<table>
<thead>
<tr>
<th>Title</th>
<th>Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Bioengineered (2014), 5(3): 173-179</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-05-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/187780</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 Landes Bioscience; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
Article title: Phosphate enhances levan production in the endophytic bacterium *Gluconacetobacter diazotrophicus* Pal5

Running head: Phosphate enhances levan production

Authors: Nao Idogawa*, Ryuta Amamoto*, Kousaku Murata, Shigeyuki Kawai

Affiliations: Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan

Keywords: *Gluconacetobacter diazotrophicus*, exopolysaccharide, levan, sugarcane, ROS

* These authors contributed equally to this work.

Corresponding author:
Shigeyuki Kawai
Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan. Phone: +81-774-38-3768. Fax: +81-774-38-3767. Email: kawai@kais.kyoto-u.ac.jp.

Competing financial interests: The authors declare no competing financial interests.

Financial disclosure statements: This study was supported by Grants-in-Aid for challenging Exploratory Research (to K.M.; 24658076, 22658026), and in part by the Funding Program for Next Generation World-Leading Researchers (NEXT program) (to S.K.).
Abstract

Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. *G. diazotrophicus* synthesizes levan, a D-fructofuranosyl polymer with \(\beta -(2\rightarrow6) \) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by *G. diazotrophicus* Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A *G. diazotrophicus* Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production.
Introduction

Due to the increasing cost of chemical nitrogenous fertilizers and concerns about contamination of soil and water, there is a need to reduce usage of chemical fertilizer. Plant-associated microorganisms containing nitrogenases have attracted attention as alternative biofertilizers, since nitrogenase catalyzes a reaction referred to as biological nitrogen fixation, in which atmospheric nitrogen is converted to ammonia.

Plant-associated nitrogen-fixing microorganisms reside in the internal parts of plant and the rhizosphere, providing host plants with nitrogenous compounds, while the host plants supply the microorganisms with nutrients such as carbon sources, organic acids, and amino acids. One such plant-associated microorganism, *Gluconacetobacter diazotrophicus*, is a gram-negative, obligate aerobic, and endophytic nitrogen-fixing bacterium that was originally isolated from sugarcane. This bacterium has also been isolated from natural *Ipomoea batatas* (sweet potato), *Coffeea arabica L.* (coffee), *Pennisetum purpureum* (cameroon grass), and *Ananas comosus* (pineapple). As well as serving as a nitrogen source for the host plant, *G. diazotrophicus* produces phytohormones such as indole acetic acid and gibberellic acid, and antimicrobial compounds against phytopathogenic *Xanthomonas albilineans*. *G. diazotrophicus* can also solubilize insoluble metals in vitro. Thus, utilization of *G. diazotrophicus* as a biofertilizer in agriculture may allow reduced use of chemical fertilizers.

G. diazotrophicus cells mainly inhabit the host plant and the survival rate is very low when the bacterium is inoculated artificially in soil. Thus, use of *G. diazotrophicus* as a biofertilizer requires a study of its physiological properties, including how this bacterium responds to extracellular compounds in the environment. In this study, we unexpectedly found mucous growth of *G. diazotrophicus* Pal5 on a solid medium with a high concentration of phosphate. We show that the mucous trait is caused by production of levan, a linear fructose polymer, that is enhanced by a high concentration of phosphate.

Results

A high mucous phenotype of *G. diazotrophicus* Pal5 at a high phosphate concentration

In growth experiments on solid media such as LGI-P, C2-NaCl, Dygs, Y & P, and Y & P-NaCl, the *G. diazotrophicus* Pal5 strain showed a stronger mucous phenotype on solid Y & P and Y & P-NaCl medium than on solid LGI-P medium (data not shown). LGI-P is the medium used for *G. diazotrophicus* (Table 1), Y & P medium has been used for *E. coli* carrying *nif* clusters of *Klebsiella pneumonia*, and Y & P-NaCl medium is Y & P medium.
that lacks NaCl and thiamine (Table 1).

To identify the ingredient(s) in the medium that led to the highly mucous phenotype, we initially showed that each ingredient specific to LGI-P medium (FeCl₃, CaCl₂, biotin, and pyridoxal; Table 1) had no effect on the highly mucous trait of *G. diazotrophicus* Pal5, excluding the possibility that these ingredients caused the highly mucous phenotype. We then focused on the phosphate concentrations in the LGI-P and Y & P-NaCl media, which are 6 mM and 50 mM, respectively (Table 1). To check the effect of this concentration, growth of the Pal5 strain was examined on solid low P medium (Table 1), in which the 6.25 g/L Na₂HPO₄ in Y & P-NaCl medium was reduced to 0.20 g/L (final phosphate, 7.0 mM). The mucous trait of the cells was significantly reduced on solid low P medium (Fig. 1), suggesting that a high concentration of Na₂HPO₄ caused the highly mucous phenotype of the Pal5 strain.

