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Abstract 
The anxiolytic diazepam selectively inhibits psychological stress-induced autonomic 

and behavioral responses without causing noticeable suppression of other central 

performances.  This pharmacological property of diazepam led us to the idea that 

neurons that exhibit diazepam-sensitive, psychological stress-induced activation are 

potentially those recruited for stress responses.  To obtain neuroanatomical clues for 

the central stress circuitries, we examined the effects of diazepam on psychological 

stress-induced neuronal activation in broad brain regions.  Rats were exposed to a 

social defeat stress, which caused an abrupt increase in body temperature by up to 

2°C.  Pretreatment with diazepam (4 mg/kg, i.p.) attenuated the stress-induced 

hyperthermia, confirming an inhibitory physiological effect of diazepam on the 

autonomic stress response.  Subsequently, the distribution of cells expressing Fos, a 

marker of neuronal activation, was examined in 113 forebrain and midbrain regions 

of these rats after the stress exposure and diazepam treatment.  The stress following 

vehicle treatment markedly increased Fos-immunoreactive cells in most regions of 

the cerebral cortex, limbic system, thalamus, hypothalamus and midbrain, which 

included parts of the autonomic, neuroendocrine, emotional and arousal systems.  

The diazepam treatment significantly reduced the stress-induced Fos expression in 

many brain regions including the prefrontal, sensory and motor cortices, septum, 

medial amygdaloid nucleus, medial and lateral preoptic areas, parvicellular 

paraventricular hypothalamic nucleus, dorsomedial hypothalamus, perifornical 

nucleus, tuberomammillary nucleus, association, midline and intralaminar thalami, 

and median and dorsal raphe nuclei.  In contrast, diazepam increased Fos-

immunoreactive cells in the central amygdaloid nucleus, medial habenular nucleus, 

ventromedial hypothalamic nucleus and magnocellular lateral hypothalamus.  These 

results provide important information for elucidating the neural circuitries that 

mediate the autonomic and behavioral responses to psychosocial stressors. 

 

Key words: emotion, mapping, psychological stress-induced hyperthermia, 

psychogenic fever, psychosocial stress, stress circuit. 
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Abbreviations in figures 

3V Third ventricle 
ac  Anterior commissure 
ACo Cortical amygdaloid nucleus 
AH Anterior hypothalamic area 
Aq Aqueduct 
Arc	 Arcuate nucleus 
BL Basolateral amygdaloid nucleus 
BM Basomedial amygdaloid nucleus 
CA1–CA3 CA1–CA3 fields of Ammon’s horn 
cc Corpus callosum 
cCe Caudal part of the central amygdaloid nucleus 
Cf Cuneiform nucleus 
cg Cingulum 
Cg Cingulate cortex 
CL Central lateral thalamic nucleus 
CM Central medial thalamic nucleus 
DG Dentate gyrus 
DH Dorsal hypothalamic area 
DMH Dorsomedial hypothalamic nucleus 
DR Dorsal raphe nucleus 
En Endopiriform nucleus 
f Fornix 
ic Internal capsule 
IF Interfascicular nucleus 
IL Infralimbic cortex 
IMD Intermediodorsal thalamic nucleus 
Ins Insular cortex 
LD Laterodorsal thalamic nucleus 
LHb Lateral habenular nucleus 
lo Lateral olfactory tract 
LPO Lateral preoptic area 
LV Lateral ventricle 
M Motor cortex 
MCLH Magnocellular nucleus of the lateral hypothalamus 
MD Mediodorsal thalamic nucleus 
Me Medial amygdaloid nucleus 
MHb Medial habenular nucleus 
ml Medial leminiscus 
mlf Medial longitudinal fasciculus 
MnPO Median preoptic nucleus 
MnR Median raphe nucleus 
MPO Medial preoptic area 
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mt Mammillothalamic tract 
och Optic chiasm 
opt Optic tract 
OVLT Organum vasculosum lamina terminalis 
PAGd Dorsal part of the periaqueductal gray 
PAGl Lateral part of the periaqueductal gray 
PAGvl Ventrolateral part of the periaqueductal gray 
PaLM Lateral magnocellular part of the paraventricular hypothalamic nucleus 
PaMP Medial parvicellular part of the paraventricular hypothalamic nucleus 
PaV Ventral part of the paraventricular hypothalamic nucleus 
PC Paracentral thalamic nucleus 
Pef Perifornical nucleus 
PH Posterior hypothalamic area 
Pir I–III Layers I–III of the piriform cortex 
PLH Peduncular part of the lateral hypothalamus 
PMd Dorsal part of the premammillary nucleus 
PMv Ventral part of the premammillary nucleus 
PN Paranigral nucleus 
PrL Prelimbic cortex 
PV Paraventricular thalamic nucleus 
R Red nucleus 
Re Reuniens thalamic nucleus 
Rh Rhomboid thalamic nucleus 
RLi Rostral linear nucleus of the raphe 
S1 Primary somatosensory cortex 
SCh Suprachiasmatic nucleus 
SHy Septohypothalamic nucleus 
sm Stria medullaris thalamus 
SN Substantia nigra 
SO Supraoptic nucleus 
STd Dorsal divisions of the bed nucleus of the stria terminalis 
STv Ventral divisions of the bed nucleus of the stria terminalis 
Sub Submedius thalamic nucleus 
VL Ventrolateral thalamic nucleus 
VM Ventral medial thalamic nucleus 
VMH Ventromedial hypothalamic nucleus 
VS Ventral subiculum 
VTA Ventral tegmental area 
VTg Ventral tegmental nucleus 
VTM Ventral tuberomammillary nucleus 
ZI Zona incerta 
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INTRODUCTION 
Psychological stress induces a variety of autonomic, neuroendocrine and behavioral 

responses.  The development of stress responses involves central neural processes 

to perceive and integrate stress signals as well as to output autonomic and somatic 

(behavioral) motor commands to cope with stressors.  However, the brain circuitry 

mechanism underlying stress responses is poorly understood.  With the recent 

introduction of optogenetics, it is now possible to manipulate activities of specific 

populations of neurons in vivo, which is a powerful approach for probing the central 

neural circuitries recruited for stress responses (Sparta et al., 2013).  However, a 

prerequisite to those optogenetics strategies is to know if the activity of the neurons 

of interest is indeed affected by stress signals under physiological conditions.  A 

mapping of stress-activated neurons in the brain would provide candidate brain 

regions and neuronal populations that can be analyzed in such physiological studies 

to determine their functions in the central stress mechanism.	 

Social defeat stress has been widely used as a rodent stress model that is caused 

by social interaction and as such may be closer to stress in human society than more 

artificial stressors, such as needle injection, restraint or placement into a new cage 

(Vinkers et al., 2009),	   although it is not entirely analogous to heterogeneous 

interpersonal conflicts in human social conditions (Huhman, 2006).  This stress 

model has become more widely used to determine the pattern of stress-induced 

neuronal activation in the brain (Kollack-Walker and Newman, 1995; Matsuda et al., 

1996; Kollack-Walker et al., 1997; Martinez et al., 1998; Chung et al., 1999; Miczek 

et al., 1999).  However, the results from these studies are inconsistent, probably due 

to non-psychogenic effects caused by the variations in the procedure, conditions and 

species (reviewed by Martinez et al., 2002). 

Among responses induced by acute psychological stress, an increase in body 

temperature, known as psychological stress-induced hyperthermia (PSH), is a basic 

autonomic stress responses observed in many mammalian species (Oka et al., 

2001).  Although most of such acute stress responses are beneficial in stress coping, 

intense and long-lasting stressors often cause stress disorders and mental illness, 

such as psychogenic fever and depression (de Kloet, et al., 2005; Oka and Oka, 

2012).  For the treatment of stress-related symptoms, benzodiazepine anxiolytics, 

represented by diazepam, have been clinically used (Ashton, 1994).  We have 
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shown that systemic administration of diazepam in rats reduces hyperthermia 

induced by social defeat stress (Lkhagvasuren et al., 2011).  Diazepam may exert 

such clinical and experimental effects through its nonselective action facilitating 

GABAergic inhibition of neurons that occurs ubiquitously in broad brain areas.  

However, clinical dosage of diazepam highly selectively alleviates psychogenic 

symptoms without causing noticeable suppression of other central performances 

(e.g., sensory and motor systems).  This pharmacological property of diazepam 

indicates that this drug selectively influences the neuronal populations that function 

in the central stress mechanism.  Therefore, neurons that exhibit diazepam-sensitive, 

stress-induced activation in the brain are potentially involved in the central stress 

mechanism, and the distribution of such neurons would be important information for 

understanding not only the central stress circuitries for the development of PSH, but 

also those for many other autonomic, behavioral and neuroendocrine stress 

responses. 

In the present study, we sought to identify the patterns of neuronal activation in rat 

forebrain and midbrain following social defeat stress and/or diazepam administration 

using immunohistochemistry for Fos, a marker of neuronal activation (Sagar et al., 

1988).  The stress-relief effect of diazepam in the animals used for this Fos study 

was physiologically confirmed by monitoring stress-induced increases in their body 

core temperature (Tc) following diazepam administration.  Then, we performed 

detailed quantification of Fos expression in 113 forebrain and midbrain regions and 

classified them into four types based on the patterns of Fos expression after the 

stress/diazepam treatments: 1) stress increased Fos expression, which was 

decreased by diazepam; 2) stress increased Fos expression, which was unaffected 

by diazepam; 3) stress increased Fos expression, which was further increased by 

diazepam; and 4) stress did not increase Fos expression.	 

 

EXPERIMENTAL PROCEDURES 
Animals 
Male Wistar rats weighing 190–290 g and male Long-Evans rats weighing 400–550 

g (SLC, Kurume, Japan) were used as intruders and residents, respectively.  Wistar 

rats were individually caged and Long-Evans rats were pair-caged with age-matched 

females.  Both strains were housed in separate rooms air-conditioned at 24 ± 2°C 
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with a standard 12-h light–dark cycle (lights on 7:00–19:00 h) and allowed ad libitum 

access to food and water. 

All procedures conformed to the guidelines of the Ministry of Education, Culture, 

Sports, Science, and Technology of Japan and to those of the NIH in the USA 

regarding the care and use of animals for experimental procedures, and were 

approved by the Ethics Committees of Kyushu University (A22-165-0) and by the 

Animal Research Committee, Graduate School of Medicine, Kyoto University 

(MedKyo11095). 

 

Surgery and body temperature monitoring 
We measured Tc of Wistar rats using a telemetry system (Data Sciences 

International, St Paul, MN, USA).  A battery-operated telemetric transmitter 

(TA10TA-F40) was implanted into the peritoneal cavity of each rat via a midline 

incision under anesthesia with a mixture of medetomidine (0.15 mg/kg), midazolam 

(2 mg/kg) and butorphanol 2.5 mg/kg (0.1 ml/10 g weight, i.p.).  After closure of the 

cavity with suture, the animals were housed individually for 1 week to recover from 

the surgery under regular health checks.  Tc signals were received by an antenna 

below the rat cage and relayed to a signal processor (Dataquest A.R.T. System, 

Data Sciences International) connected to a server computer.  At least 1 day before 

the experiment, the telemetric transmitters were activated using a magnet to start 

recording Tc every 5 min.  Only rats that showed stable diurnal changes in Tc were 

used for the following experiments. 

 

Drug injection and social defeat stress 
On the experimental day, the Wistar rats received an i.p. injection of diazepam (4 

mg/kg, 0.4–0.6 ml; Wako, Osaka, Japan) or its vehicle.  Diazepam was dissolved in 

physiological saline with 40 mM hydrochloric acid (Shannon and Herling, 1983).  In 

our pilot experiments, we determined the minimum effective dose of diazepam based 

on its inhibitory effect on social defeat stress-induced increase in Tc and found that 4 

mg/kg consistently gave a significant inhibitory effect on the PSH without causing 

noticeable muscle relaxation or hypothermia.  To minimize stress from the injection 

procedure, the solution was quickly injected into the abdominal cavity through the 

lower abdominal skin, which was exposed to the experimenter by gently bending the 
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lower back backward with the base of the tail lifted up.  This procedure was 

performed within the home cages of the Wistar rats, and during the procedure, their 

forelegs were touching the floor with little movement of the head. 

