where the fracture surface was the surface after GB 

fracture by the first-principles fully relaxed tensile test. 



6 

 

 

3. Results 

Figure 2 shows stress-strain curves for the clean GB and the Al-, Cu- and P-segregated 

GBs. It is experimentally well known that P is a strong Fe GB embrittler [30]. Nachtrab 

et al. [31] experimentally demonstrated that ductility loss in Fe alloys is caused by 

addition of Cu, which results from both grain boundary precipitation and segregation. 

Also, it was experimentally shown that Al induced ductility loss in Fe alloys. Thus, the 

simulation result that P, Cu and Al are embrittlers of Fe agrees with the experimental 

facts. Inspection of Fig. 2 shows that Al is as strong an embrittler as Cu, although it is a 

weaker embrittler than P. In general, ductility depends on many microstructural factors 

such as the concentration of segregation impurities, the grain size and the grain 

boundary misorientation. Besides, GB precipitation affects GB embrittlement. To the 

authors’ knowledge, there are no experimental data which demonstrate that Al is as 

strong an embrittler as Cu. In addition, effects of segregation on the stress-strain 

behaviour depend on the segregation site [32]. Therefore, the intergranular embrittling 

potency of Al is not always the same as that of Cu. Consequently, the simulation result 

in Fig. 2 suggests that Al occasionally play a role as a GB embrittler as well as Cu. The 

effects of an impurity on GB decohesion can be divided into the chemical effect related 

to the chemical bonding, and the mechanical effect due to a size difference between an 

impurity atom and a host atom [7,9,12]. The atomic size of Al is larger than that of Fe, 

while Cu is almost the same size as Fe. Schweinfest et al. [5] showed that the atomic 

size difference plays a critical role in the enhanced GB embrittlement of Cu by Bi 

segregation. In addition, Geng et al.
 
[33] pointed out the importance of the volume 

effect for high accuracy measurement of enhancement of GB embrittlement by 

segregation. However, it seems that the mechanical effect on the flow stress is small in 
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the cases considered in the present work, because of no residual compressive stress prior 

to straining [15]. 

According to R-W model [1], the binding energy at the GB, ΔEGB, and at the 

free surface, ΔESF, and the binding energy difference, ΔEGB-ΔEFS, are shown in Table 1. 

It can be seen that the intergranular embrittling potency of Al is much lower than that of 

Cu in both the static and the dynamic cases, based on the R-W model. Note that the Al 

is a cohesion enhancer in the static case, which agrees with the result by Geng et al. [22]. 

Thus, there is a large difference between the results from the R-W model and from the 

first-principles tensile tests, suggesting that variations in the atomic and electronic 

structures with straining play a vital role in GB embrittlement enhanced by Al 

segregation. The difference in binding energy between the static case and the dynamic 

case is discussed later. The binding energy difference in the P-segregated GB in the 

present work is larger than that in the previous work [7]. This may be due to difference 

of P segregation site: the P atom is located at the substitutional position [20] in the 

present work, while it is located at the interstitial position in the previous work [7]. 

The atomic configuration of (1 1 0) in the clean GB and the Al-, Cu- and P-

segregated GBs during straining are shown in Fig. 3. Inspection of Fig. 3 reveals that 

the first bond breaking occurs at the Fe1-Fe3 bond in the Al-segregated GB. The same 

trend is found in the Cu-segregated GB, but not in the P-segregated GB.  

The numbers of s, p and d electrons in the Fe1 atom, which are obtained by the 

Mulliken population analysis [34], are listed in Table 2. No charge transfer from the Fe 

atom to the Al atom occurs in the Al-segregated GB. This cannot be explained from the 

electronegativity. Charge transfer weakens the neighboring Fe-Fe bond, resulting in the 

first bond breaking of the Fe-Fe in the Cu-segregated GB [19]. In the Al-segregated GB, 

however, charge transfer is not responsible for the first bond breaking at the Fe-Fe bond.  
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Figure 4 shows the partial density of states (PDOS) for the Fe1 and the Fe2 

atoms in the clean GB, and for the Fe1 and the Al, Cu and P atoms in the segregated 

GBs. Also, differences between the PDOS for the Fe1 in the segregated GBs and that in 

the clean GB are shown in Fig. 5, where the positive value means an increase in PDOS 

by segregation. It appears from Fig. 5 that the d-electrons in the Fe1 atom in the Al-

segregated GB are more localized than those in the clean GB, though it is not so much 

as in the P-segregated GB. In addition, hybridization peaks associated with the s- and p-

electrons are observed at -7 to -6 eV in the Fe1 and the Al atoms. Such hybridization 

peaks were found in the Fe1 and the P atoms in P-segregated GB [18]. On the other 

hand, there were no hybridization peaks in the clean GB and the Cu-segregated GB [19]. 

