Article title: Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pa15

Running head: Phosphate enhances levan production
Authors: Nao Idogawa*, Ryuta Amamoto*, Kousaku Murata, Shigeyuki Kawai
Affiliations: Laboratory of Basic and Applied Molecular Biotechnology,
Graduate School of Agriculture, Kyoto University, Uji,
Kyoto 611-0011, Japan

Keywords: Gluconacetobacter diazotrophicus, exopolysaccharide, levan, sugarcane, ROS * These authors contributed equally to this work.

Corresponding author:
Shigeyuki Kawai
Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan. Phone: +81-774-38-3768. Fax: +81-774-38-3767. Email: kawais@kais.kyoto-u.ac.jp.

Competing financial interests: The authors declare no competing financial interests.
Financial disclosure statements: This study was supported by Grants-in-Aid for challenging Exploratory Research (to K.M.; 24658076, 22658026), and in part by the Funding Program for Next Generation World-Leading Researchers (NEXT program) (to S.K.).

Abstract

Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with $\beta-(2 \rightarrow 6)$ linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production.

Introduction

Due to the increasing cost of chemical nitrogenous fertilizers and concerns about contamination of soil and water, there is a need to reduce usage of chemical fertilizer ${ }^{1}$. Plant-associated microorganisms containing nitrogenases have attracted attention as alternative biofertilizers ${ }^{2}$, since nitrogenase catalyzes a reaction referred to as biological nitrogen fixation, in which atmospheric nitrogen is converted to ammonia.

Plant-associated nitrogen-fixing microorganisms reside in the internal parts of plant and the rhizosphere, providing host plants with nitrogenous compounds ${ }^{3}$, while the host plants supply the microorganisms with nutrients such as carbon sources, organic acids, and amino acids. One such plant-associated microorganism, Gluconacetobacter diazotrophicus, is a gram-negative, obligate aerobic, and endophytic nitrogen-fixing bacterium that was originally isolated from sugarcane ${ }^{4}$. This bacterium has also been isolated from natural Ipomoea batatas (sweet potato) ${ }^{5}$, Coffea arabica L. (coffee) ${ }^{6}$, Pennisetum purpureum (cameroon grass) ${ }^{7}$, and Ananas comosus (pineapple) ${ }^{8}$. As well as serving as a nitrogen source for the host plant, G. diazotrophicus produces phytohormones such as indole acetic acid and gibberellic acid ${ }^{9-11}$, and antimicrobial compounds against phytopathogenic Xanthomonas albilineans ${ }^{12}$. G. diazotrophicus can also solubilize insoluble metals in vitro ${ }^{13,14}$. Thus, utilization of G. diazotrophicus as a biofertilizer in agriculture may allow reduced use of chemical fertilizers.
G. diazotrophicus cells mainly inhabit the host plant and the survival rate is very low when the bacterium is inoculated artificially in soil ${ }^{15}$. Thus, use of G. diazotrophicus as a biofertilizer requires a study of its physiological properties, including how this bacterium responds to extracellular compounds in the environment. In this study, we unexpectedly found mucous growth of G. diazotrophicus Pal5 on a solid medium with a high concentration of phosphate. We show that the mucous trait is caused by production of levan, a linear fructose polymer, that is enhanced by a high concentration of phosphate.

Results

A high mucous phenotype of G. diazotrophicus Pal5 at a high phosphate concentration
In growth experiments on solid media such as LGI-P, C2-NaCl, Dygs, Y \& P, and Y \& $\mathrm{P}-\mathrm{NaCl}$, the G. diazotrophicus Pal5 strain showed a stronger mucous phenotype on solid Y \& P and $\mathrm{Y} \& \mathrm{P}-\mathrm{NaCl}$ medium than on solid LGI-P medium (data not shown). LGI-P ${ }^{16}$ is the medium used for G. diazotrophicus (Table 1), Y \& P medium has been used for E. coli carrying nif clusters of Klebsiella pneumonia ${ }^{17}$, and Y \& $\mathrm{P}-\mathrm{NaCl}$ medium is Y \& P medium
that lacks NaCl and thiamine (Table 1).
To identify the ingredient(s) in the medium that led to the highly mucous phenotype, we initially showed that each ingredient specific to LGI-P medium $\left(\mathrm{FeCl}_{3}, \mathrm{CaCl}_{2}\right.$, biotin, and pyridoxal; Table 1) had no effect on the highly mucous trait of G. diazotrophicus Pal5, excluding the possibility that these ingredients caused the highly mucous phenotype. We then focused on the phosphate concentrations in the LGI-P and Y \& P-NaCl media, which are 6 mM and 50 mM , respectively (Table 1). To check the effect of this concentration, growth of the Pal5 strain was examined on solid low P medium (Table 1), in which the $6.25 \mathrm{~g} / \mathrm{L}$ $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ in Y \& $\mathrm{P}-\mathrm{NaCl}$ medium was reduced to $0.20 \mathrm{~g} / \mathrm{L}$ (final phosphate, 7.0 mM). The mucous trait of the cells was significantly reduced on solid low P medium (Fig. 1), suggesting that a high concentration of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ caused the highly mucous phenotype of the Pal5 strain.