Sixty minutes after the injection, the Wistar rats were exposed to social defeat 

stress (Stress group) or left undisturbed in their home cages (Control group).  The 

social defeat stress procedure followed our established method (Lkhagvasuren et al., 

2011), which was modified from a resident–intruder confrontation procedure (Miczek 

et al., 1982; Tornatzky and Miczek, 1993).  The female of the paired Long-Evans rats 

was removed from their home cage and in exchange, the Wistar rat (the intruder) 

was placed into the cage (40 cm long × 25 cm wide × 20 cm high) of the male Long-

Evans rat (the resident) for 60 min.  In most cases, the intruder was attacked and 

defeated by the resident within 5 min as was evident from freezing behavior or a 

submissive posture.  As soon as the intruder was found defeated, the animals were 

separated with a wire-mesh partition inserted into the cage.  Thereby, the intruder 

was protected from direct physical contact and injury, but remained in olfactory, 

visual and auditory contact with the resident for the rest of the stress period.  No 

wound was found on the intruders following this stress procedure.  After the stress 

period, the intruder was returned to its home cage.  This injection/stress procedure 

was performed between 10:00 and 12:00 h, when the circadian changes in Tc were 

minimal. 

The Wistar rats were randomly separated into 4 groups (n = 4 per group) and 

each group was treated with one of the following procedures: i) receiving vehicle 

injection, then being left undisturbed (Vehicle/Control); ii) receiving vehicle injection 

followed by social defeat stress (Vehicle/Stress); iii) receiving diazepam injection 

followed by social defeat stress (Diazepam/Stress); and iv) receiving diazepam 

injection, then being left undisturbed (Diazepam/Control).  These procedures were 

conducted in the time course as described above (see Fig. 1A).  Mean Tc for a 30-

min period prior to the injection was considered the baseline Tc.  Peak Tc was taken 

during the 60-min stress or control period and the change from the baseline Tc is 

presented as peak △Tc (Fig. 1B).  The animals were re-anesthetized at 15 min after 

the end of the 60-min period of social defeat stress or undisturbed control and 

immediately perfused transcardially with 100–150 ml of physiological saline and then 

with 200–300 ml of 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4).  The 
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brains were removed, postfixed in the fixative at 4°C for 2 h, and then cryoprotected 

with a 30% sucrose solution overnight.  The tissues were cut into 30-µm-thick frontal 

sections on a freezing microtome. 

 

Immunohistochemistry 
Fos immunohistochemistry followed our procedure (Nakamura et al., 2002).  The 

brain sections were incubated overnight with an anti-Fos rabbit serum (1:10,000–

20,000; Ab-5; Oncogene, Cambridge, MA, USA) and then for 1 h with a biotinylated 

donkey antibody to rabbit IgG (10 µg/ml; Chemicon, Temecula, CA, USA).  The 

sections were further incubated for 1 h with avidin-biotinylated peroxidase complex 

(ABC-Elite, 1:50; Vector, Burlingame, CA, USA).  Bound peroxidase was visualized 

by incubating the sections with a solution containing 0.02% 3,3’-diaminobenzidine 

tetrahydrochloride (Sigma), 0.001% hydrogen peroxide and 50 mM Tris–HCl (pH 

7.6).  The sections were mounted on aminosilane-coated glass slides and 

coverslipped. 

The anti-Fos serum was raised against residues 4–17 of the human Fos protein 

and has been screened for positive reactivity with floating rat brain sections induced 

for Fos expression.  This antiserum has been confirmed not to react with Jun 

proteins (manufacturer’s technical information) and widely used to label Fos in rat 

brain (Elmquist et al., 1996; Scammell et al., 1996; Nakamura et al., 2002, 2004). 

 

Anatomy and cell counting 
Most of the anatomical nomenclature and nuclear boundaries in this study followed 

Paxinos and Watson’s stereotaxic rat brain atlas (Paxinos and Watson, 1998).  We 

studied Fos immunoreactivity in 113 forebrain and midbrain regions (listed in Table 

1).  The anatomical structure of each brain region was identified with cresyl violet 

staining in adjacent sections.  For evaluation of Fos expression, we quantified 

average densities of Fos-immunoreactive (IR) cells in these brain regions.  This 

quantification method was modified from those used in previous studies that 

evaluated Fos expression in extensive brain regions (Martinez et al., 1998; Frank et 

al., 2006).  Three digital images of Fos-IR nuclear profiles were taken at randomly 

selected sites in each brain region (on the right-hand side, if it had a bilateral 

structure) with a 40 × objective lens under a microscope coupled to a digital camera 
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(Nikon) and stored in a computer.  The sites where the images were taken were 

anatomically matched among the animals.  A square (200 µm × 200 µm) was set at 

an arbitrary position within each image and Fos-IR cell nuclei within the square were 

counted.  Figure 2 shows representative images that were used for counting Fos-IR 

cell nuclei in the dorsomedial hypothalamic nucleus from the 4 experimental groups.  

The average of the numbers from the three images in a given brain region was 

expressed as a density of Fos-IR cells (per 0.04 mm2).  Means ± S.E.M. of average 

densities of Fos-IR cells from 4 animals in each treatment group are shown in Table 

1.  To avoid observer-induced bias, a different, sample-blind observer newly selected 

sites of image capture for some brain regions, duplicated the quantification 

procedure and confirmed that the same statistic results were obtained. 

Since distribution of Fos-IR cells was generally uniform within most brain regions, 

we consider that the obtained average densities represent the entire densities of 

Fos-IR cells in these regions.  In some large brain regions in which densities of Fos-

IR cells looked different among their subregions, we quantified Fos-IR cells 

separately for the subregions.  We also tested the validity of our quantification 

procedure by comparing obtained average densities of Fos-IR cells with actual 

numbers of Fos-IR cells in the dorsal hypothalamic area and dorsomedial 

hypothalamic nucleus, which are known as important regions for cardiovascular and 

neuroendocrine stress responses (Stotz-Potter et al., 1996a).  The densities were 

positively correlated with the actual numbers in both regions (Fig. 3; see also 

Results). 

 

Statistics 
All data are presented as means ± S.E.M.  Treatment effects on Tc over time were 

evaluated using a two-way repeated measures ANOVA (groups × time; SPSS for 

Windows, Version 17).  Drug effects on peak △Tc were analyzed using a one-way 

ANOVA followed by a Bonferroni post hoc test (Fig. 1B).  To examine the effect of 

diazepam itself on the Tc level, baseline Tc and post-injection Tc were compared 

using a paired t-test.  Inter-group comparisons of baseline Tc were performed using a 

one-way ANOVA.  Statistical analyses for Fos-IR cell counting data were performed 

using a two-way ANOVA followed by a Bonferroni post hoc test (stress × diazepam; 

Prism 6, GraphPad, La Jolla, CA, USA; Table 1).  Correlation between densities and 
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actual numbers of Fos-IR cells was examined using a linear regression analysis (Fig. 

3).  All tests were two-tailed and results with a P value of < 0.05 were considered 

significant.	 

 

RESULTS 
Effects of diazepam on social defeat stress-induced hyperthermia 
Intruder Wistar rats received an i.p. injection of diazepam or vehicle 60 min before 

exposure to social defeat stress.  Diazepam injection itself did not affect the Tc level 

(pre-injection 30-min average, 37.0 ± 0.1°C; post-injection average for the 30-min 

period immediately before stress or control period, 36.8 ± 0.1°C; n = 8 per group, t7 = 

1.72, P = 0.13, paired t-test).  Vehicle-injected rats exhibited an increase in Tc by 2.2 

± 0.1°C (peak △Tc; n = 4) in response to exposure to social defeat stress 

(Vehicle/Stress; Fig. 1).  The social defeat stress-induced increase in Tc was 

significantly reduced in diazepam-injected rats (Diazepam/Stress) compared with the 

Vehicle/Stress group across time (Fig. 1A; groups, F3,12 = 8.59, P < 0.01; time, F32,384 

= 34.39, P < 0.001; groups × time, F96,384 = 21.79, P < 0.001; two-way repeated 

measures ANOVA).  Even as measured by peak △Tc, diazepam injection 

significantly reduced the social defeat stress-induced increase in Tc (Fig. 1B; 0.9 ± 

0.3°C, n = 4; F3,12 = 30.43, P < 0.001, one-way ANOVA; Vehicle/Stress vs. 

Diazepam/Stress, P = 0.001, Bonferroni post hoc test), but did not affect Tc in control 

animals (Fig. 1B; Vehicle/Control vs. Diazepam/Control, P > 0.05), consistent with 

our previous result (Lkhagvasuren et al., 2011).  Baseline Tc before injection did not 

differ among the groups (Fig. 1A; F3,12 = 0.49, P = 0.70, one-way ANOVA). 

 

Immunohistochemical analysis of Fos expression	 
The Wistar rats whose Tc was recorded were then subjected to Fos study.  To 

evaluate Fos expression, we obtained average densities of Fos-IR cells (Fig. 2) from 

113 forebrain and midbrain regions following the stress and drug treatments (Table 

1).  To test the validity of this analytical procedure, the obtained densities of Fos-IR 

cells in the dorsal hypothalamic area and dorsomedial hypothalamic nucleus were 

compared with actual numbers of Fos-IR cells in these regions that were counted in 

every six frontal sections.  The densities were positively correlated with the actual 

numbers in both regions (Fig. 3; P < 0.05, linear regression analysis), indicating that 
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the present quantification of cell densities reflects actual numbers of Fos-IR cells in 

brain regions of interest. 

We statistically examined the effects of the stress and diazepam treatment on 

Fos expression in each brain region using a two-way ANOVA, and subsequently 

performed multiple comparisons (Bonferroni post hoc test) of densities of Fos-IR 

cells among the four stress/drug treatment groups (Table 1).  Comparisons between 

the Vehicle/Control and Vehicle/Stress groups showed that social defeat stress 

significantly increased Fos-IR cells in many forebrain and midbrain regions, but did 

not decrease in any regions we studied (Table 1).  The effect of diazepam on the 

stress-induced Fos expression was examined by comparisons between the 

Vehicle/Stress and Diazepam/Stress groups.  In many of the stress-activated brain 

regions, the densities of Fos-IR cells that were increased by stress were significantly 

decreased by diazepam injection (Table 1).  We classified these regions as type 1 

regions.  All brain regions in which the two-way ANOVA detected significant effects 

of both stress and diazepam and a significant interaction between these two factors, 

except the magnocellular nucleus of the lateral hypothalamus, were classified as 

type 1 regions based on the Bonferroni post hoc test (Table 1).  Diazepam-induced 

reduction of stress-induced increase in Fos-IR cell density in type 1 regions is 

expressed in percentages and listed in Table 2.  In most other stress-activated brain 

regions, diazepam did not exert a significant effect on the stress-induced increase in 

Fos-IR cells.  These regions were classified as type 2 regions (Table 1).  A type 3 

region was defined as a region where the density of Fos-IR cells was increased by 

stress and diazepam further increased the density.  The medial habenular nucleus 

was the only region classified as a type 3 region.  The rest of the forebrain and 

midbrain regions, in which stress did not affect densities of Fos-IR cells, were 

classified as type 4 regions (Table 1). 

To examine the effects of diazepam on basal Fos expression, we compared 

densities of Fos-IR cells between the Vehicle/Control and Diazepam/Control groups.  