Hence, the Fe1-Al bond in the Al-segregated GB has covalent-like characteristics, as 

does the Fe1-P bond in the P-segregated GB. But, note that the first bond breaking does 

not occur at the Fe1-Al bond, despite its covalent-like bonding.  

 

4. Discussion 

The charge density at the bond critical point (BCP) is crucial for bond breaking [35-37]. 

Hence, the variation in charge density at the BCP with strain was investigated at the 

atomic bond where the first breaking occurred, that is, the Fe1-Fe3 bond in the clean 

GB and the Al- and Cu-segregated GBs, and the Fe1-P bond in the P-segregated GB. 

The results are shown in Fig. 6, where the charge density variation is the ratio of the 

charge density at a given strain to that at 0% strain, and the strain is the strain of the 

Fe1-Fe3 or Fe1-P bond. In the P-segregated GB, the strain of the Fe1-P bond and the 

variation in charge density at the BCP are very low. This is due to the strong covalent-

like characteristics of the Fe-P bond. On the other hand, a decrease in charge density 

with strain is most significant in the Cu-segregated GB. This is because charge transfer 



9 

 

is enhanced during straining in the Cu-segregated GB [19]. The decrease in charge 

density is reduced in the Al-segregated GB compared to the other GBs. It appears that a 

charge density variation of 0.3 is critical for the bond breaking of Fe1-Fe3 in the clean 

GB and the Cu-segregated GB. However, the critical value for the Fe1-Fe3 bond 

breaking is larger in the Al-segregated GB.   

Figure 7 shows the charge density along the line, normal to the Fe1-Fe3 (or the 

Fe1-P in the P-segregated GB) bond, passing through the BCP of the Fe1-Fe3 (or the 

Fe1-P) bond. The charge density at the BCP at 0% strain in the Cu-segregated GB is 

larger than that in the clean GB, and the curvature of the former is larger than that of the 

latter, indicating that the electrons are more localized prior to straining in the Cu-

segregated GB. However, the charge density in the Cu-segregated GB decreases rapidly 

with the strain, in agreement with the result in Fig. 6, and the curve of charge density at 

the BCP becomes flat at 20% strain which is just before bond breaking. On the other 

hand, the charge density at the BCP decreases less rapidly in the clean GB than in the 

Cu-segregated GB, hence the curve of charge density becomes flat at 28% strain which 

is just before bond breaking, not at 20% strain. Breaking of a metallic bond occurs 

through the transition state where the curvature of the charge density becomes zero [37]. 

The bond force of Fe1-Fe3 in the Cu-segregated GB is roughly the same as that in the 

clean GB, but the former decreases more rapidly than the latter. It is suggested, 

therefore, that the effect of the charge transfer induced by Cu increases with the strain. 

In the Al-segregated GB, the charge density curve varies in the same manner as in the 

clean GB. However, the bond breaking of Fe1-Fe3 in the Al-segregated GB occurs at 

22% strain although the curve of charge density at the BCP is not flat at 20% strain. As 

shown in Fig. 7 (d), the charge density at the BCP varies little with the strain in the P-

segregated GB. Thus, the bond breaking due to the covalent-like characteristics does not 
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occur through the transition state of zero curvature of the charge density. This trend is 

found in the bond breaking of Fe1-Fe3 in the Al-segregated GB. It should be noted that 

the bond breaking of Fe1-Fe3 in the Al-segregated GB is partially in the manner of 

covalent characteristics, despite the bond being between metal atoms.  

The PDOS of the Fe1 atom just before and after the bond breaking is shown in 

Fig. 8. In the clean GB and the Cu-segregated GB, because the PDOS varies with the 

strain, the PDOS just before bond breaking is different from that prior to straining; 

however, the PDOS just before bond breaking is almost the same as after bond breaking. 