The Pal5 strain still exhibited a highly mucous phenotype on solid high P medium (Table 1), in which the $6.25 \mathrm{~g} / \mathrm{L} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ in $\mathrm{Y} \& \mathrm{P}-\mathrm{NaCl}$ medium was reduced to $3.13 \mathrm{~g} / \mathrm{L}$ (final phosphate, 28 mM). The Pal5 strain also had a mucous trait regardless of use of a sodium or potassium salt, since the strain showed a highly mucous phenotype on medium in which 6.25 $\mathrm{g} / \mathrm{L} \mathrm{Na} 2_{2} \mathrm{HPO}_{4}$ in $\mathrm{Y} \& \mathrm{P}-\mathrm{NaCl}$ medium was replaced by $6.25 \mathrm{~g} / \mathrm{L} \mathrm{K}_{2} \mathrm{HPO}_{4}$ (data not shown). The highly mucous phenotype of the Pal5 strain also occurred on solid high P medium with adjustment of its normal pH 7.5 to 6.3 ; whereas the less mucous phenotype occurred on solid low P medium with adjustment of its normal pH 6.3 to 7.5 (data not shown). These findings indicate that the pH of the medium was not involved in the highly mucous phenotype. To examine the effect of a high concentration of Na^{+}, G. diazotrophicus Pal5 was grown on a medium containing 7 mM phosphate and $45 \mathrm{mM} \mathrm{Na}^{+}$(Table 1, Fig. 2). No mucous phenotype occurred with this medium, indicating that a high concentration of Na^{+}was not associated with the mucous phenotype. Collectively, these data show that a high P concentration (>28 mM) enhances the highly mucous phenotype of G. diazotrophicus Pal5.

Enhanced levan production by G. diazotrophicus Pal5 at a high phosphate concentration
To identify the components in the mucous material, a G. diazotrophicus gumD disruptant (MK4004) strain was constructed. The gumD gene codes for a protein that is probably responsible for the first step in extracellular polysaccharide (EPS) production. The amount of EPS produced by the gumD disruptant of the Pal5 strain in liquid LGI-based medium with 20 g / L sucrose is reduced by approximately 50% compared to that of wild type (WT) ${ }^{18}$. However, the gumD disruptant still formed highly mucous colonies on solid high P medium,
similarly to the WT strain (Fig. 1).
A G. diazotrophicus $l s d A$ disruptant was grown in the same way. The $l s d A$ gene codes for levansucrase, an extracellular fructosyltransferase that catalyzes synthesis of levan from sucrose. Levan is a linear fructose polymer with $\beta-(2 \rightarrow 6)$ links and more than 100 fructosyl residues. The mucous trait of the $l s d A$ disruptant strain was substantially lower than that of the WT strain on solid high P medium (Fig. 1), suggesting that the mucous material is levan.

To confirm that the mucous material was levan, mucous colonies of Pal5 cells on solid high P medium and less mucous colonies on solid low P medium were hydrolyzed and analyzed by HPLC. Authentic samples of hydrolyzed levan, sucrose, and fructose all gave a levan peak at a retention time of 15.3 min (Fig. S1, Fig. 3). The levan peak was higher in hydrolyzed mucous colonies from high P medium than from hydrolyzed less mucous colonies from low P medium (Fig. 3, Fig. S1). Moreover, thin layer chromatography (TLC) analysis that specifically detects levan, fructose, and fructosyl derivatives demonstrated that hydrolyzed mucous colonies from high P medium contain higher amounts of fructose and fructosyl derivatives than hydrolyzed less mucous colonies from low P medium (Fig. S2). Hydrolyzed less mucous colonies of $l s d A$ disruptant cells on solid high P medium showed a much smaller levan peak than those of WT or gumD disruptant cells on solid high P medium on HPLC analysis. These data confirm that the mucous material is levan and that a high concentration of phosphate ($>28 \mathrm{mM}$) enhances production of levan by Pal5 cells on a solid medium.

To examine whether a high concentration of phosphate ($>28 \mathrm{mM}$) enhances production of levan by Pal5 cells in a liquid medium, Pal5 cells were grown aerobically in liquid high and low P media, and dried EPS (including levan) in the supernatant was weighed, hydrolyzed, and analyzed. The amounts of dried EPS from the two cultures were about the same: $35 \pm 2 \mathrm{mg}(\mathrm{n}=4$; from 25 ml supernatant of high P medium) and $33 \pm 6 \mathrm{mg}(\mathrm{n}=4$; from 25 ml supernatant of low P medium), and gave levan peaks of the same height (data not shown). This indicates that enhanced production of levan by phosphate is a phenotype specific to a solid medium, and does not occur in a liquid medium.

Sugarcane juices were prepared from sugarcanes a1, a2, a3, b1, b2, b3, c1, c2, and c3 (Table 4). Bacteria were isolated from each sugarcane juice and were tentatively identified as Pantoea dispersa A1, Pantoea dispersa A2, Klebsiella pneumonia A3, Klebsiella variicola B1, Klebsiella variicola B2, Klebsiella variicola B3, Gluconacetobacter diazotrophicus C2, and Pantoea agglomerans C3, respectively, based on the rDNA sequences (Fig. S3). The
phosphate concentrations in the sugarcane juices were $2.8-10.8 \mathrm{mM}$ (Table 4). All isolated bacteria showed a stronger mucous phenotype on solid high P medium than on solid low P medium (Fig. 4). However, these highly mucous phenotypes were not attributable to levan alone, since levan peaks were not observed in A3 cells and were very weak in other cells (Fig. S4).

Tolerance to hydrogen peroxide

To examine whether the tolerance of Giazotrophicus Pal5 to reactive oxygen species (ROS) is improved by levan, we cultivated G. diazotrophicus Pal5 WT and its lsdA disruptant on solid media containing hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and $0,3,10$, and 28 mM phosphate (Fig. 5), since the phosphate concentrations of sugarcane juices were determined to be 2.8 to 10.8 mM (Table 4). The $l s d A$ disruptant exhibited lesser growth and lesser mucous growth on solid media with 28 mM phosphate and "physiological" phosphate concentrations (3 and 10 mM) in the absence and presence of hydrogen peroxide. Notably, the $l s d A$ disruptant showed particularly marked reduction in growth in the presence of hydrogen peroxide and the phosphate concentration had no effect on tolerance (Fig. 5). HPLC analysis confirmed that G. diazotrophicus Pal5 synthesizes levan in the presence of 3,10 and 28 mM phosphate (Fig. S1B). Collectively, these data suggest that levan is important for ROS resistance of G. diazotrophicus Pal5 and that a high concentration (28 mM) of phosphate has no effect on ROS resistance.