Diazepam injection itself did not affect basal Fos expression in most regions, but did 

significantly increase the basal densities of Fos-IR cells in the caudal part of the 

central amygdaloid nucleus, magnocellular nucleus of the lateral hypothalamus and 

medial habenular nucleus, and decreased those in the supraoptic nucleus and 

posterior hypothalamic area (Table 1). 
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Social defeat stress-induced Fos expression and effects of diazepam in 
forebrain and midbrain regions	 

Cerebral cortex.  Most cerebral cortices were classified as type 1 regions.  Social 

defeat stress remarkably increased densities of Fos-IR cells in broad areas of the 

cerebral cortex (Fig. 4).  Sensory cortices, such as the somatosensory, visual and 

auditory cortices, and the parietal cortex contained especially many Fos-IR cells 

following social defeat stress in vehicle-injected rats (Table 1).  Stress also 

significantly increased densities of Fos-IR cells in the orbital, frontal, motor, prelimbic, 

infralimbic, cingulate, retrosplenial, insular, ectorhinal and perirhinal cortices.  In the 

motor and somatosensory cortices, stress-induced Fos expression was prominent in 

layers IV and VI (Fig. 4C).  Fos-IR cells were also increased in layers II, III and V 

following stress, but their distribution was relatively sparse.  Layer I contained very 

few Fos-IR cells.  In the piriform cortex, layer II exhibited a remarkable increase in 

Fos-IR cells in response to stress, whereas stress-induced Fos expression in layer III 

was moderate (Table 1 and Fig. 4D).  Layer I of the piriform cortex contained very 

few Fos-IR cells.  The anterior olfactory nucleus also exhibited a significant increase 

in Fos-IR cells following stress.  The entorhinal cortex did not show significant 

changes in the density of Fos-IR cells with the stress and drug treatments. 

Systemic injection of diazepam significantly reduced the stress-induced 

increases in densities of Fos-IR cells in these cerebral cortical regions except layer 

III of the piriform cortex (Table 1 and Fig. 4).  Diazepam treatment especially exerted 

strong inhibitory effects in the orbital, frontal, parietal, prelimbic, secondary cingulate, 

retrosplenial and insular cortices and the anterior olfactory nucleus, in which the 

stress-induced increases in Fos-IR cells were reduced by more than 80% (Table 2).  

The stress-induced increases in Fos-IR cells in the motor, somatosensory, auditory, 

infralimbic, primary cingulate, ectorhinal, perirhinal and piriform (layer II) cortices 

were reduced by 50–80% by diazepam, and that in the visual cortex was reduced by 

41% (Table 2).  The stress-induced Fos expression in layers II–VI of the isocortex 

was obviously reduced by diazepam (Fig. 4C).  Diazepam injection did not affect the 

basal expression of Fos in any of the cerebral cortical regions we studied (Table 1). 

Hippocampal formation.  Social defeat stress significantly increased densities 

of Fos-IR cells in the Ammon’s horn and ventral subiculum, but not in the dentate 
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gyrus (Table 1 and Fig. 5A and B).  Fos-IR cells in the Ammon’s horn following 

stress were mostly distributed in the pyramidal cell layer and the density was higher 

in the CA1 region than in the CA3 region (Fig. 5A).  Diazepam injection reduced the 

stress-induced Fos expression in the Ammon’s horn and ventral subiculum to the 

basal level (94–115% reduction; Tables 1 and 2 and Fig. 5A and B), but did not 

affect the basal Fos expression in the control rats. 

Septal region.  Stress significantly increased the densities of Fos-IR cells in the 

lateral septal nucleus, medial septal nucleus, nucleus of the diagonal band, and bed 

nucleus of the stria terminalis (BNST), although the increase in the medial septal 

nucleus was relatively small (Table 1 and Fig. 5C).  Diazepam injection reduced the 

stress-induced Fos expression in the lateral septal nucleus, medial septal nucleus 

and nucleus of the diagonal band by 75–95% (Tables 1 and 2).  In the BNST, 

diazepam significantly reduced the stress-induced increase in the Fos-IR cell density 

in the ventral divisions (96% reduction), but not in the dorsal divisions (Table 1 and 

Fig. 5C).  Diazepam did not affect the basal levels of Fos expression in these septal 

regions. 

Basal ganglia.  In the striatum, the caudate putamen showed a low basal level 

of Fos-IR cell density (Table 1; 0.9 ± 0.3 cells/0.04 mm2), compared with the 

accumbens nucleus (28.4 ± 6.0 cells/0.04 mm2).  The globus pallidus also showed 

low basal Fos expression (0.5 ± 0.5 cells/0.04 mm2) in contrast to the ventral 

pallidum (6.8 ± 1.6 cells/0.04 mm2).  Social defeat stress significantly increased the 

densities of Fos-IR cells in all these regions, although the increase in the globus 

pallidus was small (Table 1).  The stress-induced increases in Fos-IR cells in these 

regions were all reduced by diazepam injection by 84–120% (Table 2).  Stress also 

increased densities of Fos-IR cells in the navicular nucleus of the basal forebrain and 

the endopiriform nucleus (Fig. 4D) and these increases were reduced by diazepam 

(Tables 1 and 2).  Fos expression in the claustrum was not significantly increased by 

stress.  Diazepam injection had no effect on the basal Fos expression levels in the 

basal ganglia. 

Amygdala.  The cortical amygdaloid nucleus, medial amygdaloid nucleus, lateral 

amygdaloid nucleus and basomedial amygdaloid nucleus exhibited significant 

stress-induced increases in densities of Fos-IR cells, which were all significantly 
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reduced by diazepam (74–83% reduction; Tables 1 and 2 and Fig. 5D).  In contrast, 

the central amygdaloid nucleus exhibited no increase in Fos expression in response 

to social defeat stress (Table 1 and Fig. 5D).  This region exhibited higher basal 

expression of Fos (rostral part, 39.2 ± 4.8 cells/0.04 mm2; caudal part, 41.5 ± 8.4 

cells/0.04 mm2) than other amygdaloid regions (3.4–12.7 cells/0.04 mm2; Table 1 

and Fig. 5D), and diazepam injection significantly increased the basal Fos-IR cell 

density in the caudal part (84.7 ± 5.6 cells/0.04 mm2), but not in the rostral part (57.1 

± 2.5 cells/0.04 mm2).  The basolateral amygdaloid nucleus did not show a 

significant increase in Fos-IR cell density following stress. 

Preoptic area and hypothalamus.  Many of preoptic and rostral hypothalamic 

regions exhibited relatively high basal densities of Fos-IR cells compared to other 

forebrain regions (Table 1).  In the preoptic area, social defeat stress increased 

densities of Fos-IR cells in the medial preoptic area, lateral preoptic area, 

septohypothalamic nucleus, parastrial nucleus and ventrolateral preoptic nucleus, 

but not in the organum vasculosum lamina terminalis, median preoptic nucleus or 

ventromedial preoptic nucleus (Table 1 and Figs. 5C and 6A).  All the stress-induced 

increases in Fos expression in the preoptic area were significantly reduced by 

diazepam injection (58–121% reduction; Tables 1 and 2 and Figs. 5C and 6A).  

Diazepam exerted an especially strong inhibitory effect on stress-induced Fos 

expression in the parastrial nucleus (121% reduction; Table 2) and 

septohypothalamic nucleus (91%).  Diazepam did not affect the basal levels of Fos 

expression in any of the preoptic regions. 

Stress increased densities of Fos-IR cells in most rostral hypothalamic regions: 

anterior hypothalamic area, suprachiasmatic nucleus, periventricular hypothalamic 

nucleus and paraventricular hypothalamic nucleus (Table 1 and Fig. 6B and C).  The 

suprachiasmatic nucleus exhibited a remarkably high basal level of Fos expression 

(144.1 ± 21.5 cells/0.04 mm2) and stress further increased the Fos-IR cell density to 

307.4 ± 4.7 cells/0.04 mm2 (Table 1 and Fig. 6B).  The stress-induced Fos 

expression in this nucleus was suppressed by diazepam injection to the baseline 

level (115.6 ± 0.7 cells/0.04 mm2; 117% reduction; Tables 1 and 2 and Fig. 6B).  In 

the paraventricular hypothalamic nucleus, the Fos-IR cell density in the 

Vehicle/Stress group was high in the medial parvicellular (121.4 ± 4.9 cells/0.04 

mm2; Table 1) and lateral magnocellular parts (99.1 ± 17.1 cells/0.04 mm2) and was 
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relatively moderate in the ventral part (63.2 ± 4.9 cells/0.04 mm2).  Diazepam 

strongly reduced the stress-induced Fos expression in the medial parvicellular part 

by 87% and in the ventral part by 81%, but failed to significantly reduce that in the 

lateral magnocellular part (Tables 1 and 2 and Fig. 6C).  The stress-induced 

increase in the Fos-IR cell density in the periventricular hypothalamic nucleus was 

also strongly reduced by diazepam (82% reduction; Table 2).  Diazepam did not 

significantly inhibit the stress-induced Fos expression in the anterior hypothalamic 

area.  In the supraoptic nucleus, stress did not significantly change the density of 

Fos-IR cells, whereas the basal level of Fos expression was lowered by diazepam 

(Table 1). 

In caudal hypothalamic regions, stress increased densities of Fos-IR cells in the 

arcuate nucleus, dorsal hypothalamic area, dorsomedial hypothalamic nucleus, 

perifornical nucleus, peduncular part of the lateral hypothalamus, and posterior 

hypothalamic area (Table 1 and Fig. 7).  Diazepam injection reduced the stress-

induced increases in Fos expression in all these caudal hypothalamic regions 

(Tables 1 and 2 and Fig. 7).  The inhibitory effect of diazepam on the stress-induced 

Fos expression was especially intense in the arcuate nucleus (rostral part, 85% 

reduction; caudal part, 98%; Table 2), posterior hypothalamic area (93%) and 

perifornical nucleus (83%) and was relatively moderate in the peduncular part of the 

lateral hypothalamus (74%), dorsal hypothalamic area (72%) and dorsomedial 

hypothalamic nucleus (57%).  It should be noted that the basal level of Fos 

expression in the posterior hypothalamic area was also reduced by the diazepam 

treatment (Table 1).  The densities of Fos-IR cells in the ventromedial hypothalamic 

nucleus and in the magnocellular nucleus of the lateral hypothalamus were not 

affected by stress following vehicle injection, but were slightly increased by stress 

following diazepam injection.  The magnocellular nucleus of the lateral hypothalamus 

also exhibited an increase in the basal level of Fos expression following diazepam 

treatment, whereas this drug did not significantly change the basal Fos expression in 

the ventromedial hypothalamic nucleus (Table 1). 

All regions in the mammillary body that we studied were classified as type 1 

regions.  In the premammillary nucleus, social defeat stress drastically increased the 

Fos-IR cell density in the ventral part to 117.9 ± 12.2 cells/0.04 mm2, while the 

density in the dorsal part following stress was 72.5 ± 9.1 cells/0.04 mm2 (Table 1 and 
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Fig. 7C).  Stress also increased densities of Fos-IR cells in the supramammillary 

nucleus, medial mammillary nucleus and ventral tuberomammillary nucleus (Fig. 7C).  

A dense cluster of Fos-IR cells was observed in the ventral tuberomammillary 

nucleus of the Vehicle/Stress group (Fig. 7C2).  The stress-induced increases in Fos 

expression in all these mammillary regions were significantly reduced by diazepam 

injection (59–104% reduction; Tables 1 and 2 and Fig. 7C).  Diazepam did not affect 

the basal expression of Fos in these mammillary regions. 

Thalamus and habenula.  Social defeat stress increased densities of Fos-IR 

cells in both medial and lateral habenular nuclei (Table 1).  The Fos-IR cells in the 

lateral habenular nucleus following stress were clustering in its medial part, while 

those cells in the medial habenular nucleus were sparsely distributed (Fig. 8A).  

Diazepam injection reduced the stress-induced Fos expression in the lateral 

habenular nucleus by 68% (Tables 1 and 2 and Fig. 8A).  On the other hand, 

diazepam significantly increased both basal and stress-induced Fos expression in 

the medial habenular nucleus (Table 1 and Fig. 8A). 