These facts agree with the result that bond breaking occurs through the transition state. 

On the other hand, in the Al- and the P-segregated GBs, the PDOS hardly varies with 

strain, but varies sharply after bond breaking, suggesting that the mobility of electrons is 

limited by the covalent-like characteristics before bond breaking, and the electrons are 

abruptly redistributed to the surface after bond breaking. In general, when an atomic 

bond is strained, redistribution of electrons enables the bond to deform to the extent that 

corresponds to the applied strain, resulting in relaxation of the unstable state induced by 

the strain. The transition state for bond breaking is the redistribution of electrons at the 

BCP to form the fracture surface [37]. However, the redistribution of electrons is 

limited in the case of covalent-like bonding, with the result that the unstable state is not 

relaxed and premature bond breaking occurs even if the charge density at the BCP is 

sufficient to sustain the bond. In the Al-segregated GB, the first bond breaking site was 

the Fe-Fe bond, which is typical of bond breaking due to charge transfer. However, the 

bond breaking was related to the reduced bond mobility due to the covalent-like 

characteristics. It is noteworthy that the covalent-like characteristics of Al affected the 

mobility of the Fe-Fe metallic bond. As shown in Fig.7, the variation in the charge 

density curve around the BCP with strain was the same in the Al-segregated GB as in 
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the clean GB, at least until 10% strain. It is therefore suggested that the effect of the 

covalent-like characteristics of Al on the Fe-Fe bond is small in the initial stage of 

straining, but the effect of Al increases as the charge density of the Fe-Fe bond 

decreases with the strain. It is also of interest to note that the first bond breaking does 

not occur at the Fe-Al bond, despite the covalent-like bond. The cohesive energy of the 

FeAl compound (–4.81 eV/atom) is higher than that of the FeP compound (–5.22 

eV/atom). Hence, it is suggested that the weak covalent-like bond of Fe-Al is 

responsible for a certain level of mobility of the Fe-Al bond.  

In the R-W thermodynamic model and the static case of the first-principles 

tensile tests, movements of atoms which are located at the cross-section for fracture are 

all the same. However, in the dynamic case of the first-principles tensile tests, 

movement of each atom differs from one another, and the most frangible bond is first 

broken. After the first bond-breaking, redistribution of electrons occurs and the atoms 

around the bond-breaking site move in order to be in a more stable state. The 

movements of the atoms affect the second bond-breaking. The same events are caused 

in one after another during straining, and finally GB fracture occurs. Thus, atomic 

events of GB fracture are complicated in the dynamic case. When the GB is segregated 

by other element atoms, the atomic events of GB fracture are much more complicated. 

The complicated movements can change the configuration of atoms at the surface. 

Actually, in the present work, the configuration of atoms at the fracture surface in the 

dynamic case was different from that in the static case for the segregated GBs. This is 

responsible for disagreement of the binding energy at the surface in the dynamic case 

with that in the static case. More importantly, when the atomic movement around the 

bond-breaking site in the dynamic case is inelastic, the process is irreversible and the 

work required for GB fracture is not entirely converted to the binding energy at the 
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surface. Therefore, it is suggested that a difference between the intergranular embrittling 

potency by the R-W model and that obtained by the first-principles fully relaxed tensile 

tests in the present work results from irreversible movement of atoms during straining in 

the first-principles fully relaxed tensile tests. 

In the present work, the bond breaking behaviour in the Fe GB is also 

investigated in terms of variation in electronic structure with straining. In the clean GB 

and Cu-segregated GB, the redistribution of electrons occurs gradually with increasing 

strain, which relaxes unstable state induced by the strain. This is the characteristic in the 

breaking of metallic bonds. In contrast, in the Al- and P-segregated GBs, the 

redistribution of electrons is limited and the unstable state is not relaxed, resulting in 

premature bond breaking. This is the characteristic in the breaking of covalent-like 

bonds. Finally, segregated Al induces the premature breaking of Fe-Fe bond because of 

not charge transfer but electron mobility limited by the covalent-like characteristics.  