The Pal5 strain still exhibited a highly mucous phenotype on solid high P medium (Table 1), in which the 6.25 g/L Na₂HPO₄ in Y & P-NaCl medium was reduced to 3.13 g/L (final phosphate, 28 mM). The Pal5 strain also had a mucous trait regardless of use of a sodium or potassium salt, since the strain showed a highly mucous phenotype on medium in which 6.25 g/L Na₂HPO₄ in Y & P-NaCl medium was replaced by 6.25 g/L K₂HPO₄ (data not shown). The highly mucous phenotype of the Pal5 strain also occurred on solid high P medium with adjustment of its normal pH 7.5 to 6.3; whereas the less mucous phenotype occurred on solid low P medium with adjustment of its normal pH 6.3 to 7.5 (data not shown). These findings indicate that the pH of the medium was not involved in the highly mucous phenotype. To examine the effect of a high concentration of Na⁺, *G. diazotrophicus* Pal5 was grown on a medium containing 7 mM phosphate and 45 mM Na⁺ (Table 1, Fig. 2). No mucous phenotype occurred with this medium, indicating that a high concentration of Na⁺ was not associated with the mucous phenotype. Collectively, these data show that a high P concentration (>28 mM) enhances the highly mucous phenotype of *G. diazotrophicus* Pal5.

Enhanced levan production by *G. diazotrophicus* Pal5 at a high phosphate concentration

To identify the components in the mucous material, a *G. diazotrophicus* gumD disruptant (MK4004) strain was constructed. The *gumD* gene codes for a protein that is probably responsible for the first step in extracellular polysaccharide (EPS) production. The amount of EPS produced by the *gumD* disruptant of the Pal5 strain in liquid LGI-based medium with 20 g/L sucrose is reduced by approximately 50% compared to that of wild type (WT)¹⁸. However, the *gumD* disruptant still formed highly mucous colonies on solid high P medium,
similarly to the WT strain (Fig. 1).

A *G. diazotrophicus lsdA* disruptant was grown in the same way. The *lsdA* gene codes for levensucrase, an extracellular fructosyltransferase that catalyzes synthesis of levan from sucrose. Levan is a linear fructose polymer with β-(2→6) links and more than 100 fructosyl residues. The mucous trait of the *lsdA* disruptant strain was substantially lower than that of the WT strain on solid high P medium (Fig. 1), suggesting that the mucous material is levan.

To confirm that the mucous material was levan, mucous colonies of Pal5 cells on solid high P medium and less mucous colonies on solid low P medium were hydrolyzed and analyzed by HPLC. Authentic samples of hydrolyzed levan, sucrose, and fructose all gave a levan peak at a retention time of 15.3 min (Fig. S1, Fig. 3). The levan peak was higher in hydrolyzed mucous colonies from high P medium than from hydrolyzed less mucous colonies from low P medium (Fig. 3, Fig. S1). Moreover, thin layer chromatography (TLC) analysis that specifically detects levan, fructose, and fructosyl derivatives demonstrated that hydrolyzed mucous colonies from high P medium contain higher amounts of fructose and fructosyl derivatives than hydrolyzed less mucous colonies from low P medium (Fig. S2). Hydrolyzed less mucous colonies of *lsdA* disruptant cells on solid high P medium showed a much smaller levan peak than those of WT or *gumD* disruptant cells on solid high P medium on HPLC analysis. These data confirm that the mucous material is levan and that a high concentration of phosphate (>28 mM) enhances production of levan by Pal5 cells on a solid medium.

To examine whether a high concentration of phosphate (>28 mM) enhances production of levan by Pal5 cells in a liquid medium, Pal5 cells were grown aerobically in liquid high and low P media, and dried EPS (including levan) in the supernatant was weighed, hydrolyzed, and analyzed. The amounts of dried EPS from the two cultures were about the same: 35 ± 2 mg (n = 4; from 25 ml supernatant of high P medium) and 33 ± 6 mg (n = 4; from 25 ml supernatant of low P medium), and gave levan peaks of the same height (data not shown). This indicates that enhanced production of levan by phosphate is a phenotype specific to a solid medium, and does not occur in a liquid medium.

Sugarcane juices were prepared from sugarcanes a1, a2, a3, b1, b2, b3, c1, c2, and c3 (Table 4). Bacteria were isolated from each sugarcane juice and were tentatively identified as *Pantoea dispersa* A1, *Pantoea dispersa* A2, *Klebsiella pneumonia* A3, *Klebsiella variicola* B1, *Klebsiella variicola* B2, *Klebsiella variicola* B3, *Gluconacetobacter diazotrophicus* C2, and *Pantoea agglomerans* C3, respectively, based on the rDNA sequences (Fig. S3). The
phosphate concentrations in the sugarcane juices were 2.8-10.8 mM (Table 4). All isolated bacteria showed a stronger mucous phenotype on solid high P medium than on solid low P medium (Fig. 4). However, these highly mucous phenotypes were not attributable to levan alone, since levan peaks were not observed in A3 cells and were very weak in other cells (Fig. S4).