Many thalamic regions were classified as type1 regions.  Most of the association, 

motor and sensory thalamic nuclei exhibited relatively low basal levels of Fos 

expression (Table 1).  In the association, midline and intralaminar thalamic nuclei, 

social defeat stress increased the densities of Fos-IR cells in the anterodorsal, 

anteromedial, anteroventral, mediodorsal, laterodorsal, reticular, submedius, central 

lateral, central medial, intermediodorsal, paracentral, paraventricular, reuniens and 

rhomboid nuclei (Table 1).  The paraventricular nucleus exhibited high basal Fos 

expression (41.5 ± 3.8 cells/0.04 mm2; Table 1) and the dense distribution of Fos-IR 

cells in this nucleus following stress was remarkable (Fig. 8).  Also, dense clusters of 

Fos-IR cells distributed in the midline and intralaminar nuclei and in the anterodorsal, 

anteromedial, anteroventral and laterodorsal nuclei following stress formed a shape 

of “a bird with its wings spread” (Fig. 8B2).  In contrast to these thalamic nuclei, the 

mediodorsal nucleus contained sparsely distributed Fos-IR cells following stress (Fig. 

8B2).  The paratenial nucleus did not show significant changes in the density of Fos-

IR cells through the experimental treatments.  Diazepam injection reduced the 

stress-induced Fos expression in the anterodorsal, anteromedial, anteroventral, 

mediodorsal, laterodorsal, reticular, submedius, central lateral, central medial, 

intermediodorsal, paraventricular and rhomboid nuclei by 40–98% (Tables 1 and 2 
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and Fig. 8).  The stress-induced increases in the Fos-IR cell densities in the 

paracentral and reuniens nuclei were not significantly inhibited by diazepam (Table 1 

and Fig. 8B). 

In the motor and sensory thalamic nuclei, stress increased densities of Fos-IR 

cells in the ventral medial nucleus, medial geniculate nucleus, posterior nucleus and 

ventral posterior complex (Table 1 and Fig. 8B).  Diazepam reduced the stress-

induced Fos expression in the ventral medial nucleus, posterior nucleus and ventral 

posterior complex by 64–99%, but failed to significantly reduce that in the medial 

geniculate nucleus (Tables 1 and 2 and Fig. 8B).  Although the lateral geniculate 

nucleus exhibited a high basal level of Fos expression (41.3 ± 4.6 cells/0.04 mm2), 

the Fos-IR cell density in this nucleus did not significantly change in response to 

stress or diazepam injection (Table 1).  Neither ventrolateral nucleus nor ventral 

anterior nucleus showed significant changes in the density of Fos-IR cells with stress 

or diazepam.  Diazepam did not affect the basal levels of Fos expression in any of 

the thalamic regions we studied. 

The zona incerta exhibited an increase in the density of Fos-IR cells in response 

to stress, and diazepam injection suppressed the stress-induced increase in Fos 

expression to the baseline level (Tables 1 and 2 and Fig. 7B).  Diazepam did not 

affect the basal Fos expression in this region.	 

Midbrain.  Social defeat stress increased densities of Fos-IR cells in the 

superior colliculus, periaqueductal gray, interfascicular nucleus, paranigral nucleus, 

ventral tegmental area, cuneiform nucleus, ventral tegmental nucleus, linear nucleus 

of the raphe, median raphe nucleus and dorsal raphe nucleus (Table 1 and Fig. 9).  

In the periaqueductal gray, the stress-induced increases in the Fos-IR cell densities 

in the lateral and ventrolateral parts were attenuated by diazepam injection by 48% 

and 78%, respectively, whereas diazepam did not significantly inhibited the stress-

induced Fos expression in the dorsal (dorsomedial and dorsolateral) parts (Tables 1 

and 2 and Fig. 9A).  In the raphe nuclei, diazepam injection reduced the stress-

induced Fos expression in the median raphe nucleus by 131% and in the dorsal 

raphe nucleus by 63%, but failed to significantly reduce that in the linear nucleus of 

the raphe (Tables 1 and 2 and Fig. 9).  In the nigrotegmental area, Fos-IR cells 

following stress were mostly distributed in a zonal area consisting of the 

interfascicular and paranigral nuclei (Fig. 9C).  The stress-induced increase in the 
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Fos-IR cell density in the ventral tegmental area was small (Table 1).  Diazepam 

reduced the stress-induced Fos expression in these nigrotegmental regions by 54–

94% (Table 2 and Fig. 9C).  Fos-IR cells were scarcely detected in the substantia 

nigra in any of the experimental groups (Fig. 9C).  The stress-induced increases in 

the Fos-IR cell densities in the cuneiform nucleus and ventral tegmental nucleus 

were reduced by diazepam by 60% and 136%, respectively (Tables 1 and 2 and Fig. 

9B).  The stress-induced Fos expression in the superior colliculus was not 

significantly reduced by diazepam (Table 1).  The retrorubral field, red nucleus and 

inferior colliculus did not show significant changes in the densities of Fos-IR cells in 

response to the stress and diazepam treatments (Table 1).  Diazepam did not alter 

the basal levels of Fos expression in the midbrain regions.	 

	 

DISCUSSION 
In the present study, we investigated social defeat stress-induced neuronal activation 

in a broad area of rat forebrain and midbrain through immunohistochemical detection 

of Fos as a marker and also examined effects of systemic injection of diazepam on 

stress-induced neuronal activation.  Social defeat stress is regarded as a rodent 

stress model that is close to stress in human society (Vinkers et al., 2009).  The 

distribution of neurons activated by this stress likely reflects the central neural 

processing for perception and integration of psychosocial stress signals as well as 

for autonomic and somatic (behavioral) motor outputs to cope with the stressor.  

Rats exposed to social defeat stress in the present study exhibited a rapid increase 

in their Tc and systemic injection of diazepam given prior to the stress exposure 

significantly attenuated the stress-induced hyperthermic response, physiologically 

confirming the stress-relief effect of diazepam.  These responses of body 

temperature to psychological stress and diazepam are consistent with previous 

studies in rodents (Lecci et al., 1990; Zethof et al., 1995; Lkhagvasuren et al., 2011) 

and presumably homologous to stress responses observed in humans (Björkqvist, 

2001).  The incompleteness of the inhibition of PSH by diazepam in the present 

study may be partly due to the low dose of diazepam that we chose to avoid a 

hypothermic effect by itself.  This incomplete effect of diazepam might also suggest 

the existence of a diazepam-insensitive mechanism in the stress-processing neural 

system. 
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Although the confrontation with an aggressive resident is the major stressor in the 

social defeat stress model, the present stress procedure also provided intruder rats 

with stress from being placed in a novel environment.  A better control handling to 

separate the effect of social stress from the other might be to transfer rats to a 

foreign cage without a resident.  However, we have seen that cage-transfer handling 

induces moderate hyperthermia, although weaker than that caused by social defeat 

stress.  Such a control treatment likely induces substantial Fos expression and 

masks the neuronal activation by social stress especially in the cerebral cortices, 

which are highly sensitive to sensory and emotional stimuli.  Therefore, we left 

control rats undisturbed and there is a caveat that the stress-induced responses in 

the present study were potentially caused by complex psychological stressors from 

social interaction and novel environment. 

Exposure of vehicle-injected rats to social defeat stress increased Fos-IR cells in 

many forebrain and midbrain regions.  The present quantification of Fos-IR cells was 

made by obtaining an average density of Fos-IR cells in each region.  Similar 

methods have been used to quantify Fos-expressing cells in extensive brain regions 

(Beck and Fibiger, 1995; Martinez et al., 1998; Frank et al., 2006).  The validity of the 

present quantification was confirmed by the positive, significant correlation between 

the average densities and actual numbers of Fos-IR cells in the dorsal hypothalamic 

area and dorsomedial hypothalamic nucleus (Fig. 3).  Although expression of Fos in 

some rat brain regions following exposure to acute social defeat stress has been 

reported (Martinez et al., 1998, 2002; Chung et al., 2000), the present study provides 

further detailed distribution of Fos-IR cells in more than 100 forebrain and midbrain 

regions of rats exposed to social defeat stress.  In another support of the validity of 

the present experimental procedure, the social defeat stress-induced Fos expression 

in the reported regions was overall reproduced in the present study, although it is 

difficult to simply compare Fos expression in some forebrain regions due to the 

differences in anatomical subdivisions between the present and previous studies.  

The present statistical comparisons of Fos-IR cell densities among the experimental 

groups might be conservative due to the limited size of each group; however, 

deviations of Fos-IR cell densities within groups were overall small and therefore, the 

statistical tests could identify many brain regions that exhibited diazepam-sensitive, 

stress-induced neuronal activation from the extensive forebrain and midbrain areas.	 
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The large number of type 1 regions, in which social defeat stress increased Fos-

IR cells and systemically injected diazepam significantly reduced the stress-induced 

increases in Fos-IR cells, indicates the inhibitory effect of diazepam on neuronal 

activity in broad areas of the forebrain and midbrain through its action facilitating 

GABAergic transmission.  The reduction of Fos-IR cells may be partly due to a 

nonspecific effect of diazepam on neuronal activity.  However, diazepam injection did 

not affect basal expression of Fos in type 1 regions (except the posterior 

hypothalamic area).  This observation clearly indicates that diazepam’s inhibitory 

effect is selective in stress-induced neuronal activation and is consistent with the 

pharmacological property of diazepam that clinical dosage of this drug selectively 

influences the central stress mechanisms without causing remarkable nonspecific 

suppression of other central systems.  Therefore, the neuronal populations that 

exhibit diazepam-sensitive, stress-induced activation (i.e., type 1 neurons) are likely 

involved in the central stress mechanisms, and physiological characterization of type 

1 neurons could lead to elucidation of the central stress circuitries.  Here, we discuss 

the potential functional relevance of the present distribution of Fos-IR cells to the 

development of PSH as well as to other autonomic, neuroendocrine, behavioral and 

emotional stress responses.	 

Hypothalamic expression of Fos: relevance to autonomic and neuroendocrine 

stress responses	 

As shown by the present telemetry recordings, PSH is a remarkable autonomic 

response caused by psychological stress.  This response is driven by central efferent 

pathways originated from the hypothalamus (Oka and Oka, 2012), which have yet to 

be identified.  The stress-induced increase in body temperature is supported by 

evoked heat production in brown adipose tissue (BAT), and sympathetic premotor 

neurons controlling BAT thermogenesis express Fos in response to social defeat 

stress (Lkhagvasuren et al., 2011).  These sympathetic premotor neurons are 

distributed in the rostral medullary raphe region including the rostral raphe pallidus 

and raphe magnus nuclei and mediate the sympathetic outflow to BAT for driving 

cold-defensive and febrile thermogenesis (Nakamura et al., 2004).  Of interest is how 

forebrain stress signals activate the medullary sympathetic premotor neurons to 

drive the stress-induced thermogenesis in BAT.  One of the candidates for the brain 

regions that provide excitatory signals to the sympathetic premotor neurons is the 
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dorsomedial hypothalamus that consists of the dorsomedial hypothalamic nucleus 

and dorsal hypothalamic area.  There is a population of neurons in the dorsomedial 

hypothalamus that directly project to the rostral medullary raphe region (Hosoya et 

al., 1987; Samuels et al., 2004; Nakamura et al., 2005).  Although it is unknown 

whether this direct projection mediates the excitatory thermogenic drive to activate 

the sympathetic premotor neurons, the present study showed that social defeat 

stress increases Fos-expressing cells in the dorsomedial hypothalamus.  This Fos 

expression was attenuated by diazepam in parallel with its inhibitory effect on PSH.  

These findings support the possibility that the dorsomedial hypothalamic neurons are 

involved in the stress-induced thermogenic drive to BAT.  Consistently, in vivo 

physiological studies have revealed that inactivation of neurons in the dorsomedial 

hypothalamus with local nanoinjections of muscimol, a neuronal inhibitor, reverses 

BAT thermogenesis evoked by skin cooling or pyrogenic stimulation (Madden and 

Morrison, 2004;	  Nakamura et al., 2005; Nakamura and Morrison, 2007).  Muscimol 

injections into the dorsomedial hypothalamus also inhibit cardiovascular and 

neuroendocrine responses to stress (Stotz-Potter et al., 1996a,b).  The effect of 

inactivation of dorsomedial hypothalamic neurons on the development of PSH 

should be tested. 