 

5. Summary 

We have performed first-principles fully relaxed tensile tests on Σ3 (111)/[11
_

0] tilt Fe 

GBs segregated with Al, Cu or P. The calculations suggested that the intergranular 

embrittling potency of Al was as strong as that of Cu. On the other hand, according to 

the R-W model, the intergranular embrittling potency of Al was much lower than that of 

Cu. Thus, there was a large difference in estimation of the embrittling potency of Al 

between the R-W model and the first-principles tensile tests.  

The first bond breaking occurred at the Fe-Fe bond neighbouring an Al atom in 

the Al-segregated GB, which is typical of bond breaking due to charge transfer. 

However, no charge transfer was observed from the neighbouring Fe atom to the Al 

atom, while the neighbouring Fe showed covalent-like characteristics. The Fe-Fe 
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metallic bond had covalent-like characteristics imparted by segregated Al, resulting in 

premature breaking of the Fe-Fe bond. Investigations of the charge density at the bond 

critical point suggested that the effect of covalent-like characteristics of Al on the Fe-Fe 

bond was small in the initial stage of straining, but it increased as the charge density of 

the Fe-Fe bond decreased with increasing strain. 

There was a difference in binding energy between the static case and the 

dynamic case. The binding energy at the surface in the dynamic case was lower than 

that in the static case, because atoms moved during straining in order to be in a more 

stable state. If atoms move significantly during straining and the atomic configuration at 

the facture surface for the dynamic case is remarkably different from that for the static 

case, the first-principles fully relaxed tensile tests are required to accurately investigate 

effects of segregation on GB decohesion. 
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Table 

Table 1 The binding energy (in eV /atom) at the grain boundaries, ΔEGB, and at the free 

surface, ΔESF, and the binding energy difference, ΔEGB-ΔESF, at the Al-, Cu- and P-

segregated grain boundaries. Two cases are calculated: the static case where the fracture 

surface is arbitrarily set between the two atomic layers in the grain boundary, and the 

dynamic case where the fracture surface is the surface after grain boundary fracture by 

the first-principles fully relaxed tensile test. 
 

  ΔEGB ΔEFS ΔEGBΔEFS 

Al-segregated GB Static -4.99 -4.97 -0.01 

 Dynamic  -4.99 -5.07 0.08 

Cu-segregated GB Static -3.42 -3.98 0.56 

 Dynamic  -3.42 -4.17 0.75 

P-segregated GB Static -4.80 -6.42 1.63 

 Dynamic  -4.80 -6.78 1.99 
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Table 2 The numbers of s, p and d electrons in the Fe1 atom at the clean grain boundary 

and the Al-, Cu- and P-segregated grain boundaries. The numbers of electrons are 

obtained by the Mulliken population analysis. No charge transfer from the Fe1 atom to 

the Al atom occurs at the Al-segregated grain boundary. 

 

 3d 4s 4p Total 

clean GB 6.68  0.71  0.64  8.03  

Al-segregated GB 6.73  0.69  0.65  8.07  

Cu-segregated GB 6.68  0.68  0.55  7.90  

P-segregated GB 6.75  0.68  0.60  8.02  
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Figure captions 

Figure 1 Unit cell model of Fe with a Σ3 (111)/[1 1 0] tilt grain boundary. Four cells are 

used: one is the cell without segregation at the grain boundary (the clean GB); the others 

are the cells with Al, Cu or P segregation at the grain boundary (the Al-, Cu- or P-

segregated GBs), in which an Fe atom (Fe2) at the grain boundary is substituted by the 

segregation atom. The initial cell size is 4.05×7.02×14.89 Å
3
. The black and gray circles 

indicate Fe atoms on the (1 1 0) and (2 2 0), respectively.  

Figure 2 Stress-strain curves for the clean grain boundary and the Al-, Cu- and P-

segregated grain boundaries (after Refs [18,19]).  

 Figure 3 Atomic configuration of (1 1 0): (a) 20% strain in the Al-segregated grain 

boundary, (b) 22% strain in the Al-segregated grain boundary, (c) 20% strain in the Cu-

segregated grain boundary, (d) 22% strain in the Cu-segregated grain boundary, (e) 10% 

strain in the P-segregated grain boundary, (f) 12% strain in the P-segregated grain 

boundary (after Ref. [18]). The first bond breaking occurs at the Fe1-Fe3 bond in the 

Al- and Cu-segregated grain boundaries.  