Tolerance to hydrogen peroxide

To examine whether the tolerance of *G. diazotrophicus* Pal5 to reactive oxygen species (ROS) is improved by levan, we cultivated *G. diazotrophicus* Pal5 WT and its *lsdA* disruptant on solid media containing hydrogen peroxide (*H*₂*O*₂) and 0, 3, 10, and 28 mM phosphate (Fig. 5), since the phosphate concentrations of sugarcane juices were determined to be 2.8 to 10.8 mM (Table 4). The *lsdA* disruptant exhibited lesser growth and lesser mucous growth on solid media with 28 mM phosphate and “physiological” phosphate concentrations (3 and 10 mM) in the absence and presence of hydrogen peroxide. Notably, the *lsdA* disruptant showed particularly marked reduction in growth in the presence of hydrogen peroxide and the phosphate concentration had no effect on tolerance (Fig. 5). HPLC analysis confirmed that *G. diazotrophicus* Pal5 synthesizes levan in the presence of 3, 10 and 28 mM phosphate (Fig. S1B). Collectively, these data suggest that levan is important for ROS resistance of *G. diazotrophicus* Pal5 and that a high concentration (28 mM) of phosphate has no effect on ROS resistance.

Discussion

Utilization of *G. diazotrophicus* strains as biofertilizer in agriculture requires an improved understanding of their physiological properties, including how this bacterium responds to extracellular compounds in the environment. Here, we found that *G. diazotrophicus* forms highly mucous colonies and produces a higher amount of levan on a solid medium with a high concentration of phosphate (>28 mM).

Production of levan by *G. diazotrophicus* strains may occur due to the ability of this bacterium to assimilate sucrose ¹⁹-²¹. In particular, Arrieta et al. found that the *G. diazotrophicus* SRT4 strain forms mucous colonies on solid sucrose-containing LGIE medium ²⁰, although the amount of mucus was not described. LGIE medium is a LGI-based medium that contains (in g/L) tryptone, 1; yeast extract, 0.2; sucrose 50; and glycerol, 10; plus LGI salts ⁴ (LGI-P, Table 1) ¹⁶ including 6 mM phosphate, but not glucose, ammonium
sulfate, biotin, and pyridoxal. Previous studies of *G. diazotrophicus* have used this LGI-based medium. Thus, the effects of a high phosphate concentration on production of levan have not been examined, since the LGI-based medium contains only 6 mM phosphate.

Disruption of levansucrase genes in other several bacteria impairs their behavior in association with plants or animals. A disruption of the *Paenibacillus polymyxa* levansucrase gene impaired its ability to aggregate soil in the wheat rhizosphere. Levansucrase mutants of fireblight pathogen *Erwinia amylovora* caused retarded development of necrotic symptoms on inoculated pear seedlings. The extracellular fructosyltransferase-deficient strain of *Streptococcus mutans* was less pathogenic compared with the wild-type strain. In the case of *G. diazotrophicus*, levan improves stress tolerances, desiccation, osmotic pressure, and NaCl stress of this bacterium. ROS resistance is also important for *G. diazotrophicus* Pal5 in colonization of plants because plants generate superoxide against pathogens as a defense mechanism. Thus, a *G. diazotrophicus* disruptant strain in which ROS-detoxifying genes are destroyed is unable to colonize plant roots efficiently. Use of an *lsdA* disruptant in this study suggested that levan itself is significant for tolerance of hydrogen peroxide, and *G. diazotrophicus* Pal5 was found to synthesize levan on a solid medium containing “physiological” concentrations (3 and 10 mM) of phosphate. This suggests that levan may facilitate this bacterium to colonize and reside in plants by improving tolerance to desiccation, osmotic pressure, and NaCl stress, and increasing tolerance to ROS, although the physiological role of the highly mucous phenotype of Pal5 caused by a high concentration of phosphate remains unclear. With regard to the structures of the EPS produced by *G. diazotrophicus*, other than levan, little has been elucidated. It has been recently reported that *G. diazotrophicus* Pal5 produced the EPS that has 4-O-substituted units of \(\beta \)-glucose, 3-O-substituted units of \(\beta \)-galactose and 2-O-substituted units of \(\alpha \)-mannose in the liquid medium containing mannitol.