Another neuronal population that potentially provides a thermogenic input to 

sympathetic premotor neurons in the rostral medullary raphe region is orexin 

neurons, which are distributed only around the perifornical nucleus of the lateral 

hypothalamus.  There is a direct projection of orexin neurons to the rostral medullary 

raphe region (Berthoud et al., 2005).  We found that cells in the perifornical nucleus 

exhibit social defeat stress-induced Fos expression, which is inhibited by diazepam.  

Consistent with the possibility that orexin neurons are involved in the thermogenic 

responses to social stress, an artificial handling stress induces Fos expression in 

orexin-containing neurons in mice and diazepam inhibits it (Zhang et al., 2010; 

Panhelainen and Korpi, 2012).  Although hyperthermia induced by handling stress is 

attenuated by genetic ablation of orexin neurons, ablation of the orexin gene does 

not affect the PSH (Zhang et al., 2010).  Therefore, co-transmitters released from 

orexin neurons, but not orexin, seem to be involved in the development of PSH.  On 

the other hand, orexin injection into the fourth ventricle induces Fos expression in the 

rostral medullary raphe region (Berthoud et al., 2005) and nanoinjection of orexin 
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into this medullary region elicits BAT thermogenesis (Tupone et al., 2011).  These 

findings suggest that orexin released in the rostral medullary raphe region has a 

potency to activate sympathetic premotor neurons to drive BAT thermogenesis.  

However, the orexin-mediated medullary mechanism for thermogenic sympathetic 

drive may not be simple because injection of a putative orexin receptor antagonist 

into this medullary region enhances, instead of blocking, BAT thermogenesis 

(Tupone et al., 2011) and infrared thermography in free-moving rats cannot detect 

BAT thermogenesis following orexin injection into this medullary region (Luong and 

Carrive, 2012).  It is also possible that orexin neurons contribute to stress responses 

through their divergent projections to broad brain areas (Peyron et al., 1998). 

The preoptic area is known as a center for thermoregulation and fever (Morrison 

and Nakamura, 2011; Nakamura, 2011).  However, whether the preoptic area is 

involved in the development of PSH is unknown.  Thermosensory signals from 

cutaneous warm and cool receptors, which are required for immediate 

thermoregulatory responses to changes in environmental temperature, are 

transmitted to the median preoptic nucleus (Nakamura and Morrison, 2008a, 2010).  

Stimulation of neurons in the median preoptic nucleus elicits BAT thermogenesis 

(Nakamura and Morrison, 2008b).  In the present study, however, social defeat 

stress did not increase Fos-expressing neurons in the median preoptic nucleus, 

suggesting that PSH is developed without affecting the tone of the ascending 

thermosensory signaling to the preoptic area.  In contrast to the median preoptic 

nucleus, stimulation (disinhibition) of neurons in the medial preoptic area inhibits 

BAT thermogenesis (Nakamura and Morrison, 2007, 2008b) and inhibition of the 

same area evokes BAT thermogenesis and increases ACTH secretion (Osaka, 

2004; Zaretsky et al., 2006).  Inconsistent with this sympathoinhibitory role, the 

medial preoptic area exhibited stress-induced neuronal activation (Fos expression), 

which was inhibited by diazepam.  These stress-activated neurons might provide a 

sympathoexcitatory input directly to the rostral medullary raphe region, as skin 

cooling-activated preoptic neurons do (Tanaka et al., 2011).  However, the 

distribution of the stress-activated neurons was not limited to the medial preoptic 

area, but also expanded to the lateral preoptic area, parastrial nucleus and 

septohypothalamic nucleus (Figs. 5C2 and 6A2).  A part of these neurons might be 

involved in stress responses other than PSH, for example, activation of 
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hypothalamo-pituitary-adrenocortical responses through glutamatergic innervation of 

the paraventricular hypothalamic nucleus upon receiving inputs from limbic forebrain 

regions (Herman et al., 2004). 

PSH and infection-induced fever are similar physiological responses that both 

increase body temperature through sympathetic activation of effector functions 

including BAT thermogenesis.  The mechanism for developing fever has been well 

studied.  At infection, stimulated immune cells release cytokines, which then induce 

expression of cyclooxygenase-2 and microsomal prostaglandin E synthases in brain 

vasculature to synthesize PGE2 (Yamagata et al., 2001).  The produced PGE2 acts 

on prostaglandin EP3 receptors expressed in neurons in the median preoptic 

nucleus and medial preoptic area (Nakamura et al., 1999, 2000; Lazarus et al., 

2007).  These EP3 receptor-expressing neurons are mostly GABAergic neurons that 

likely provide tonic inhibition on hypothalamic and medullary sympathoexcitatory 

neurons when PGE2 is absent under non-febrile conditions (Nakamura et al., 2002, 

2005).  PGE2 triggers febrile sympathetic outflow mechanisms likely by reducing the 

tonic firing activity of the inhibitory preoptic neurons through EP3 receptors, and 

thereby, disinhibits the sympathoexcitatory neurons (Nakamura, 2011).  Comparison 

of the present distribution of Fos-IR cells following stress with those following febrile 

stimuli shows a clear difference in the neuronal populations recruited for stress 

coping and for acute inflammatory responses.  For example, intravenous 

administration of the exogenous pyrogen lipopolysaccharide (LPS), mimicking 

systemic infection, or nanoinjection of PGE2 into the preoptic area evokes fever and 

induces remarkable Fos expression in the ventromedial preoptic nucleus, which is 

located immediately lateral to the organum vasculosum lamina terminalis (Elmquist 

et al., 1996; Scammell et al., 1996).  LPS also induces Fos expression in the 

organum vasculosum lamina terminalis (Elmquist et al., 1996).  Although whether 

neurons in these preoptic sites are involved in the development of fever is unknown, 

these neurons might also be controlled by the tonic inhibitory input from EP3 

receptor-expressing preoptic neurons and that their disinhibition through the action of 

PGE2 might contribute to fever or other acute inflammatory responses.  In contrast to 

the confined distribution of these pyrogen-responsive neurons in the medial part of 

the preoptic area, social defeat stress did not significantly increase Fos expression in 

the ventromedial preoptic nucleus or organum vasculosum lamina terminalis, but 
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activated preoptic neurons broadly spreading out to the lateral preoptic area (Fig. 

6A2).  The difference in the preoptic distribution of neurons activated by social stress 

and by pyrogenic stimuli suggests that the mechanism for PSH does not involve the 

PGE2–EP3 mechanism in the preoptic area.  This dissociation of the mechanisms for 

PSH and fever is supported by the findings that mice lacking EP3 receptors, which 

fail to develop fever, can exhibit intact PSH (Oka et al., 2003) and that PSH is 

resistant to indomethacin, an antipyretic blocking the production of PGE2 by 

inhibiting cyclooxygenases (Lkhagvasuren et al., 2011).  Consistent with the 

dissociation of the mechanism of PSH from immune signaling, the plasma levels of 

the pyrogenic cytokines in a patient with psychogenic fever were below their 

detectable levels (Hiramoto et al., 2009).	 

The paraventricular hypothalamic nucleus is one of the brain regions closely 

related to autonomic and neuroendocrine stress responses (Sawchenko et al., 1996).  

In this nucleus, the medial parvicellular part contains neurosecretory cells projecting 

to the median eminence, where they release corticotropin releasing hormone and 

thyrotropin releasing hormone, as well as autonomic neurons innervating 

sympathetic (spinal cord) and parasympathetic (dorsal vagal complex) preganglionic 

neurons.  On the other hand, the lateral magnocellular part primarily contains 

neuroendocrine neurons projecting to the posterior pituitary and releasing oxytocin 

and vasopressin (Swanson and Sawchenko, 1980; Ferguson et al., 2008).  Oxytocin-

containing neurons in this part also innervate various forebrain regions (Knobloch et 

al., 2012).  We observed stress-induced increases in Fos-IR cells in all the 

subregions of this nucleus, confirming the important role of this nucleus in coping 

with psychosocial stressors through driving the autonomic and neuroendocrine 

efferents.  Consistent with this observation, social defeat stress increases the 

plasma ACTH level (Wotjak et al., 1996).  However, social defeat stress does not 

change the plasma level of oxytocin or vasopressin (Wotjak et al., 1996), although 

the same stress increases oxytocin release from nerve endings in the septum (Ebner 

et al., 2000).  The lack of social defeat stress-induced plasma release of oxytocin or 

vasopressin is consistent with the present observation that social defeat stress did 

not induce Fos expression in the supraoptic nucleus, another region that contains 

neuroendocrine neurons releasing these hormones through the posterior pituitary 

(Meister, 1993).  These findings suggest that social defeat stress drives 
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oxytocinergic neurons innervating the forebrain, but not oxytocin- or vasopressin-

releasing neuroendocrine neurons in the paraventricular hypothalamic nucleus or 

supraoptic nucleus.  The inhibitory effect of diazepam on the stress-induced Fos 

expression was not uniform in the paraventricular hypothalamic nucleus.  Diazepam 

significantly inhibited the social defeat stress-induced Fos expression in its medial 

parvicellular and ventral parts, whereas a substantial number of cells in the lateral 

magnocellular part remained to express Fos following the Diazepam/Stress 

treatment.  Effect of diazepam on stress-induced increase in plasma ACTH or 

corticosterone is inconsistent among studies (Bizzi et al., 1984; Eisenberg, 1993; 

Groenink et al., 1996; Kalman et al., 1997) and diazepam’s effect on the stress-

induced oxytocin release from nerve endings in the forebrain has not been tested as 

yet.  Together with our observation, diazepam may exert differential effects on 

autonomic and neuroendocrine neurons in the paraventricular hypothalamic 

nucleus––more effective in stress-induced activation of sympathetic efferents from 

this nucleus. 

Circuitries for increasing arousal and awareness during stress	 

Intense Fos expression in response to social defeat stress was observed in the brain 

regions related to arousal and awareness.  Stress-induced Fos expression in the 

neocortex and the midline and intralaminar nuclei of the thalamus was prominent 

and the Fos expression in most of these regions was inhibited by diazepam.  The 

midline and intralaminar thalamic nuclei send axonal projections to the cerebral 

cortex and provide the necessary arousal of cortical and subcortical regions to 

support information processing that is correlated with awareness (Van der Werf et al., 

2002).  Therefore, stress-induced activation of neurons in these thalamic nuclei likely 

leads to the increase in vigilance that is necessary for awareness of incoming 

information during stress exposure.  Social defeat stress induced relatively intense 

Fos expression in neocortical layers IV and VI.  In the local cortical circuit, spiny 

neurons in layer IV receive abundant thalamic inputs and project to corticothalamic 

projection neurons in layer VI (Kaneko, 2013).  This thalamocortical recurrent circuit 

is proposed to serve as the basis of autonomous activity of the neocortex (Kaneko, 

2013).  According to this model, the stress-induced Fos expression in layers IV and 

VI suggests that stress signaling facilitates the activity of the thalamocortical loop 

probably to increase the arousal level of the animals.  The diazepam-induced 
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reduction of the stress-induced Fos expression in the midline and intralaminar 

thalamic nuclei as well as in their projection regions in the cerebral cortex likely 

reflects the inhibitory effect of this drug on the vigilance raised in association with 

stress (Prince et al., 1986).  The stress-induced Fos expression in the neocortex and 

the midline and intralaminar thalamic nuclei apparently contrasts with few Fos-IR 

cells in the same regions following LPS injection (Elmquist et al., 1996), showing 

another fundamental difference in the central structures and systems that are 

recruited for stress responses and acute inflammatory responses.  In the thalamus, 

the paraventricular thalamic nucleus also exhibited intense Fos expression following 

stress.  This nucleus provides projections to the prelimbic and infralimbic cortices 

(Van der Werf et al., 2002), where we observed intense Fos expression in response 

to stress.  The prelimbic and infralimbic cortices are involved in autonomic and 

neuroendocrine responses to emotional stress (Radley et al., 2006). 