Discussion

Utilization of G. diazotrophicus strains as biofertilizer in agriculture requires an improved understanding of their physiological properties, including how this bacterium responds to extracellular compounds in the environment. Here, we found that G. diazotrophicus forms highly mucous colonies and produces a higher amount of levan on a solid medium with a high concentration of phosphate ($>28 \mathrm{mM}$).

Production of levan by G. diazotrophicus strains may occur due to the ability of this bacterium to assimilate sucrose ${ }^{19-21}$. In particular, Arrieta et al. found that the G. diazotrophicus SRT4 strain forms mucous colonies on solid sucrose-containing LGIE medium ${ }^{20}$, although the amount of mucus was not described. LGIE medium is a LGI-based medium that contains (in g / L) tryptone, 1 ; yeast extract, 0.2 ; sucrose 50 ; and glycerol, 10 ; plus LGI salts ${ }^{4}$ (LGI-P, Table 1) ${ }^{16}$ including 6 mM phosphate, but not glucose, ammonium
sulfate, biotin, and pyridoxal. Previous studies of G. diazotrophicus ${ }^{4} 19,22$ have used this LGI-based medium. Thus, the effects of a high phosphate concentration on production of levan have not been examined, since the LGI-based medium contains only 6 mM phosphate.

Disruption of levansucrase genes in other several bacteria impairs their behavior in association with plants or animals. A disruption of the Paenibacillus polymyxa levansucrase gene impaired its ability to aggregate soil in the wheat rhizosphere ${ }^{23}$. Levansucrase mutants of fireblight pathogen Erwinia amylovora caused retarded development of necrotic symptoms on inoculated pear seedlings ${ }^{24}$. The extracellular fructosyltransferase-deficient strain of Streptococcus mutans was less pathogenic compared with the wild-type strain ${ }^{25}$. In the case of G. diazotrophicus, levan improves stress tolerances, desiccation, osmotic pressure, and NaCl stress of this bacterium ${ }^{22}$. ROS resistance is also important for G. diazotrophicus Pal5 in colonization of plants because plants generate superoxide against pathogens as a defense mechanism ${ }^{26}$. Thus, a G. diazotrophicus disruptant strain in which ROS-detoxifying genes are destroyed is unable to colonize plant roots efficiently ${ }^{27}$. Use of an $l s d A$ disruptant in this study suggested that levan itself is significant for tolerance of hydrogen peroxide, and G. diazotrophicus Pal5 was found to synthesize levan on a solid medium containing "physiological" concentrations (3 and 10 mM) of phosphate. This suggests that levan may facilitate this bacterium to colonize and reside in plants by improving tolerance to desiccation, osmotic pressure, and NaCl stress ${ }^{22}$, and increasing tolerance to ROS, although the physiological role of the highly mucous phenotype of Pal5 caused by a high concentration of phosphate remains unclear. With regard to the structures of the EPS produced by G. diazotrophicus, other than levan, little has been elucidated. It has been recently reported that G. diazotrophicus Pal5 produced the EPS that has $4-O$-substituted units of β-glucose, $3-O$-substituted units of β-galactose and 2-O-substituted units of α-mannose in the liquid medium containing mannitol ${ }^{28}$.

Finally, our finding that synthesis of levan by G. diazotrophicus Pal5 is increased on a solid medium containing a high concentration of phosphate may be important for industrial production of levan. Levan is currently synthesized on an industrial scale using bacterium such as Bacillus species ${ }^{29}$. Hypocholesterolemic ${ }^{30}$ and cosmeceutical ${ }^{31}$ effects of levan have been reported and application of levan is likely in a variety of industrial fields, including food, cosmetics, and medicine.

Materials and Methods

Bacterial strains and growth conditions
G. diazotrophicus Pa15 ATCC49037 (American Type Culture Collection) was grown at $30^{\circ} \mathrm{C}$ in $\mathrm{C} 2-\mathrm{NaCl}$, Dygs ${ }^{32}$, LGI-P ${ }^{16}$, Y \& P- NaCl , or high and low P media. $\mathrm{C} 2-\mathrm{NaCl}$ medium is C 2 medium ${ }^{33}$ that lacks NaCl and contains (in g / L) tryptone, 10; glucose, 15; yeast extract, 5; pH 6.5. Y \& $\mathrm{P}-\mathrm{NaCl}$ medium is $\mathrm{Y} \& \mathrm{P}$ medium ${ }^{17}$ that lacks NaCl and thiamine. The compositions of Y \& P-NaCl, LGI-P, high P, and low P media are shown in Table 1. Solid medium was made by adding agar at $15 \mathrm{~g} / \mathrm{L}$. Escherichia coli DH5 α was used as the cloning host and was grown at $37^{\circ} \mathrm{C}$ in LB medium, which contains (in g / L) tryptone, 10 ; yeast extract, $5 ; \mathrm{NaCl}, 10 ; \mathrm{pH} 7.2$.