Finally, our finding that synthesis of levan by *G. diazotrophicus* Pal5 is increased on a solid medium containing a high concentration of phosphate may be important for industrial production of levan. Levan is currently synthesized on an industrial scale using bacterium such as *Bacillus* species. Hypocholesterolemic and cosmeceutical effects of levan have been reported and application of levan is likely in a variety of industrial fields, including food, cosmetics, and medicine.

Materials and Methods
Bacterial strains and growth conditions

G. diazotrophicus Pal5 ATCC49037 (American Type Culture Collection) was grown at 30°C in C2-NaCl, Dygs, LGI-P, Y & P-NaCl, or high and low P media. C2-NaCl medium is C2 medium that lacks NaCl and contains (in g/L) tryptone, 10; glucose, 15; yeast extract, 5; pH 6.5. Y & P-NaCl medium is Y & P medium that lacks NaCl and thiamine. The compositions of Y & P-NaCl, LGI-P, high P, and low P media are shown in Table 1. Solid medium was made by adding agar at 15 g/L. *Escherichia coli* DH5α was used as the cloning host and was grown at 37°C in LB medium, which contains (in g/L) tryptone, 10; yeast extract, 5; NaCl, 10; pH 7.2.

Construction of plasmids and recombinant *G. diazotrophicus* Pal5 strains

Primers and plasmids are shown in Tables 2 and 3. pKTY320-kan::gumD was constructed as follows. *gumD* (1521 nt) was amplified by PCR with primers 1 and 2, using *G. diazotrophicus* Pal5 genomic DNA as a template. The PCR product was inserted into HincII-treated pUC119, yielding pUC119-gumD. Using this plasmid as a template, inverse PCR was conducted with primers 3 and 4. Km\(^r\) fragment, obtained by SalI digestion of pUC4K, was inserted by in-fusion (Clontech) into the amplified DNA fragment, resulting in pUC119-kan::gumD. Using this plasmid as a template, the Km\(^r\)-inserted *gumD* was amplified by PCR with primers 5 and 6. The amplified fragment was inserted by in-fusion into HincII-treated pKTY320, giving pKTY320-kan::gumD.

pKTY320-kan::lsdA was similarly constructed. A DNA fragment containing a part of *lsdA* (1460 nt: from nt 247 to 1706 in a 1755 nt full length *lsdA*) was amplified by PCR with primers 7 and 8, using the Pal5 genomic DNA as a template. The PCR product was inserted into HincII-treated pUC118, yielding pUC118-lsdA-2BamHI. Using this plasmid as a template, this DNA fragment was amplified by PCR with primers 9 and 10. The PCR product was digested with XmaI/HindIII and ligated into XmaI/HindIII-treated pUC118, resulting in pUC118-lsdA-1BamHI. The Km\(^r\) fragment obtained by BamHI digestion of pUC4K was inserted into the BamHI site of pUC118-lsdA-1BamHI to give pUC118::kan-lsdA. Using this plasmid as a template, the Km\(^r\)-inserted *lsdA* was amplified by PCR with primers 11 and 12. The amplified fragment was inserted by in-fusion into HincII-treated pKTY320, yielding pKTY320-kan::lsdA.

G. diazotrophicus Pal5 mutant strains (MK4004, *gumD::Km\(^r\)* in Pal5; MK4384, *lsdA::Km\(^r\)* in Pal5) were made by insertional mutagenesis. pKTY320-kan::gumD or
pKTY320-kan::lsdA was introduced into the *G. diazotrophicus* Pal5 strain by electroporation. The applied pulse conditions were 10.0 kV/cm and 5 msec using Bio-Rad Gene Pulser Xcell (Bio-Rad). Competent cells (100 µl) were mixed with 100 ng of plasmid DNA. Transformants were selected on solid Dygs medium containing kanamycin (200 µg/ml).

HPLC and TLC analyses of *G. diazotrophicus* Pal5 cells

G. diazotrophicus Pal5 cells for HPLC analysis were grown on membranes as follows. Pal5 cells were grown in C2-NaCl liquid medium aerobically at 30°C overnight and collected by centrifugation at 10,000×g for 2 min. The cells were washed 3 times with 0.9% (w/v) NaCl and diluted to OD$_{600}$ of 1.0. The cells in 50 µl of this suspension were put on a membrane (diameter 13 mm, pore size 0.22 µm) that was placed on solid medium and incubated at 30°C for 1 week. Colonies of the cells together with mucous materials that grew on the membrane were collected with a sterilized spatula into an Eppendorf tube and weighed.