Figure 4 Partial density of states (PDOS) of the Fe1, Fe2, Al, Cu and P atoms at 0% 

strain: (a) Fe1 in the clean grain boundary, (b) Fe1 in the Al-segregated grain boundary, 

(c) Fe1 in the Cu-segregated grain boundary, (d) Fe1 in the P-segregated grain boundary, 

(e) Fe2 in the clean grain boundary, (f) Al in the Al-segregated grain boundary, (g) Cu 

in the Cu-segregated grain boundary, and (h) P in the P-segregated grain boundary. The 

Fermi level defines the zero of energy. Magnified figures of the PDOS in the range -13 

to -5 eV are shown on the upper left. The arrow indicates the hybridization peak 

between the Fe1 and the Al atoms in the Al-segregated GB. 

Figure 5 Differences between the partial density of states (PDOS) for the Fe1 in the 

segregated GBs and that in the clean GB:(a) s-electrons, (b) p-electrons and (c) d-

electrons. The positive value means an increase in PDOS by segregation. The Fermi 

level defines the zero of energy. The arrow indicates the hybridization peak between the 

Fe1 and the Al atoms in the Al-segregated GB. 

Figure 6 Variations in charge density at the bond critical point of the atomic bond for 

the first bond breaking (the Fe1-Fe3 bond in the clean grain boundary and the Al- and 

Cu-segregated grain boundaries, and the Fe1-P bond in the P-segregated grain 

boundary) with strain. The charge density variation is the ratio of the charge density at a 

given strain to that at 0% strain, and the strain is the strain of the Fe1-Fe3 or Fe1-P bond. 

Figure 7 Charge density along the line, normal to the Fe1-Fe3 bond (or the Fe1-P bond 

in the P-segregated grain boundary), passing through the bond critical point of the Fe1-

Fe3 bond: (a) the clean grain boundary, (b) the Al-segregated grain boundary, (c) the 

Cu-segregated grain boundary, and (d) the P-segregated grain boundary. The curve of 

charge density becomes flat at the strain at which bond breaking occurs in the clean 

grain boundary and the Cu-segregated grain boundary, while the transition state of flat 

charge density is not found in the Al- and P-segregated grain boundaries.  

Figure 8 Partial density of states (PDOS) of the Fe1 atom just before bond breaking. 

PDOS at (a) 28% in the clean grain boundary, (b) 20% in the Al-segregated grain 
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boundary, (c) 20% in the Cu-segregated grain boundary and (d) 10% in the P-segregated 

grain boundary (after Ref. [18]), and after the bond breaking; (e) 30% in the clean grain 

boundary, (f) 22% in the Al-segregated grain boundary, (g) 22% in the Cu-segregated 

grain boundary, and (h) 12% in the P-segregated grain boundary. The Fermi level 

defines the zero of energy. 



Table 1 The segregation energy (in eV /atom) at the grain boundaries, ΔEGB, and at the free 
surface, ΔESF, and the segregation energy difference, ΔEGB-ΔESF, at the Al-, Cu- and P-
segregated grain boundaries. Two cases are calculated: the static case where the fracture 
surface is arbitrarily set between the two atomic layers in the grain boundary, and the 
dynamic case where the fracture surface is the surface after grain boundary fracture by the 
first-principles fully relaxed tensile test.  
.  

ΔEGB ΔEFS ΔEGB-ΔEFS
Al-segregated GB Static -4.99 -4.97 -0.01

Dynamic -4.99 -5.07 0.08
Cu-segregated GB Static -3.42 -3.98 0.56

Dynamic -3.42 -4.17 0.75
P-segregated GB Static -4.80 -6.42 1.63

Dynamic -4.80 -6.78 1.99



Table 2 The numbers of s, p and d electrons in the Fe1 atom at the clean grain boundary 
and the Al-, Cu- and P-segregated grain boundaries. The numbers of electrons are obtained 
by Mulliken population analysis. No charge transfer from the Fe1 atom to the Al atom 
occurs at the Al-segregated grain boundary.