Construction of plasmids and recombinant G. diazotrophicus Pal5 strains

Primers and plasmids are shown in Tables 2 and 3. pKTY320-kan::gumD was constructed as follows. gumD (1521 nt) was amplified by PCR with primers 1 and 2, using G. diazotrophicus Pal5 genomic DNA as a template. The PCR product was inserted into HincII-treated pUC119, yielding pUC119-gumD. Using this plasmid as a template, inverse PCR was conducted with primers 3 and $4 . \mathrm{Km}^{\mathrm{r}}$ fragment, obtained by SalI digestion of pUC4K, was inserted by in-fusion (Clontech) into the amplified DNA fragment, resulting in pUC119-kan::gumD. Using this plasmid as a template, the Km^{r}-inserted gumD was amplified by PCR with primers 5 and 6 . The amplified fragment was inserted by in-fusion into HincII-treated pKTY320, giving pKTY320-kan::gumD.
pKTY320-kan::IsdA was similarly constructed. A DNA fragment containing a part of lsdA (1460 nt: from nt 247 to 1706 in a 1755 nt full length $l s d A$) was amplified by PCR with primers 7 and 8 , using the Pal5 genomic DNA as a template. The PCR product was inserted into HincII-treated pUC118, yielding pUC118-1sdA-2BamHI. Using this plasmid as a template, this DNA fragment was amplified by PCR with primers 9 and 10. The PCR product was digested with $\mathrm{XmaI} / H i n d I I I$ and ligated into XmaI/HindIII-treated pUC118, resulting in pUC118-1sdA-1BamHI. The Km^{r} fragment obtained by BamHI digestion of pUC4K was inserted into the BamHI site of $\mathrm{pUC118-1sdA}-1 B a m H I ~ t o ~ g i v e ~ p U C 118:: k a n-l s d A . ~ U s i n g ~ t h i s ~$ plasmid as a template, the Km^{r}-inserted $l s d A$ was amplified by PCR with primers 11 and 12 . The amplified fragment was inserted by in-fusion into HincII-treated pKTY320, yielding pKTY320-kan::IsdA.
G. diazotrophicus Pal5 mutant strains (MK4004, gumD::Km ${ }^{\mathrm{r}}$ in Pal5; MK4384, $l s d A:: \mathrm{Km}^{\mathrm{r}}$ in Pa15) were made by insertional mutagenesis ${ }^{33}$. pKTY320-kan::gumD or
pKTY320-kan::IsdA was introduced into the G. diazotrophicus Pal5 strain by electroporation. The applied pulse conditions were $10.0 \mathrm{kV} / \mathrm{cm}$ and 5 msec using Bio-Rad Gene Pulser Xcell (Bio-Rad). Competent cells ($100 \mu \mathrm{l}$) were mixed with 100 ng of plasmid DNA. Transformants were selected on solid Dygs medium containing kanamycin ($200 \mu \mathrm{~g} / \mathrm{ml}$).

HPLC and TLC analyses of G. diazotrophicus Pal5 cells
G. diazotrophicus Pal5 cells for HPLC analysis were grown on membranes as follows. Pal5 cells were grown in $\mathrm{C} 2-\mathrm{NaCl}$ liquid medium aerobically at $30^{\circ} \mathrm{C}$ overnight and collected by centrifugation at $10,000 \times \mathrm{g}$ for 2 min . The cells were washed 3 times with $0.9 \% ~(\mathrm{w} / \mathrm{v})$ NaCl and diluted to OD_{600} of 1.0. The cells in $50 \mu \mathrm{l}$ of this suspension were put on a membrane (diameter 13 mm , pore size $0.22 \mu \mathrm{~m}$) that was placed on solid medium and incubated at $30^{\circ} \mathrm{C}$ for 1 week. Colonies of the cells together with mucous materials that grew on the membrane were collected with a sterilized spatula into an Eppendorf tube and weighed.

For HPLC analysis, collected and weighed cells were suspended in $4 \%(w / v) \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach $14 \%(\mathrm{w} / \mathrm{w})$. Authentic samples of levan (L8647 from Erwinia herbicola; Sigma-Aldrich), sucrose, fructose, and glucose were dissolved in $4 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach $0.5 \%, 2 \%, 1 \%$, and $1 \%(\mathrm{w} / \mathrm{w})$, respectively. The suspensions were hydrolyzed at $121^{\circ} \mathrm{C}$ for 1 h and centrifuged at $20,000 \times \mathrm{g}$ for 5 min at $4^{\circ} \mathrm{C}$. The supernatant was filtered (pore size 0.2 $\mu \mathrm{m}$) and analyzed by HPLC using an Aminex HPX-87H column ($300 \times 87 \mathrm{~mm}$; Bio-Rad), a RID-10A detector (Shimazu, Kyoto, Japan), an effluent of filtered and degassed $0.01 \mathrm{NH}_{2} \mathrm{SO}_{4}$, a flow rate of $0.6 \mathrm{ml} / \mathrm{min}$, and a column temperature of $65.0^{\circ} \mathrm{C}$.

For TLC analysis, collected and weighed cells were suspended in $3 \% ~(\mathrm{v} / \mathrm{v})$ trichloroacetic acid (TCA) to reach 14% (w/w). Authentic sample of levan was dissolved in $3 \% ~(\mathrm{v} / \mathrm{v})$ TCA to reach $0.5 \%(\mathrm{w} / \mathrm{v})$. Authentic samples of levan, fructose, and glucose were also dissolved in water to reach $0.5 \%(\mathrm{w} / \mathrm{w})$. The suspensions in $3 \% ~(\mathrm{v} / \mathrm{v}$) TCA were hydrolyzed at $55^{\circ} \mathrm{C}$ for $15 \mathrm{~min}{ }^{34,35}$ and centrifuged at $20,000 \times \mathrm{g}$ for 5 min at $4^{\circ} \mathrm{C}$. The supernatant $(5 \mu \mathrm{l})$ and other authentic sample $(5 \mu \mathrm{l})$ were spotted on TLC silica gel $60 \mathrm{~F}_{254}$ (Merck KGaA) and developed in a solvent system consisting of butanol-acetate-water (3:3:2 $\mathrm{v} / \mathrm{v} / \mathrm{v}$). Levan, fructose, and fructosyl derivatives were specifically detected using resorcinol and thiourea as described ${ }^{34}$.

Isolation of levan from liquid culture
G. diazotrophicus Pal5 cells were precultured in liquid $\mathrm{C} 2-\mathrm{NaCl}$ medium, washed with $0.9 \% \mathrm{NaCl}$ as above, and inoculated to OD_{600} of 0.1 in 30 ml of fresh liquid high P medium in a 300 ml Erlenmeyer flask. Cells were cultivated at 150 strokes per min at $30^{\circ} \mathrm{C}$ for 48 h and supernatant was obtained by centrifugation at $20,000 \mathrm{~g}$ for 5 min . Levan was isolated from the supernatant as described previously ${ }^{19}$. Briefly, levan was precipitated with 2 volumes of ethanol 99.5%, collected with centrifugation at $20,000 \mathrm{~g}$ for 20 min , washed once with 66% ethanol, and freeze-dried. The dried material was weighed and a portion was dissolved in $4 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach $1 \%(\mathrm{w} / \mathrm{w})$, hydrolyzed, and analyzed by HPLC as above.