For HPLC analysis, collected and weighed cells were suspended in 4% (w/v) H$_2$SO$_4$ to reach 14% (w/w). Authentic samples of levan (L8647 from *Erwinia herbicola*; Sigma-Aldrich), sucrose, fructose, and glucose were dissolved in 4% (w/v) H$_2$SO$_4$ to reach 0.5%, 2%, 1%, and 1% (w/w), respectively. The suspensions were hydrolyzed at 121°C for 1 h and centrifuged at 20,000×g for 5 min at 4°C. The supernatant was filtered (pore size 0.2 µm) and analyzed by HPLC using an Aminex HPX-87H column (300×87 mm; Bio-Rad), a RID-10A detector (Shimazu, Kyoto, Japan), an effluent of filtered and degassed 0.01N H$_2$SO$_4$, a flow rate of 0.6 ml/min, and a column temperature of 65.0°C.

For TLC analysis, collected and weighed cells were suspended in 3% (v/v) trichloroacetic acid (TCA) to reach 14% (w/w). Authentic sample of levan was dissolved in 3% (v/v) TCA to reach 0.5% (w/v). Authentic samples of levan, fructose, and glucose were also dissolved in water to reach 0.5% (w/w). The suspensions in 3% (v/v) TCA were hydrolyzed at 55°C for 15 min $^{34, 35}$ and centrifuged at 20,000×g for 5 min at 4°C. The supernatant (5 µl) and other authentic sample (5 µl) were spotted on TLC silica gel 60 F$_{254}$ (Merck KGaA) and developed in a solvent system consisting of butanol–acetate–water (3:3:2 v/v/v). Levan, fructose, and fructosyl derivatives were specifically detected using resorcinol and thiourea as described 34.

Isolation of levan from liquid culture
G. diazotrophicus Pal5 cells were precultured in liquid C2-NaCl medium, washed with 0.9% NaCl as above, and inoculated to OD_{600} of 0.1 in 30 ml of fresh liquid high P medium in a 300 ml Erlenmeyer flask. Cells were cultivated at 150 strokes per min at 30°C for 48 h and supernatant was obtained by centrifugation at 20,000 g for 5 min. Levan was isolated from the supernatant as described previously 19. Briefly, levan was precipitated with 2 volumes of ethanol 99.5%, collected with centrifugation at 20,000 g for 20 min, washed once with 66% ethanol, and freeze-dried. The dried material was weighed and a portion was dissolved in 4% (w/v) H\textsubscript{2}SO\textsubscript{4} to reach 1% (w/w), hydrolyzed, and analyzed by HPLC as above.

Determination of phosphate concentration in sugarcane juice

Sugarcanes grown in Okinawa were purchased from Ryuka Shoji (Okinawa, Japan), Hatsuhino (Okinawa, Japan), and Ryukyu farm (Okinawa, Japan). Phosphate concentrations were determined in three sugarcanes from each company (a1, a2, a3, b1, b2, b3, c1, c2 and c3) using a previously described method 36.

Isolation of bacteria from sugarcane juice

Sugarcane juice (1 µl) was streaked on solid high P medium containing 5 ml of 0.5% bromothymol blue in 0.2 N KOH in 1 L of medium. Each colony was purified by streaking twice on solid low P medium. Genomic DNA was isolated from bacteria and the 16S rDNA gene was amplified using primers 13 and 14 (Table 2). Sequence analysis of the amplified fragment was conducted using primers 13, 14, 15 and 16. rDNA sequences were analyzed by BLAST search 37 using the NCBI 16S ribosomal RNA sequence database. Bacteria were tentatively identified based on the highest max score.

Tolerance to hydrogen peroxide

G. diazotrophicus Pal5 was precultured in C2-NaCl, washed 3 times with 0.9% NaCl, and diluted to OD_{600} of 1.0. The cell suspension (2 µl) was spotted on solid media containing Na\textsubscript{2}HPO\textsubscript{4} as a sole phosphate source. The pH was adjusted to 5.0 to match that of sugarcane juice.

Acknowledgements
This study was supported by Grants-in-Aid for challenging Exploratory Research (to K.M.; 24658076, 22658026), and in part by the Funding Program for Next Generation World-Leading Researchers (NEXT program) (to S.K.).
References

11. Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla J,
Kennedy C. Indole-3-acetic acid biosynthesis is deficient in *Gluconacetobacter diazotrophicus* strains with mutations in cytochrome c biogenesis genes. J Bacteriol 2004; 186:5384 - 91.