3d 4s 4p Total
clean GB 6.68 0.71 0.64 8.03 
Al-segregated GB 6.73 0.69 0.65 8.07 
Cu-segregated GB 6.68 0.68 0.55 7.90 
P-segregated GB 6.75 0.68 0.60 8.02 



Fig.1 Unit cell model of Fe with a Σ3 (111)/[110] tilt grain boundary. Four cells are 
used: one is the cell without segregation at the grain boundary (the clean GB); the 
others are the cells with Al, Cu or P segregation at the grain boundary (the Al-, Cu- or 
P-segregated GBs), in which an Fe atom (Fe2) at the grain boundary is substituted by 
the segregation atom. The initial cell size is 4.05×7.02×14.89 Å. The black and 
gray circles indicate Fe atoms on (110) and (220), respectively. 
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Fig.2 Stress-strain curves for the clean grain boundary and the Al-, Cu-
and P-segregated grain boundaries. Al is as strong an embrittler as Cu.
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Fig.3 Atomic configuration of (110): (a) 20% strain in the Al-segregated grain boundary, (b) 
22% strain in the Al-segregated grain boundary, (c) 20% strain in the Cu-segregated grain 
boundary, (d) 22% strain in the Cu-segregated grain boundary, (e) 10% strain in the P-
segregated grain boundary, (f) 12% strain in the P-segregated grain. The first bond breaking 
occurs at the Fe1-Fe3 bond in the Al- and Cu-segregated grain boundaries. 
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Fig.4 Partial density of states (PDOS) of the Fe1, Fe2, Al, Cu and P atoms at 0% strain: (a) 
Fe1 in the clean grain boundary, (b) Fe1 in the Al-segregated grain boundary, (c) Fe1 in the 
Cu-segregated grain boundary, (d) Fe1 in the P-segregated grain boundary, (e) Fe2 in the 
clean grain boundary, (f) Al in the Al-segregated grain boundary, (g) Cu in the Cu-
segregated grain boundary, and (h) P in the P-segregated grain boundary. The Fermi level 
defines the zero of energy. Magnified figures of the PDOS in the range -13 to -5 eV are 
shown on the upper left. The arrow indicates the hybridization peak between Fe1 and Al 
atoms in the Al-segregated GB.
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Fig.5 The difference between the Partial 
density of states (PDOS) for the Fe1 in the 
segregated GBs and that in the clean GB:(a) 
s-electrons, (b) p-electrons, and (c) d-
electrons. The positive value means an 
increase of PDOS in the segregated GBs. 
The Fermi level defines the zero of energy. 
The arrow indicates the hybridization peak 
between Fe1 and Al atoms in the Al-
segregated GB.
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Fig. 6 Variations in charge density at the bond critical point of the atomic bond for the first 
bond breaking (the Fe1-Fe3 bond in the clean grain boundary and the Al- and Cu-segregated 
grain boundaries, and the Fe1-P bond in the P-segregated grain boundary) with strain. The 
charge density variation is the ratio of the charge density at a given strain to that at 0% strain, 
and the strain is the strain of the Fe1-Fe3 or Fe1-P bond.
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Fig. 7 Charge density along the line, normal to the Fe1-Fe3 bond (or the Fe1-P bond in the P-
segregated grain boundary), passing through the bond critical point of the Fe1-Fe3 bond: (a) the 
clean grain boundary, (b) the Al-segregated grain boundary, (c) the Cu-segregated grain boundary, 
and (d) the P-segregated grain boundary. The curve of charge density becomes flat at the strain at 
which bond breaking occurs in the clean grain boundary and the Cu-segregated grain boundary, 
while the transition state of flat charge density is not found in the Al- and P-segregated grain 
boundaries. 
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Fig. 8 Partial density of states (PDOS) of the Fe1 atom just before bond breaking. PDOS at 
(a) 28% in the clean grain boundary, (b) 20% in the Al-segregated grain boundary, (c) 20% 
in the Cu-segregated grain boundary and (d) 10% in the P-segregated grain boundary (after 
Ref. [18]), and after the bond breaking; (e) 30% in the clean grain boundary, (f) 22% in the 
Al-segregated grain boundary, (g) 22% in the Cu-segregated grain boundary, and (h) 12% in 
the P-segregated grain boundary. The Fermi level defines the zero of energy. 
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