Determination of phosphate concentration in sugarcane juice
Sugarcanes grown in Okinawa were purchased from Ryuka Shoji (Okinawa, Japan), Hatsuhino (Okinawa, Japan), and Ryukyu farm (Okinawa, Japan). Phosphate concentrations were determined in three sugarcanes from each company (a1, a2, a3, b1, b2, b3, c1, c2 and c3) using a previously described method ${ }^{36}$.

Isolation of bacteria from sugarcane juice
Sugarcane juice ($1 \mu \mathrm{l}$) was streaked on solid high P medium containing 5 ml of 0.5% bromothymol blue in 0.2 N KOH in 1 L of medium. Each colony was purified by streaking twice on solid low P medium. Genomic DNA was isolated from bacteria and the 16S rDNA gene was amplified using primers 13 and 14 (Table 2). Sequence analysis of the amplified fragment was conducted using primers $13,14,15$ and 16 . rDNA sequences were analyzed by BLAST search ${ }^{37}$ using the NCBI 16S ribosomal RNA sequence database. Bacteria were tentatively identified based on the highest max score.

Tolerance to hydrogen peroxide
G. diazotrophicus Pal5 was precultured in $\mathrm{C} 2-\mathrm{NaCl}$, washed 3 times with $0.9 \% \mathrm{NaCl}$, and diluted to OD_{600} of 1.0. The cell suspension ($2 \mu \mathrm{l}$) was spotted on solid media containing $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ as a sole phosphate source. The pH was adjusted to 5.0 to match that of sugarcane juice.

Acknowledgements

This study was supported by Grants-in-Aid for challenging Exploratory Research (to K.M.; 24658076, 22658026), and in part by the Funding Program for Next Generation World-Leading Researchers (NEXT program) (to S.K.).

References

1. Bhattacharjee R, Singh A, Mukhopadhyay S. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 2008; 80:199-209.
2. Berg G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 2009; 84:11-8.
3. Cocking E, Stone P, Davey M. Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cellular and Development Biology - Plant 2006; 42:74-82.
4. Cavalcante V, Dobereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 1988; 108:23-31.
5. Paula MA, Reis VM, Döbereiner J. Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol Fertility Soils 1991; 11:111-5.
6. Jimenez-Salgado T, Fuentes-Ramirez L, Tapia-Hernandez A, Mascarua-Esparza M, Martinez-Romero E, Caballero-Mellado J. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Microbiol Biotechnol 1997; 63:3676-83.
7. Reis VM, Olivares FL, Döbereiner J. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microb Biot 1994; 10:401-5.
8. Tapia-Hernández A, Bustillos-Cristales MR, Jiménez-Salgado T, Caballero-Mellado J, Fuentes-Ramírez LE. Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microb Ecol 2000; 39:49-55.
9. Bastián F, Cohen A, Piccoli P, Luna V, Bottini* R, Baraldi R, et al. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation 1998; 24:7-11.
10. Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J. Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant Soil 1993; 154:145-50.
11. Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla J,

Kennedy C. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 2004; 186:5384-91.
12. Pinon D, Casas M, Blanch M, Fontaniella B, Blanco Y, Vicente C, et al. Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol 2002; 153:345-51.
13. Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion $\left(\mathrm{Zn}^{2+}\right)$ and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 2007; 44:235-41.
14. Intorne A, de Oliveira M, Lima M, da Silva J, Olivares F, de Souza Filho G. Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch Microbiol 2009; 191:477-83.
15. Baldani J, Caruso L, Baldani V, Goi S, Dobereiner J. Recent advances in BNF with non-legume plants. Soil Biol Biochem 1997; 29:911-22.
16. Pan B, Vessey JK. Response of the endophytic diazotroph Gluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O_{2} pressure. Appl Environ Microbiol 2001; 67:4694-700.
17. Yoch DC, Pengra RM. Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J Bacteriol 1966; 92:618-22.
18. Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 2011; 24:1448-58.
19. Hernandez L, Arrieta J, Menendez C, Vazquez R, Coego A, Suarez V, et al. Isolation and enzymatic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 1995; 309:113-8.
20. Arrieta J, Hernández L, Coego A, Suárez V, Balmori E, Menéndez C, et al. Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. Microbiology 1996; 142:1077-85.
21. Venieraki A, Dimou M, Vezyri E, Kefalogianni I, Argyris N, Liara G, et al.

Characterization of nitrogen-fixing bacteria isolated from field-grown barley, oat, and wheat. J Microbiol 2011; 49:525-34.
22. Velázquez-Hernández M, Baizabal-Aguirre V, Cruz-Vázquez F, Trejo-Contreras M, Fuentes-Ramírez L, Bravo-Patiño A, et al. Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl , sucrose and desiccation, and in biofilm formation. Arch Microbiol 2011; 193:137-49.
23. Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2000; 2:333-42.
24. Geier G, Geider K. Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 1993; 42:387-404.
25. Schroeder VA, Michalek SM, Macrina FL. Biochemical characterization and evaluation of virulence of a fructosyltransferase-deficient mutant of Streptococcus mutans V403. Infect Immun 1989; 57:3560-9.
26. Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Biol 1997; 48:251-75.
27. Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, et al. The bacterial superoxide dismutase and gutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus Pal5. Mol Plant-Microbe Interact 2013; 26:937-45.
28. Serrato RV, Meneses CH, Vidal MS, Santana-Filho AP, Iacomini M, Sassaki GL, et al. Structural studies of an exopolysaccharide produced by Gluconacetobacter diazotrophicus Pal5. Carbohydr Polym 2013; 98:1153-9.
29. Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol 2004; 50:1-17.
30. Yamamoto Y, Takahashi Y, Kawano M, Iizuka M, Matsumoto T, Saeki S, et al. In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. J Nutr Biochem 1999; 10:13-8.
31. Kim KH, Chung CB, Kim YH, Kim KS, Han CS, Kim CH. Cosmeceutical properties of levan produced by Zymomonas mobilis. J Cosmet Sci 2005; 56:395-406.
32. Rodrigues Neto J, Malavolta V, Victor O. Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. Citri Tipo B. Summa Phytopathologica 1986; 12:16.
33. Teixeira KRS, Wülling M, Morgan T, Galler R, Zellermann E-M, Baldani JI, et al. Molecular analysis of the chromosomal region encoding the nifA and nifB genes of Acetobacter diazotrophicus. FEMS Microbiol Lett 1999; 176:301-9.
34. Muro AC, Rodriguez E, Abate CM, Sineriz F. Identification in TLC of fructose and fructosyl derivatives in levan and sugar mixtures with resorcinol and thiourea. Folia Microbiol 1999; 44:647-9.
35. Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. Plos One 2013; 8.
36. Chen Jr P, Toribara Tt, Warner H. Microdetermination of phosphorus. Anal Chem 1956; 28:1756-8.
37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403-10.