Table 1. Composition of LGI-P, Y&P-NaCl, high P, and low P media

<table>
<thead>
<tr>
<th></th>
<th>LGI-P (g/L)</th>
<th>Y & P-NaCl (g/L)</th>
<th>High P medium (g/L)</th>
<th>Low P medium (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose</td>
<td>-</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Glucose</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.6</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>-</td>
<td>6.25</td>
<td>3.13</td>
<td>0.20</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>-</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>FeCl₃·6H₂O</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Na₂MoO₄·2H₂O</td>
<td>0.021</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Biotin</td>
<td>0.0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pyridoxal</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH</td>
<td>6.3</td>
<td>7.8</td>
<td>7.5</td>
<td>6.3</td>
</tr>
<tr>
<td>Phosphate (mM)</td>
<td>6</td>
<td>50</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Na⁺ (mM)</td>
<td>0.16</td>
<td>88.2</td>
<td>44.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Table 2. Primers used in the study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer 1</td>
<td>ACAAGCTTCTGCTTGCCCGAT<sup>a</sup>
GGAGATC</td>
<td>Sequence in italics corresponds to position -3 to 16 of 1521 nt of gumD (1,521 nt).</td>
</tr>
<tr>
<td>Primer 2</td>
<td>CAGAATTCCGCCTCAAGAAGG
CATGACGGC</td>
<td>Sequence in italics corresponds to position +3 to 1505 of gumD.</td>
</tr>
<tr>
<td>Primer 3</td>
<td>CCCCTGCAGGTCGAC
CATCCCATCTCGGTGGCGT</td>
<td>Sequence in italics corresponds to 411 to 430 of gumD.</td>
</tr>
<tr>
<td>Primer 4</td>
<td>CCCCCTCCGTCAG GTAGCAT
GTACGGACGATGAC</td>
<td>Sequence in italics corresponds to 410 to 391 of gumD.</td>
</tr>
<tr>
<td>Primer 5</td>
<td>TTATGCCGTTGCTACCTTGCC
CATGGAGATCTTCC</td>
<td>Sequence in italics corresponds to position 1 to 20 of gumD.</td>
</tr>
<tr>
<td>Primer 6</td>
<td>TTGCCCAGGTGA
AACCGCCCGCTGGACAC</td>
<td>Sequence in italics corresponds to position 1502 to 1521 of gumD.</td>
</tr>
<tr>
<td>Primer 7</td>
<td>GATCCTCTAGAGTGACACTTT
ACCGCCCGCTGGACAC</td>
<td>Sequence in italics corresponds to position 247 to 268 of lsdA (1755 nt).</td>
</tr>
<tr>
<td>Primer 8</td>
<td>GACGCCGCTGACTGTCGG
ACGCCTGACCGCAGAC</td>
<td>Sequence in italics corresponds to position 1685 to 1706 of lsdA.</td>
</tr>
<tr>
<td>Primer 9</td>
<td>CCCCGGGGGG
ACCGCCCGCTGGACAC</td>
<td>Xmal site is in bold.</td>
</tr>
<tr>
<td>Primer 10</td>
<td>GTAAAACGACGGCCAGT
ACCGCCCGCTGGACAC</td>
<td>M13 forward Primer</td>
</tr>
<tr>
<td>Primer 11</td>
<td>TTATCCGCCTGCTACGTAC
TACCAGCTGACGGCAAC</td>
<td>Sequence in italics corresponds to position 247 to 268 of lsdA.</td>
</tr>
<tr>
<td>Primer 12</td>
<td>TTGCCCAGGTGA
ACGCCTGACCGCAGAC</td>
<td>Sequence in italics corresponds to position 1685 to 1706 of lsdA.</td>
</tr>
<tr>
<td>Primer 13</td>
<td>GAGTTTGATCCTGGCTCAG</td>
<td>For amplification and sequencing of 16S rDNA.</td>
</tr>
<tr>
<td>Primer 14</td>
<td>GGCTACCTGTGTTACGA</td>
<td>For amplification and sequencing of 16S rDNA.</td>
</tr>
<tr>
<td>Primer 15</td>
<td>TACCGGCTATCTAAC</td>
<td>For sequencing of 16S rDNA.</td>
</tr>
<tr>
<td>Primer 16</td>
<td>GGCTACCTGTGTTACGA</td>
<td>For sequencing of 16S rDNA.</td>
</tr>
</tbody>
</table>

^aUnderlined sequences are for in-fusion. Primers 1 to 6 have been described previously."
Table 3. Plasmids used in the study