Social defeat stress-induced increase in Fos expression in the ventral 

tuberomammillary nucleus seems to reflect the arousal state evoked by the stress.  

The ventral tuberomammillary nucleus contains a dense cluster of histamine neurons, 

whose activation promotes arousal and maintains high vigilance state through their 

axonal projections to broad areas throughout the brain including the cerebral cortex 

(Thakkar, 2011).  Diazepam-induced significant reduction of the stress-induced Fos 

expression in this nucleus is consistent with the effect of this agent that calms the 

extreme tension in stressful conditions.  When promoting sleep, histamine neurons in 

the ventral tuberomammillary nucleus are inhibited by a strong GABAergic input from 

the ventrolateral preoptic nucleus (Sherin et al., 1998), where stress-induced 

expression of Fos was observed in the present study.  This Fos expression may be 

exhibited by the ventrolateral preoptic neurons that show higher discharge rates in 

awakening than non-REM sleep, which constitute one quarter of neurons in this 

nucleus (Szymusiak et al., 1998).  Serotonin neurons in midbrain raphe nuclei also 

provide ascending projections to diverse regions in the forebrain (Törk, 1990) and 

show high discharge rates in awakening and decreased rates in sleep states 

(Rasmussen et al., 1984).  In addition to modulating cortical neuronal activities 

dependent on the sleep-wake states, the ascending serotonergic system can 

sensitize the subcortical circuits associated with autonomic arousal, anxiety and 

conditioned fear, such as the hypothalamic autonomic control system and the limbic 
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system (Lowry, 2002).  The stress-induced Fos expression and the diazepam-

induced reduction of the Fos expression in the median and dorsal raphe nuclei in the 

present study suggest the involvement of the ascending serotonergic system in 

psychosocial stress-associated sensitization of autonomic and emotional circuitries 

as well as arousal inputs to cortical neurons.	 

Sensory cortices including the somatosensory, visual, auditory and piriform 

cortices exhibited robust increases in Fos expression in response to stress, 

indicating elevated input levels in somatic, visual, auditory and olfactory sensations 

during exposure to stress.  Sensory thalamic nuclei that mediate somatic and 

auditory sensory signaling to the primary sensory cortices also exhibited Fos 

expression in response to stress, although it was weaker than the sensory cortices.  

However, the lateral geniculate nucleus, a thalamic region mediating visual inputs to 

the primary visual cortex, exhibited relatively high basal Fos expression and did not 

exhibit a significant increase in Fos expression in response to stress.  This 

observation likely reflects the high basal demand of the visual system in resting 

conditions. 

Emotion systems activated by social stress	 
Many limbic regions related to emotion were also classified as type 1 regions, such 

as hippocampal Ammon’s horn, ventral subiculum, septal nuclei, nucleus of the 

diagonal band, ventral divisions of the BNST, and cortical, medial, lateral and 

basomedial amygdaloid nuclei.  Anatomical studies have revealed that these limbic 

regions are interconnected and constitute a subcortical network to integrate and 

process stress signals, which stimulate the hypothalamo-pituitary-adrenocortical axis 

through the paraventricular hypothalamic nucleus (Herman et al., 2005).  Due to the 

complexity of the network, however, the functional role of each interregional 

connection in the central stress system is still under investigation.  Nonetheless, a 

recent study using optogenetics in mice showed that glutamatergic and GABAergic 

projections from the ventral divisions of the BNST to the ventral tegmental area are 

involved in different emotion-related behaviors: stimulation of the former pathway 

results in aversive and anxiogenic behavioral phenotypes and the latter produces 

rewarding and anxiolytic phenotypes (Jennings et al., 2013).  We observed social 

defeat stress-induced Fos expression in the ventral divisions of the BNST and the 

ventral tegmental area.  Although the neurotransmitter contained by the stress-
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activated cells in the ventral divisions of the BNST is unknown, the aversive and 

anxiety behaviors observed in animals exposed to social stress might be produced 

by activation of the glutamatergic pathway from the ventral divisions of the BNST to 

the ventral tegmental area. 

The amygdala is involved in the acquisition, storage and expression of fear 

memory (LeDoux, 2000).  Stress-induced increases in Fos expression in amygdaloid 

subregions in the present study suggest that fear memory was developed following a 

single social defeat stress episode through the mechanism in the amygdala.  Despite 

the stress-induced activation of the broad area in the amygdala, the central 

amygdaloid nucleus did not exhibit an increase in Fos expression following social 

defeat stress.  Fos expression in the central amygdaloid nucleus following social 

defeat stress is inconsistent among studies (Martinez et al., 2002; Fekete et al., 

2009).  This might be because longer time (> 10 min) of exposure to a dominant 

animal before separation with a partition, as given in the studies showing an increase 

in Fos expression in this nucleus, can lead to occurrence of attack-caused pain and 

injuries, which could cause a different expression pattern in the amygdala.  We 

allowed Wistar rats to physically contact with Long-Evans rats for less than 5 min, 

finding no injury after stress exposure.  The present study showed an increase in 

basal Fos expression in the caudal part of the central amygdaloid nucleus by 

diazepam injection, consistent with previous reports (Beck and Fibiger, 1995; 

Salminen et al., 1996; Panhelainen and Korpi, 2012).  On the other hand, diazepam 

reduced stress-induced Fos expression in the medial, lateral, basomedial and 

cortical amygdaloid nuclei.  The central and medial amygdaloid nuclei both provide 

projections to broad areas in the brain including the brainstem (Hopkins and 

Holstege, 1978; Canteras et al., 1995).  Such diverging efferents from these 

amygdaloid nuclei could affect global neuronal activities under stress conditions as 

observed in the forebrain and midbrain following the present social defeat stress, 

although this study did not cover the pons or medulla.  Intriguingly, a lesion study 

has shown that the medial nucleus is critical to activation of A1 and A2 noradrenergic 

cells in response to restraint stress, whereas the central nucleus exerts an opposing, 

inhibitory influence on the stress-induced noradrenergic cell recruitment (Dayas and 

Day, 2002).  The medial nucleus contains both glutamatergic and GABAergic 

neurons, whereas neurons in the central nucleus are predominantly GABAergic 
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(Poulin et al., 2008).  Taken together, stress-activated neurons in the medial nucleus 

could provide glutamatergic excitatory drives to brain regions involved in the 

expression of stress responses.  Diazepam might exert its inhibitory effects on stress 

responses not only by inhibiting the excitatory drives from the medial nucleus, but 

also by enhancing GABAergic drives from the central part to various stress-related 

brain regions. 

The habenula is involved in behavioral responses to stress (Hikosaka, 2010).  We 

observed social defeat stress-induced Fos expression in the medial and lateral 

habenular nuclei.  Immobilization and open field stress also induce Fos expression in 

the lateral habenular nucleus (Wirtshafter et al., 1994).  It has been proposed that 

habenular neurons, upon receiving stress-related signals from limbic regions, inhibit 

raphe serotonergic neurons as well as nigrotegmental dopaminergic neurons, 

resulting in a general suppression of body movement (Hikosaka, 2010).  The 

distribution of Fos-IR cells in the lateral habenular nucleus following social defeat 

stress was relatively confined to its medial part.  Neurons in this part receive 

projections from limbic regions including the septum, diagonal band of Broca, and 

medial frontal cortex (Herkenham and Nauta, 1977).  Therefore, the activation of the 

lateral habenular neurons by stress signals from these limbic regions may be 

involved in the motor suppression occurring under exposure to stress.  The stress-

induced Fos expression in the lateral habenular nucleus was inhibited by diazepam, 

whereas this drug further increased that in the medial habenular nucleus.  Although 

the stress circuits involving the medial habenular nucleus are mostly unknown, a 

recent study suggested that activation of neurons in its ventral part, which occupies a 

major area of the medial habenular nucleus, leads to anxiety-related behaviors 

(Yamaguchi et al., 2013).  Activation of medial habenular neurons by diazepam as 

seen in the present study may lead to an increase in anxiety, which might cause 

paradoxical effects of this drug, such as self-aggressive behaviors in humans 

(Berman et al., 2005). 

CONCLUSION	 
The distribution of Fos-IR cells shown in the present study indicates that social 

defeat stress recruits neurons in broad forebrain and midbrain regions.  Diazepam-

induced strong, selective inhibition of the stress-induced neuronal activation was 

observed in many of these brain regions and suggests that neurons in these regions 
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are involved in perception of stressors, processing of stress and emotional signals, 

or output of behavioral and autonomic (including neuroendocrine) motor commands 

to cope with stressors.  PSH is one of fundamental autonomic responses to stress 

and employs sympathetic thermogenesis in BAT through activation of sympathetic 

premotor neurons in the rostral medullary raphe region, similar to the development of 

fever.  However, evidence from the present and previous studies dissociates the 

mechanisms for triggering PSH and fever, although PSH and fever likely share the 

sympathetic outflow pathway through the dorsomedial hypothalamus and the rostral 

medullary raphe region.  Fos expression in the paraventricular hypothalamic nucleus 

indicates that social defeat stress activates efferent drives for the hypothalamo-

pituitary-adrenocortical neuroendocrine axis and for autonomic outflows, which seem 

to show different sensitivity to diazepam.  Increases in arousal and awareness 

necessary for processing incoming information during exposure to stressors are 

likely mediated by activated cortical inputs from the midline and intralaminar thalamic 

nuclei.  The elevated arousal level during stress may be maintained by stress-

activated histaminergic, serotonergic and orexinergic neurons through their 

innervation of broad areas in the forebrain.  The social defeat stress-induced 

activation of neurons in various limbic and related regions, such as the amygdala, 

septum, BNST, ventral tegmental area and hebenula, seems to be involved in the 

production of negative emotion, such as anxiety and fear, associated with aversive 

stress episodes.  Diazepam’s excitatory effects on the central amygdaloid nucleus 

and medial habenular nucleus are curious and might be related with its diverse 

inhibitory pharmacological effects and paradoxical side effects, respectively.  The 

present functional mapping of neurons exhibiting diazepam-sensitive, stress-induced 

activation would be helpful for future physiological attempts to understand the central 

circuit mechanisms for the development of acute autonomic, emotional and 

behavioral responses to psychosocial stress as well as the etiology of various 

disorders and illnesses caused by chronic stress, such as psychogenic fever and 

depression.	 
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Figures 

Fig. 1.  Effect of diazepam on social defeat stress-induced increase in body core 

temperature (Tc).  (A) Abdominal temperature was measured in rats (n = 4 per 

group) that received an i.p. injection of diazepam (filled symbols) or vehicle (open 

symbols) at the time point indicated by the arrow and were subsequently exposed to 

social defeat stress (circles) or left undisturbed (triangles) during the period indicated 

by the horizontal bar.  (B) Peak changes in Tc during the stress or control period from 

the pre-injection baseline values (peak △Tc) in the four groups (n = 4 per group).  

***P < 0.001, **P < 0.01, one-way ANOVA.	 
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Fig. 2.  Representative images used for counting Fos-immunoreactive (IR) cells in 

the dorsomedial hypothalamic nucleus.  Fos-IR cells in 200-µm squares from the 

four experimental groups are shown.  The numbers of Fos-IR cells that we counted 

in these images are 6 (Vehicle/Control), 35 (Vehicle/Stress), 17 (Diazepam/Stress) 

and 7 (Diazepam/Control) cells.  For the detailed procedure of cell counting, see 

Materials and methods.	 
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Fig. 3.  Correlation between the density and number of Fos-IR cells in the dorsal 

hypothalamic area (DH) and dorsomedial hypothalamic nucleus (DMH).  Mean 

values (± S.E.M.) from the four experimental groups are plotted (n = 4 per group).  