Table 1. Composition of LGI-P, Y\&P-NaCl, high P , and low P media

	LGI-P $(\mathrm{g} / \mathrm{L})$	$\mathrm{Y} \& \mathrm{P}-\mathrm{NaCl}$ $(\mathrm{g} / \mathrm{L})$	High P medium $(\mathrm{g} / \mathrm{L})$	Low P medium $(\mathrm{g} / \mathrm{L})$
Sucrose	-	20	20	20
Glucose	5	-	-	-
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	0.6	0.75	0.75	0.75
$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	0.2	-	-	-
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	-	6.25	3.13	0.20
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	0.13	0.13	0.13	0.13
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	-	0.025	0.025	0.025
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	0.01	-	-	-
$\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.02	-	-	-
$\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.021	0.025	0.025	0.025
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	0.2	0.2	0.2	0.2
$\mathrm{Biotin}^{\text {Pyridoxal }}$	0.0001	-	-	-
pH	0.0002	-	-	-
$\mathrm{Phosphate}^{(m \mathrm{mM})}$	6	7.8	50	28

Table 2. Primers used in the study ${ }^{\text {a }}$

Primer	Sequence	Note
Primer 1	ACAAGCTTCGCTTGCCCGAT GGAGATC	Sequence in italics corresponds to position -3 to 16 of 1521 nt of gumD (1,521 nt).
Primer 2	CAGAATTCGCGTCAGAAGG CATGACGGC	Sequence in italics corresponds to position +3 to 1505 of gumD.
Primer 3	CCCCTGCAGGTCGACGCAT CATCCCATCGTGCCGT	Sequence in italics corresponds to 411 to 430 of $g u m D$.
Primer 4	CCCCCCCCTGCAGGTAGCAT GTACAGGACGATGAC	Sequence in italics corresponds to 410 to 391 of gumD.
Primer 5	TTATCCCGTGTTGACTTGCC CGATGGAGATCTTCG	Sequence in italics corresponds to position 1 to 20 of gumD.
Primer 6	TTGCCCGGCGTCAACTCAG AAGGCATGACGGCTGA	Sequence in italics corresponds to position 1502 to 1521 of gumD.
Primer 7	GATCCTCTAGAGTCGACTTT ACCGCCCGCTGGACAC	Sequence in italics corresponds to position 247 to 268 of $l s d A$ (1755 nt).
Primer 8	GCATGCCTGCAGGTCGTGG ACGCCTGCGCCGCCAGAC	Sequence in italics corresponds to position 1685 to 1706 of $l s d A$.
Primer 9	CCCCCCGGGGGGGACTTT ACCGCCCGCTGGACAC	XmaI site is in bold.
Primer 10	GTAAAACGACGGCCAGT	M13 forward Primer
Primer 11	TTATCCCGTGTTGACGACTT TACCGCCCGCTGGACAC	Sequence in italics corresponds to position 247 to 268 of $l s d A$.
Primer 12	TTGCCCGGCGTCAACGTGG ACGCCTGCGCCGCCAGAC	Sequence in italics corresponds to position 1685 to 1706 of $l s d A$.
Primer 13	GAGTTTGATCCTGGCTCAG	For amplification and sequencing of 16S rDNA.
Primer 14	GGCTACCTTGTTACGA	For amplification and sequencing of 16S rDNA.
Primer 15	TACCAGGGTATCTAATCC	For sequencing of 16S rDNA.
Primer 16	GGCTACCTTGTTACGA	For sequencing of 16S rDNA.

Table 3. Plasmids used in the study

Plasmid	Note	Reference
pUC119	Amp $^{\mathrm{r}}$ ColE1 replicon	Takara
pUC118	Amp $^{\mathrm{r}}$ ColE1 replicon	Takara
pUC4K	Amp $^{\mathrm{r}} \mathrm{Km}^{\mathrm{r}}$ ColE1 replicon	GE
		healthcare
pKTY320	Amp $^{\mathrm{r}} \mathrm{Cm}^{\mathrm{r}}$ Mob p15A replicon	Kimbara et
pUC119-gumD	$g u m D$ in HincII site of pUC119	al. 1989
pUC118-1sdA-2BamH1	$l s d A$ in HincII site of pUC118	This study
pUC118-lsdA-1BamH1	$l s d A$ in XmaI/HindIII sites of pUC118	This study
pUC119-kan::gumD	Km^{r}-inserted $g u m D$ in pUC119	This study
pUC118-kan::lsdA	Km^{r}-inserted $l s d A$ in pUC118	This study
pKTY320-kan::gumD	Km^{r}-inserted $g u m D$ in HincII site pKTY320	This study
pKTY320-kan::lsdA	Km^{r}-inserted $l s d A$ in HincII site pKTY320	This study

Table 4. Concentration of phosphate in sugarcane juice

Company	Ryuka Shoji		Hatsuhino					Ryukyu Farm			
Sugarcane	a1	a2	a3	b1	b2	b3	c1	c2	c3		
Phosphate (mM)	5.4	9.6	8.0	2.9	3.0	2.8	10.8	5.7	6.2		

Fig. 1. G. diazotrophicus Pal5 WT, gumD mutant, and lsdA mutant strains grown on high or low P solid medium. Plus $(+++)$ indicates the strongest mucous trait, plus $(+)$ is moderate, and minus (-) is the weakest. Cells were grown for 1 week at $30^{\circ} \mathrm{C}$.