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Note</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC119</td>
<td>Amp<sup>r</sup>, ColE1 replicon</td>
<td>Takara</td>
</tr>
<tr>
<td>pUC118</td>
<td>Amp<sup>r</sup>, ColE1 replicon</td>
<td>Takara</td>
</tr>
<tr>
<td>pUC4K</td>
<td>Amp<sup>r</sup>, Km<sup>r</sup>, ColE1 replicon</td>
<td>GE healthcare</td>
</tr>
<tr>
<td>pKTY320</td>
<td>Amp<sup>r</sup>, Cm<sup>r</sup>, Mob p15A replicon</td>
<td>Kimbara et al. 1989</td>
</tr>
<tr>
<td>pUC119-gumD</td>
<td>gumD in HincII site of pUC119</td>
<td>This study</td>
</tr>
<tr>
<td>pUC118-1sdA-2BamH1</td>
<td>lsdA in HincII site of pUC118</td>
<td>This study</td>
</tr>
<tr>
<td>pUC118-1sdA-1BamH1</td>
<td>lsdA in Xmal/HindIII sites of pUC118</td>
<td>This study</td>
</tr>
<tr>
<td>pUC119-kan::gumD</td>
<td>Km<sup>r</sup>-inserted gumD in pUC119</td>
<td>This study</td>
</tr>
<tr>
<td>pUC118-kan::lsdA</td>
<td>Km<sup>r</sup>-inserted lsdA in pUC118</td>
<td>This study</td>
</tr>
<tr>
<td>pKTY320-kan::gumD</td>
<td>Km<sup>r</sup>-inserted gumD in HincII site pKTY320</td>
<td>This study</td>
</tr>
<tr>
<td>pKTY320-kan::lsdA</td>
<td>Km<sup>r</sup>-inserted lsdA in HincII site pKTY320</td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 4. Concentration of phosphate in sugarcane juice

<table>
<thead>
<tr>
<th>Company</th>
<th>Ryuka Shoji</th>
<th>Hatushino</th>
<th>Ryukyu Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugarcane</td>
<td>a1</td>
<td>a2</td>
<td>a3</td>
</tr>
<tr>
<td>Phosphate (mM)</td>
<td>5.4</td>
<td>9.6</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
</tr>
<tr>
<td>Phosphate (mM)</td>
<td>2.9</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>c1</td>
<td>c2</td>
<td>c3</td>
</tr>
<tr>
<td>Phosphate (mM)</td>
<td>10.8</td>
<td>5.7</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Fig. 1. *G. diazotrophicus* Pal5 WT, *gumD* mutant, and *lsdA* mutant strains grown on high or low P solid medium. Plus (+++) indicates the strongest mucous trait, plus (+) is moderate, and minus (-) is the weakest. Cells were grown for 1 week at 30°C.
Fig. 2. *G. diazotrophicus* Pal 5 WT grown on high P, low P, and low P medium + NaCl containing the same concentration of Na\(^+\) as that of the high P medium. Cells were grown for 1 week at 30°C.
Fig. 3. HPLC analysis of mucous materials. Authentic levan and mucous material collected from colonies of WT, gumD, and lsdA cells grown for 1 week at 30°C on the indicated solid media were hydrolyzed and analyzed. The vertical axis of the chromatograph shows the relative peak level. The retention time (min) is shown on the horizontal axis. Arrows show the levan peak (15.3 min).
Fig. 4. Growth on high P or low P medium of bacteria isolated from sugarcane juice. Plus (+++) indicates the strongest mucous trait, plus (+) is moderate, and minus (-) is the weakest. Cells were grown for 1 week at 30°C. Bacteria were tentatively identified based on the rDNA sequences.
Fig. 5. Growth of *G. diazotrophicus* Pal5 WT and *lsdA* disruptant on solid media containing hydrogen peroxide (H$_2$O$_2$). Three spotted cells were diluted tenfold from OD$_{600}$ of 1.0 to 0.01 from right to left.
Fig. S1 Results of HPLC analysis. The vertical axis of the chromatograph shows the relative peak level. The retention time (min) is shown on the horizontal axis. Cells were grown for 1 week at 30°C. A, Chromatographs of authentic samples. B, Chromatographs of \textit{G. diazotrophicus} wild type (WT) cells grown on solid media containing 3, 7, 10, or 28 mM phosphate (PO$_4^3$). C, Chromatographs of \textit{G. diazotrophicus} disruptants grown on solid high P medium. Lev. shows the levan peak.
Fig. S2 TLC analysis that specifically detects levan, fructose, and fructosyl derivatives. Sample preparation and analysis was conducted as described in Materials and Methods. Lanes 1 – 3: 0.5% (w/v in water) authentic samples without hydrolysis; 1, glucose, 2, fructose, 3, levan. Lane 4: hydrolyzed 0.5% (w/v) levan in 3% (v/v) TCA at 55°C for 15 min. Lanes 5 and 6: 14% (w/v) cells hydrolyzed in 3% (v/v) TCA at 55°C for 15 min; 5, cells from high P medium (lane 5) and low P medium (lane 6).
rDNA sequence of *Pantoea dispersa* A1
TCGAAACCGCAGACACAGAAGCTGTGCTCTTTGGTGGGGAGTGGAGTAAATCTGGTCTGAGCAATGGGAGATGGTTG
GGGAACTGCCCGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGGACCAAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGG
TGGGTAATAGCTGCTACTAAGCAGACCCACCTACCTAGTGCTCTGGTGTGCAATGGGAGATGGTTG
GGGAACTGCCCGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGGACCAAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGG
TGGGTAATAGCTGCTACTAAGCAGACCCACCTACCTAGTGCTCTGGTGTGCAATGGGAGATGGTTG
GGGAACTGCCCGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGGACCAAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGG
TGGGTAATAGCTGCTACTAAGCAGACCCACCTACCTAGTGCTCTGGTGTGCAATGGGAGATGGTT