Linear regression analysis indicates a significant correlation (P < 0.05) between the 

density and number of Fos-IR cells in both regions.	 
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Fig. 4.  Distribution of Fos-IR cells in the cerebral cortex.  (A1–A3) Prelimbic (PrL) 

and infralimbic (IL) cortices.  (B1–B3) Cingulate cortex (Cg).  (C1–C3) Motor (M) and 

primary somatosensory (S1) cortices.  Broken lines indicate cortical layer boundaries.  

(D1–D3) Piriform (Pir) and insular (Ins) cortices and endopiriform nucleus (En).  

Photomicrographic images were taken from Vehicle/Control (A1–D1), Vehicle/Stress 
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(A2–D2) and Diazepam/Stress (A3–D3) groups.  For other abbreviations, see the 

abbreviation list.  Scale bar: 500 µm.	 
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Fig. 5.  Distribution of Fos-IR cells in the hippocampal formation (dorsal, A1–A3; 

ventral, B1–B3), septal region (C1–C3) and amygdala (D1–D3).  Broken lines in D1–D3 

delineate the caudal part of the central amygdaloid nucleus (cCe).  

Photomicrographic images were taken from Vehicle/Control (A1–D1), Vehicle/Stress 
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(A2–D2) and Diazepam/Stress (A3–D3) groups.  For other abbreviations, see the 

abbreviation list.  Scale bar: 500 µm.	 
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Fig. 6.  Distribution of Fos-IR cells in the preoptic area and rostral hypothalamus.  

(A1–A3) Preoptic area.  (B1–B3) Rostral hypothalamic area including the 

suprachiasmatic nucleus (SCh) and supraoptic nucleus (SO).  (C1–C3) Rostral 

hypothalamic area including the paraventricular hypothalamic nucleus.  

Photomicrographic images were taken from Vehicle/Control (A1–C1), Vehicle/Stress 

(A2–C2) and Diazepam/Stress (A3–C3) groups.  For other abbreviations, see the 

abbreviation list.  Scale bar: 500 µm.	 
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Fig. 7.  Distribution of Fos-IR cells in caudal hypothalamus.  (A1–A3) Caudal 

hypothalamic area including the DH, DMH, ventromedial hypothalamic nucleus 

(VMH) and perifornical nucleus (Pef).  (B1–B3) Lateral hypothalamus.  (C1–C3) 

Mammillary body.  Photomicrographic images were taken from Vehicle/Control (A1–

C1), Vehicle/Stress (A2–C2) and Diazepam/Stress (A3–C3) groups.  For other 

abbreviations, see the abbreviation list.  Scale bar: 500 µm.	 
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Fig. 8.  Distribution of Fos-IR cells in the habenula and thalamus.  (A1–A3) Habenula 

and paraventricular thalamic nucleus (PV).  Broken lines indicate the boundary 

between the medial (MHb) and lateral (LHb) habenular nuclei.  (B1–B3) Association, 

midline, intralaminar and motor thalamic nuclei.  Photomicrographic images were 

taken from Vehicle/Control (A1 and B1), Vehicle/Stress (A2 and B2) and 

Diazepam/Stress (A3 and B3) groups.  For other abbreviations, see the abbreviation 

list.  Scale bar: 500 µm.	 
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Fig. 9.  Distribution of Fos-IR cells in the midbrain.  (A1–A3) Periaqueductal gray.  

(B1–B3) Raphe nuclei.  (C1–C3) Nigrotegmental area.  Broken lines delineate a zonal 

region consisting of the interfascicular nucleus (IF) and paranigral nucleus (PN).  

Photomicrographic images were taken from Vehicle/Control (A1–C1), Vehicle/Stress 

(A2–C2) and Diazepam/Stress (A3–C3) groups.  For other abbreviations, see the 

abbreviation list.  Scale bar: 500 µm. 

A2 A3

DR

Aq

mlf

Cf

VTg

MnR

A1

C2 C3

B2B1

IF
PN

VTA
ml

R

C1

B3

SN

RLi

PAGd

Aq PAGl

PAGvlDR

Lkhagvasuren et al., Neuroscience
Figure 9. Two column width



	   54	  

Table 1. Density of Fos-IR cells in forebrain and midbrain regions after four 
experimental treatments 

ANOVA 
Brain region Vehicle 

/Control 
Vehicle 
/Stress 

Diazepam 
/Stress Type Diazepam 

/Control S D I 
Cerebral cortices         

Orbital cortex 16.1±2.0 95.3±12.3, a*** 25.2±7.8, d*** 1 8.1±2.1 *** *** ** 

Frontal cortex 4.3±2.5 28.2±8.7, a* 5.5±2.7, d* 1 4.3±0.6 * * * 

Motor cortex 9.8±1.2 86.8±9.4, a*** 26.8±2.7, d*** 1 5.6±0.9 *** *** *** 

Somatosensory cortex         

Primary 15.8±6.8 109.1±11.7, 
a*** 43.7±9.2, d*** 1 7.3±1.1 *** *** ** 

Secondary 15.2±5.5 89.3±4.4, a*** 40.4±11.4, d** 1 12.7±2.2 *** ** ** 

Parietal cortex 14.7±8.9 129.5±13.2, 
a*** 

35.8±12.8, 
d*** 1 8.6±2.2 *** *** ** 

Visual cortex 20.3±5.0 151.8±4.2, a*** 97.5±8.8, d*** 1 10.4±1.6 *** *** ** 

Auditory cortex 14.1±3.2 119.8±14.4, 
a*** 43.3±6.6, d*** 1 9.8±1.8 *** *** *** 

Prelimbic cortex 13.3±1.9 92.5±5.9, a*** 17.5±1.5, d*** 1 13.1±2.3 *** *** *** 

Infralimbic cortex 6.4±1.9 67.0±7.5, a*** 19.0±2.6, d*** 1 12.3±2.6 *** *** *** 

Cingulate cortex         

Primary 5.9±1.0 87.7±2.3, a*** 33.5±7.7, d*** 1 4.3±0.4 *** *** *** 

Secondary 10.3±1.2 76.4±4.1, a*** 15.8±4.0, d*** 1 3.9±0.6 *** *** *** 

Retrosplenial cortex 11.0±4.0 100.2±9.2, a*** 16.3±4.0, d*** 1 3.8±1.0 *** *** *** 

Insular cortex 10.6±1.0 42.1±5.1, a*** 16.7±5.3, d** 1 8.3±1.4 *** ** ** 

Ectorhinal and perirhinal cortices 8.0±1.4 72.7±11.7, a*** 36.0±7.4, d* 1 10.8±1.7 *** * * 

Piriform cortex         

Layer II 28.0±3.2 122.7±21.7, 
a*** 51.3±8.2, d** 1 16.3±2.1 *** ** * 

Layer III 4.3±0.7 12.1±1.3, a* 6.3±2.1 2 4.5±1.6 ** NS NS 

Anterior olfactory nucleus 20.4±4.0 67.2±6.9, a*** 19.6±3.9, d*** 1 6.5±1.3 *** *** ** 

Entorhinal cortex 5.4±2.2 40.5±18.7  12.7±1.6 4 4.9±0.6 * NS NS 

Hippocampal formation         

Ammon’s horn         

CA1 4.5±0.7 35.1±5.4, a*** 4.5±1.5, d*** 1 0.9±0.5 *** *** *** 

CA3 4.3±1.5 10.5±0.9, a* 3.4±1.2, d** 1 2.1±0.5 ** ** *	 

Dentate gyrus 9.4±2.0 18.4±4.3 4.8±0.3, d* 4 3.6±1.2 NS ** NS 

Ventral subiculum 7.2±1.7 50.7±5.6, a*** 9.8±3.3, d*** 1 3.8±1.3 *** *** *** 

Septal region         

Lateral septal nucleus 18.3±2.2 58.7±5.2, a*** 28.3±6.2, d** 1 6.1±0.7 *** *** NS 

Medial septal nucleus 2.3±0.5 8.3±1.5, a*	 2.6±1.3, d* 1 4.5±1.0 NS NS ** 

Nucleus of the diagonal band 10.2±1.3 41.3±0.8, a*** 14.7±3.7, d*** 1 5.1±0.6 *** *** *** 

Bed nucleus of the stria terminalis         

Dorsal divisions 23.3±3.6 42.2±3.6, a* 31.8±2.1 2 21.4±3.8 *** NS NS 

Ventral divisions 18.1±2.6 50.4±6.8, a*** 19.5±2.4, d*** 1 10.3±1.3 *** *** *	 

Basal ganglia         

Caudate putamen 0.9±0.3 29.8±5.8, a*** 5.5±1.4, d*** 1 1.2±0.6 *** ** ** 

Accumbens nucleus 28.4±6.0 73.9±1.7, a*** 19.3±4.3, d*** 1 17.0±3.2 *** *** *** 
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ANOVA 
Brain region Vehicle 

/Control 
Vehicle 
/Stress 

Diazepam 
/Stress Type Diazepam 

/Control S D I 
Globus pallidus 0.5±0.5 4.3±1.5, a* 0.6±0.2, d* 1 0.6±0.4 * * * 

Ventral pallidum 6.8±1.6 35.1±2.0, a*** 10.8±2.4, d*** 1 7.8±2.9 *** *** *** 
Navicular nucleus of the basal 
forebrain 9.7±2.4 40.7±2.0, a*** 15.4±1.9, d*** 1 5.3±0.6 *** *** *** 

Endopiriform nucleus         

Rostral part 13.8±2.2 58.3±6.2, a*** 21.2±2.8, d*** 1 9.2±2.9 *** *** ** 

Caudal part 10.9±1.3 47.8±4.0, a*** 15.2±3.3, d*** 1 7.1±2.7 *** *** *** 

Claustrum 22.4±4.0 35.6±8.4 18.9±1.6 4 11.5±1.4 NS * NS 

Amygdala          

Cortical amygdaloid nucleus 12.7±1.6 67.6±7.0, a*** 27.0±2.1, d*** 1 5.1±1.3 *** *** *** 

Central amygdaloid nucleus         

Rostral part 39.2±4.8 35.7±6.3 48.8±4.4 4 57.1±2.5 NS ** NS 

Caudal part 41.5±8.4 53.3±5.5 76.7±3.8  4 84.7±5.6, a** NS *** NS 

Medial amygdaloid nucleus 9.0±0.3 62.1±5.0, a*** 21.1±1.6, d*** 1 4.4±0.8 *** *** *** 

Basolateral amygdaloid nucleus 6.4±1.4 17.8±4.9 9.6±1.8 4 5.8±0.7 * NS NS 

Lateral amygdaloid nucleus 6.9±1.5 41.4±1.7, a*** 12.8±2.0, d*** 1 4.5±1.1 *** *** *** 

Basomedial amygdaloid nucleus 3.4±0.4 21.1±4.0, a*** 7.9±1.0, d** 1 3.7±0.8 *** ** ** 

Preoptic area and hypothalamus         
Organum vasculosum lamina 
terminalis 34.6±4.2 40.0±10.6 34.6±1.5 4 31.6±4.2 NS NS NS 

Median preoptic nucleus 26.4±6.1 40.9±4.2 19.6±0.7, d* 4 19.9±3.1 NS ** NS 

Medial preoptic area 22.3±1.9 65.3±6.7, a*** 31.3±4.1, d*** 1 14.3±3.1 *** *** * 

Lateral preoptic area 9.2±1.6 41.8±6.0, a*** 20.1±3.7, d** 1 7.5±0.7 *** ** * 

Septohypothalamic nucleus 17.3±4.3 93.0±12.7, a*** 24.0±4.3, d*** 1 13.9±2.6 *** *** *** 

Parastrial nucleus 33.1±8.3 62.7±6.1, a* 26.9±2.8, d** 1 27.6±2.3 * ** * 

Ventromedial preoptic nucleus 18.8±6.4 33.9±9.9 6.4±1.9 4 12.8±3.8 NS * NS 

Ventrolateral preoptic nucleus 12.5±2.8 48.4±7.5, a*** 27.5±3.4, d* 1 9.8±2.0 *** * NS 