Fig. 2. G. diazotrophicus Pal 5 WT grown on high P , low P , and low P medium +NaCl containing the same concentration of Na^{+}as that of the high P medium. Cells were grown for 1 week at $30^{\circ} \mathrm{C}$.

Fig. 3. HPLC analysis of mucous materials. Authentic levan and mucous material collected from colonies of WT, $g u m D$, and $l s d A$ cells grown for 1 week at $30^{\circ} \mathrm{C}$ on the indicated solid media were hydrolyzed and analyzed. The vertical axis of the chromatograph shows the relative peak level. The retention time (min) is shown on the horizontal axis. Arrows show the levan peak (15.3 min).

Fig. 4. Growth on high P or low P medium of bacteria isolated from sugarcane juice. Plus $(+++)$ indicates the strongest mucous trait, plus (+) is moderate, and minus (-) is the weakest. Cells were grown for 1 week at $30^{\circ} \mathrm{C}$. Bacteria were tentatively identified based on the rDNA sequences.

Fig. 5. Growth of G. diazotrophicus Pal5 WT and $l s d A$ disruptant on solid media containing hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$. Three spotted cells were diluted tenfold from OD_{600} of 1.0 to 0.01 from right to left.

Supplemental Figures

Fig. S1 Results of HPLC analysis. The vertical axis of the chromatograph shows the relative peak level. The retention time (min) is shown on the horizontal axis. Cells were grown for 1 week at $30^{\circ} \mathrm{C}$. A, Chromatographs of authentic samples. B, Chromatographs of G. diazotrophicus wild type (WT) cells grown on solid media containing 3, 7,10 , or 28 mM phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$. C, Chromatographs of G. diazotrophicus disruptants grown on solid high P medium. Lev. shows the levan peak.

Fig. S2 TLC analysis that specifically detects levan, fructose, and fructosyl derivatives. Sample preparation and analysis was conducted as described in Materials and Methods. Lanes $1-3: 0.5 \% ~(\mathrm{w} / \mathrm{v}$ in water) authentic samples without hydrolysis; 1 , glucose, 2, fructose, 3, levan. Lane 4: hydrolyzed $0.5 \% ~(\mathrm{w} / \mathrm{v})$ levan in $3 \% ~(\mathrm{v} / \mathrm{v})$ TCA at $55^{\circ} \mathrm{C}$ for 15 min . Lanes 5 and 6: $14 \%(\mathrm{w} / \mathrm{v})$ cells hydrolyzed in $3 \%(\mathrm{v} / \mathrm{v})$ TCA at $55^{\circ} \mathrm{C}$ for 15 min ; 5, cells from high P medium (lane 5) and low P medium (lane 6).

rDNA sequence of Pantoea dispersa A1

TCGAACGGCAGCACAGAAGAGCTTGCTCTTTGGGTGGCGAGTGGCGGACGGGTGAGTAATGTCT GGGAAACTGCCCGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAA GACCAAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGG TGGGGTAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAG CCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAG GAAGGCGGTGAGGTTAATAACCTTGCCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCC GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCA CGCAGGCGGTCTGTTAAGTCAGATGTGAAATCCCCGGGGCTTAACCTGGGAAACTGCATTTGAAA CTGGCAGGCTTGAGTCTCGTAGAGGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAG ATCTGGAGGAATACCGGTGGCGAAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAA GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTANACGATGTCNACTTTGGNA GGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGG CCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT TCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAGCAGAGATGCTTTGGT GCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGT TAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGCTCGGCCGGGAACTCAAAGGA GACTGCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCA GGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCT CATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGT AATCGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCAT GGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCG

rDNA sequence of Pantoea dispersa A2

ACGGCAGCACAGAAGAGCTTGCTCTTTGGGTGGCGAGTGGCGGACGGGTGAGTAATGTCTGGGA AACTGCCCGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACC AAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGG GTAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTG AGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG ATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAG GCGGTGAGGTTAATAACCTTGCCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGC CAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA GGCGGTCTGTTAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATTTGAAACTGGCA GGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAG GAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAgGTGCGAAAGCGTGAGGA GCAAACAGGATAAGATACCcTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGCCCTT GAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAA AACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGC GAAGAACCTTACCTGGCCTTGACATCCAGAGAACTTAGCAGAGATGCTTTGGTGCCTTCGGGAAC TCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTTATCCTTTGTTGCCAGCGGCTCGGCCGGGAACTCAAAGGAGACTGCCGGTGA TAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGT GCTACAATGGCGCATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCG TAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAGAA TGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCA AAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCGCT

Abstract

rDNA sequence of Klebsiella pneumonia A3 GCGGTAGCACAGAGAGCTTGCTCTCGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAAA CTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAA AGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGT AACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAG ACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGAT GCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGGGGAGGAAGG CGATAAGGTTAATAACCTTGTTGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCA GCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAG GCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAG GCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGG AATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAG CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGATTTGGAGGTTGTGCCCTT GAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAA AACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGC GAAGAACCTTACCTGGTCTTGACATCCACAGAACTTGCCAGAGATGCTTTGGTGCCTTCGGGAAC TGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAA CGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGA TAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGT GCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCG TAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAGAA TGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCA AAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCG

rDNA sequence of Klebsiella variicola B1

AGCTTGCTCTCGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGG GGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGTGGGGGACCTTC GGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTGGTAGGTGGGGTAACGGCTCACCTAG GCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGAC TCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGC GTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGGGGAGGAAGGCGGTGAGGTTAAT AACCTCATCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTA ATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAG TCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTTGT AGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGC GAAGGCGGCCCCCTGGACAAAGACTGACGCTCAgGTGCGAAAGCGTGGGGAGCAAACAGGATTA GATACCCTGGTAGTCCACGCTGTAAAaCGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCT TCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAA TTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTAC CTGGTCTTGACATCCACAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTGTGAGACAGGT GCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCC TTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGA AGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCA TATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTG GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAA TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGT AGCTTAACCTTCGGGAGGGCG

rDNA sequence of Klevsiella variicola B2

AGCGGTAGCACAGAGAGCTTGCTCTCGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAA ACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCA AAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTGGTAGGTGGGG TAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGA GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGA TGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGGGGAGGAAG GCGGTGAGGTTAATAACCTCA-GATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCA GCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAG GCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAG GCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGG AATACCGGTGGCGAANGCGGCCCCCTGGACAAAGACTGACGCTCANGTGCGAAAGCGTGGGGAG CAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGNAGGTTGTGCCCT TGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTA AAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACG CGAAGAACCTTACCTGGTCTTGACATCCACAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAA CTGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCA ACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTG ATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACG TGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTC GTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAG AATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTG CAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCGCTTACCAC

rDNA sequence of Klevsiella variicola B3

GTCGAGCGGTAGCACAGAGAGCTTGCTCTCGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTG GGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAG ACCAAAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTGGTAGGT GGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAG CCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGGGGA GGAAGGCGGTGAGGTTAATAACCTCATCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTC CGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGC ACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAAC TGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATC TGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAgGTGCGAAAGCGT GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGaTGTCGATTTGGAGGTTGT GCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAA GGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATG CAACGCGAAGAACCTTACCTGGTCTTGACATCCACAGAACTTTCCAGAGATGGATTGGTGCCTTC GGGAACTGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTC CCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGC CAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTAC ACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGT ATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGA TCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGG GTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCG

Abstract

rDNA sequence of Gluconacetobacter diazotrophicus C2 GTCGCACGAACCTTTCGGGGTTAGTGGCGGACGGGTGAGTAACGCGTAGGGATCTGTCCATGGG TGGGGGATAACTCCGGGAAACTGGAGCTAATACCGCATGACACCTGAGGGTCAAAGGCGCGAGT CGCCTGTGGAGGAACCTGCGTTCGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGATGAT CGATAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG GAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCAATGCCGCGTGTGTGA AGAAGGTCTTCGGATTGTAAAGCACTTTCGACGGGGACGATGATGACGGTACCCGTAGAAGAAGC CCCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATGACTG GGCGTAAAGGGCGCGTAGGCGGTTTGGACAGTCAGATGTGAAATTCCTGGGCTTAACCTGGGGG CTGCATTTGATACGTACAGACTAGAGTGTGAGAGAGGGTTGTGGAATTCCCAGTGTAGAGGTGAA ATTCGTAGATATTGGGAAGAACACCGGTGGCGAAGGCGGCAACCTGGCTCATAACTGACGCTGAG GCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTGTG CTGGATGTTGGGTGGCTTAGCCCCTCAGTGTCGTAGTTAACGCGATAAGCACACCGCCTGGGGAG TACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGG TTTAATTCGAAGCAACGCGCAGAACCTTACCAGGGCTTGACATGGGGAGGCTGCAGTCAGAGATG GCTGTTTCCCGCAAGGGACCTCCTGCACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGA TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCTTTAGTTGCCAGCATGATTGGGTGGGCA CTCTAAAGGAACTGCCGGTGACAAGCCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCC TTATGTCCTGGGCTACACACGTGCTACAATGGCGGTGACAGTGGGAAGCCAGGCAGCGATGCCGA GCTGATCTCAAAAAGCCGTCTCAGTTCGGATTGCACTCTGCAACTCGAGTGCATGAAGGTGGAAT CGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGT CACACCATGGGAGTTGGTTTGACCTTAAGCCGGTGAGCGAACCCAGCAATGGGGCGCAGCCGAC

rDNA sequence of Pantoea agglomerans C3

GCAAGTcgGACGGTAGCACAGAGGAGCTTGCTCCTCGGGTGACGAGTGGCGGACGGGTGAGTAAT GTCTGGGGATCTGCCCGATAGAGGGGGATAACCACTGGAAACGGTGGCTAATACCGCATAACGTC GCAAGACCAAAGAGGGGGACCTTCGGGCCTCTCACTATCGGATGAACCCAGATGGGATTAGCTAG TAGGCGGGGTAACGGCCCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACA CTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGC GCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCG GGGAGGAAGGCGATGTGGTTAATAACCGTGTCGATTGACGTTACCCGCAGAAGAAGCACCGGCTA ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAA GCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATTTG AAACTGGCAGGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGA GATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAA GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGG TTGTTCCCTTGAGGAGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCG CAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG ATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACGGAATTTGGCAGAGATGCCTTAGTGCCT TCGGGAACCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAG TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGATTCGGTCGGGAACTCAAAGGAGACT GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGGGCT ACACACGTGCTACAATGGCGCATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAA GTGCGTCGTAGTCCGGATCGGAGTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGT GGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAG TGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCGCTTACCA

Fig. S3. rDNA sequences of bacteria isolated from sugarcane juices. Sequences analyzed by both forward and reverse primers are shown in uppercase letters, and that analyzed with only one primer pair is in lowercase letters.

Fig. S4 Results of HPLC analysis of bacterial cells from sugarcane juice. The vertical axis of the chromatograph shows the relative peak level. The retention time (min) is shown on the horizontal axis. Cells were grown for 1 week at $30^{\circ} \mathrm{C}$. The levan peak was not detected in A3.