rDNA sequence of *Pantoea dispersa* A2
ACGGCAGCAGAAGCTGTGCTCTTTGGTGGGGAGTGGAGTAAATCTGGTCTGAGCAATGGGAGATGGTTG
GGGAACTGCCCGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGGACCAAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGG
TGGGTAATAGCTGCTACTAAGCAGACCCACCTACCTAGTGCTCTGGTGTGCAATGGGAGATGGTTG
GGGAACTGCCCGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGGACCAAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGG
TGGGTAATAGCTGCTACTAAGCAGACCCACCTACCTAGTGCTCTGGTGTGCAATGGGAGATGGTTG
GGGAACTGCCCGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGGACCAAAGTGGGGGACCTTCGGGCCTCACACCATCGGATGTGCCCAGATGGGATTAGCTAGTAGG
TGGGTAATAGCTGCTACTAAGCAGACCCACCTACCTAGTGCTCTGGTGTGCAATGGGAGATGGTT

3
rDNA sequence of *Klebsiella pneumonia* A3

GCGTGAGACAGAGATTCTGCTCGGGTGAACGGGACACGGGTAGTAATGCTTGGGAACTGGCTGATACGGAGATGTAATGCTGGAATTTCTGGGAAACTGCCTGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGAC

ACATGGTGAATTTCTGGGAAACTGCCTGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGAC

AGAAGGCTGGTTCGAGCTAAGGGGCTACACACGTGACTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAAGCTACGGTGAAACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCG

rDNA sequence of *Klebsiella variicola* B1

AGCTTGCTCTCGGGTGAACGGGACACGGGTAGTAATGCTTGGGAAACTGCCTGATACGGAGATGTAATGCTGGAATTTCTGGGAAACTGCCTGATGGAGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGAC

CGCAAGGCTGGTTCGAGCTAAGGGGCTACACACGTGACTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAAGCTACGGTGAAACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCG
rDNA sequence of *Klebsiella variicola* B2

AGCGGTAGCACAGAGAGCTTGCTCTCGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAA
ACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATA

CCGCATAACGTCGCAAGACCA
AAGTGGGGGACCTTCGGGCCTCATGCCATCAGATGTGCCAGATGGGATTAGCTGGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGA
GACACGGTCCAGACTCCTCGTGCTTCGGAGAAGGCGGACGCTGCTTTGTAAGAAGCACTTTCACGGGAGGAGAAG
GGCGGTGAGGTTAATAACCTCA-GATGGCTTATACCCCGGAGTCAAACCTGGGATACCTGGTTAGCTAAAGCGCAGCAG
GGCTTAGTCTAGCTGAGGGGGTAGAACTTTCAGCGGGAGGCTAATGCGTAGAGATCTGGAGG
GAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAgGTGCGAAAG
CGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGA TGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAA
GGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCACGCGAAGAACCTTACCTGGTCTTGACATCCACAGAATTTCCAGAGATGGATTGGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCGCTTACCAC

rDNA sequence of *Klebsiella variicola* B3

GTCGAGCCTGATGCACAGAGACGCTTGCTCTCGGTGAGCAGACCGGCGGACGGGTAGTAATGTCTGCTG
AGCAAACCCGCTGACAACCTGGGGTGTGGAAACACAGGTAGCTAATACCCCGCACAAGCTGGGATACCTGGTTAGCTAAAGCGCAGCAG
GGCTTAGTCTAGCTGAGGGGGTAGAACTTTCAGCGGGAGGCTAATGCGTAGAGATCTGGAGG
GAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAgGTGCGAAAG
CGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGA TGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAA
GGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCACGCGAAGAACCTTACCTGGTCTTGACATCCACAGAATTTCCAGAGATGGATTGGTGCCTTCGGGAACTGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCGCTTACCAC
rDNA sequence of *Pantoea agglomerans C3*

CAACGTCGATGTAAGCTGAGCAGATGTCGAGGACGAGTGTTAGTAGATG

Fig. S3. rDNA sequences of bacteria isolated from sugarcane juices. Sequences analyzed by both forward and reverse primers are shown in uppercase letters, and that analyzed with only one primer pair is in lowercase letters.
Fig. S4 Results of HPLC analysis of bacterial cells from sugarcane juice. The vertical axis of the chromatograph shows the relative peak level. The retention time (min) is shown on the horizontal axis. Cells were grown for 1 week at 30°C. The levan peak was not detected in A3.