Anterior hypothalamic area 31.7±4.6 50.3±6.1, a* 40.0±1.7 2 20.7±2.2 *** * NS 

Suprachiasmatic nucleus 144.1±21.5 307.4±4.7, a*** 115.6±0.7, 
d*** 1 116.1±1.1 *** *** *** 

Supraoptic nucleus 40.5±0.2 18.8±10.5  16.2±0.4 4 5.5±0.2, b** NS	 ** ** 
Periventricular hypothalamic 
nucleus 6.8±0.3 37.8±7.6, a*** 12.3±0.7, d** 1 5.3±0.4 *** ** ** 

Paraventricular hypothalamic 
nucleus         

Lateral magnocellular part 23.0±1.5 99.1±17.1, a** 54.6±14.6 2 35.5±10.1 ** NS * 

Medial parvicellular part 42.1±4.7 121.4±4.9, a*** 52.3±7.1, d*** 1 42.5±9.3 *** *** *** 

Ventral part 19.2±2.9 63.2±4.9, a*** 27.5±2.4, d*** 1 18.8±3.3 *** *** *** 

Arcuate nucleus         

Rostral part 8.3±2.3 40.9±4.4, a*** 13.2±3.1, d*** 1 6.8±1.2 *** *** *** 

Caudal part 10.9±1.7 63.8±12.5, a*** 12.1±3.3, d*** 1 3.9±1.4 *** *** ** 

Dorsal hypothalamic area 12.6±0.9 46.2±3.8, a*** 22.0±5.9, d** 1 10.3±2.2 *** ** * 
Dorsomedial hypothalamic 
nucleus 5.8±1.9 27.3±1.5, a*** 15.1±1.5, d** 1 10.0±2.3 *** * *** 

Ventromedial hypothalamic 
nucleus 10.2±0.2 8.8±1.5 21.8±4.0, c** 4 1.4±0.2 *** NS *** 

Perifornical nucleus 15.3±3.0 47.9±5.8, a*** 20.9±3.0, d** 1 13.0±3.1 *** ** ** 
Magnocellular nucleus of the 
lateral hypothalamus 13.8±0.5 16.1±0.6 26.3±0.6, c*** 4 20.5±0.8, 

a*** *** *** * 
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ANOVA 
Brain region Vehicle 

/Control 
Vehicle 
/Stress 

Diazepam 
/Stress Type Diazepam 

/Control S D I 
Peduncular part of the lateral 
hypothalamus 6.8±0.5 35.9±0.2, a*** 14.3±0.5, d*** 1 6.8±0.2 *** *** *** 

Posterior hypothalamic area 15.8±3.1 39.4±0.4, a*** 17.4±0.3, d*** 1 5.1±0.3, b** *** *** ** 

Premammillary nucleus         

Dorsal part 20.3±1.6 72.5±9.1, a*** 34.8±4.5, d** 1 7.5±0.3 *** *** * 

Ventral part 1.1±0.6 117.9±12.2, 
a*** 49.0±2.7, d*** 1 1.5±0.2 *** *** *** 

Supramammillary nucleus 17.2±0.3 61.5±7.8, a*** 27.5±2.9, d***	 1 12.3±0.7 ***	 ***	 **	 

Medial mammillary nucleus 5.1±1.0 67.1±17.1, a**	 2.4±0.8, d** 1 1.9±0.4 ** ** ** 

Ventral tuberomammillary nucleus 7.9±5.9 47.6±4.7, a*** 20.8±2.1, d** 1 6.9±0.1 *** ** ** 

Habenula         

Medial habenular nucleus 4.8±2.0 16.2±2.2, a**	 29.1±1.2, c*** 3 20.5±0.7, 
a*** *** *** NS 

Lateral habenular nucleus 4.0±1.4 28.3±5.9, a** 11.8±2.1, d* 1 11.4±3.4 ** NS ** 

Thalamus         

Association thalamic nuclei         

Anterodorsal nucleus 12.4±4.1 48.9±5.2, a*** 17.1±3.5, d*** 1 8.7±1.5 *** *** ** 

Anteromedial nucleus 2.0±2.0 32.3±2.2, a*** 12.8±2.3, d*** 1 1.8±0.5 *** *** *** 

Anteroventral nucleus 1.9±1.8 35.2±7.7, a*** 12.8±2.2, d* 1 7.0±0.2 *** NS ** 

Mediodorsal nucleus 0.0±0.0 21.6±2.7, a*** 9.5±3.3, d* 1 0.0±0.0 *** * * 

Laterodorsal nucleus 0.3±0.3 36.3±3.6, a*** 6.2±2.7, d*** 1 3.8±2.2 *** *** *** 

Reticular nucleus 0.0±0.0 36.5±5.8, a*** 0.8±0.6, d*** 1 0.0±0.0 *** *** ***	 

Submedius nucleus 1.8±1.4 41.8±6.7, a***	 25.8±1.3, d* 1 8.5±1.6 *** NS ** 
Midline and intralaminar thalamic 
nuclei         

Central lateral nucleus 3.0±1.0 40.2±4.7, a*** 14.9±3.9, d** 1 6.4±3.3 *** ** ** 

Central medial nucleus 18.2±2.5 64.0±5.3, a*** 36.9±3.3, d*** 1 24.2±1.4 *** ** *** 

Intermediodorsal nucleus 11.0±1.2 50.6±7.4, a*** 26.8±5.0, d* 1 9.3±0.7 *** * * 

Paracentral nucleus 9.8±2.6 28.6±5.2, a* 21.3±1.7 2 14.7±3.1 ** NS NS 

Paratenial nucleus 0.1±0.1 25.7±6.8  16.1±11.2 4 3.5±2.0 * NS NS 

Paraventricular nucleus 41.5±3.8 76.8±6.0, a** 45.7±4.6, d** 1 42.4±6.6 ** * * 

Reuniens nucleus 2.9±1.4 32.0±8.3, a** 23.6±4.0 2 12.6±1.2 ** NS NS 

Rhomboid nucleus 19.1±4.0 61.7±7.7, a*** 24.6±4.7, d** 1 6.2±2.0 *** *** * 

Motor thalamic nuclei         

Ventrolateral nucleus 0.0±0.0 15.8±8.5 4.0±2.2 4 0.0±0.0 * NS NS 

Ventral anterior nucleus 0.0±0.0 8.9±4.6 2.2±1.1 4 0.0±0.0 * NS NS 

Ventral medial nucleus 1.3±0.0 20.9±4.5, a*** 8.4±1.5, d* 1 0.7±0.4 *** * * 

Sensory thalamic nuclei         

Lateral geniculate nucleus 41.3±4.6 51.8±2.4 35.9±3.9 4 42.9±4.8 NS NS NS 

Medial geniculate nucleus 0.5±0.5 42.1±2.1, a*** 36.0±7.9 2 2.7±0.8 *** NS NS 

Posterior nucleus 1.5±1.5 25.5±7.8, a** 5.2±2.2, d* 1 0.0±0.0 ** * * 

Ventral posterior complex 1.0±1.0 28.4±8.3, a** 1.3±0.9, d** 1 0.0±0.0 ** ** ** 

Zona incerta 8.8±1.8 28.5±3.4, a*** 7.4±1.2, d*** 1 5.7±0.6 *** *** *** 

Midbrain         

Superior colliculus 16.3±2.6 54.3±2.9, a** 30.3±10.4 2 8.4±1.3 *** * NS 

Periaqueductal gray         

Dorsomedial and dorsolateral 8.8±1.8 31.9±5.8, a** 21.2±2.4 2 8.3±1.6 *** NS NS 
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ANOVA 
Brain region Vehicle 

/Control 
Vehicle 
/Stress 

Diazepam 
/Stress Type Diazepam 

/Control S D I 
parts 

Lateral part 5.3±0.3 14.7±0.8, a*** 10.2±0.3, d** 1 6.7±1.1 *** NS ** 

Ventrolateral part 6.6±0.2 20.9±3.7, a** 9.7±1.1, d* 1 3.8±1.3 *** ** NS 

Retrorubral field 6.4±1.0 13.5±3.3 5.9±0.8 4 5.7±1.0 NS * NS 

Interfascicular nucleus 3.6±0.9 24.4±2.0, a*** 13.1±3.0, d** 1 4.4±0.8 *** * ** 

Paranigral nucleus 1.1±0.3 10.2±1.9, a*** 3.3±0.1, d** 1 2.2±0.6 *** * ** 

Ventral tegmental area 1.2±0.3 6.0±0.1, a*** 1.5±0.3, d*** 1 1.2±0.4 *** *** *** 

Substantia nigra 0.0±0.0 0.0±0.0 0.0±0.0 4 0.0±0.0 NS NS NS 

Red nucleus 2.1±2.0 1.0±0.6 1.0±0.9 4 0.8±0.8 NS NS NS 

Inferior colliculus 34.3±6.9 65.8±7.0  44.3±7.3 4 43.9±11.5 NS NS NS 

Cuneiform nucleus 11.6±3.2 48.9±4.6, a*** 26.6±7.0, d* 1 13.5±3.8 *** NS * 

Ventral tegmental nucleus 17.0±5.6 38.9±3.1, a** 9.1±1.8, d*** 1 5.7±2.5 ** *** * 

Linear nucleus of the raphe 0.8±0.6 10.4±2.2, a* 5.9±3.0 2 1.3±1.1 ** NS NS 

Median raphe nucleus 11.6±2.2 29.3±4.7, a** 6.2±0.8, d*** 1 4.1±1.1 ** *** * 

Dorsal raphe nucleus 9.3±1.6 44.8±3.7, a*** 22.3±1.0, d*** 1 10.3±2.9 *** ** *** 

 

Means ± S.E.M. of densities of Fos-IR cells (cells / 0.04 mm2) are shown.  In each brain 
region, statistical analyses of cell densities were performed using a two-way ANOVA 
(stress x diazepam) to detect the effects of stress (S) and diazepam (D) and the 
interaction (I) of these factors (***P < 0.001, **P < 0.01, *P < 0.05; NS, not significant).  
Subsequently, a Bonferroni post hoc test was performed to compare 1) Vehicle/Control 
and Vehicle/Stress, 2) Vehicle/Stress and Diazepam/Stress, and 3) Vehicle/Control and 
Diazepam/Control, and the results are shown as follows: a, significantly increased from the 
Vehicle/Control group; b, significantly decreased from the Vehicle/Control group; c, 
significantly increased from the Vehicle/Stress group; d, significantly decreased from the 
Vehicle/Stress group (***P < 0.001, **P < 0.01, *P < 0.05).  Based on the results from the 
comparisons 1) and 2), the brain regions were classified into four types: type 1, stress 
increased Fos expression, which was decreased by diazepam; type 2, stress increased 
Fos expression, which was not altered by diazepam; type 3, stress increased Fos 
expression, which was further increased by diazepam; and type 4, stress did not increase 
Fos expression. 
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Table 2. Diazepam-caused reduction of stress-induced increase in Fos-
IR cell density in type 1 regions 

Brain region % reduction 
Cerebral Cortices  

Orbital cortex 88.5 
Frontal cortex 95.0 
Motor cortex 77.9 
Somatosensory cortex  

Primary 70.1 
Secondary 66.0 

Parietal cortex 81.6 
Visual cortex 41.3 
Auditory cortex 72.4 
Prelimbic cortex 94.7 
Infralimbic cortex 79.2 
Cingulate cortex  

Primary 66.3 
Secondary 91.7 

Retrosplenial cortex 94.1 
Insular cortex 80.6 
Ectorhinal and perirhinal cortices 56.7 
Piriform cortex, layer II 75.4 
Anterior olfactory nucleus 101.7 

Hippocampal formation  
Ammon’s horn  

CA1 100.0 
CA3 114.5 

Ventral subiculum 94.0 
Septal region  

Lateral septal nucleus 75.2 
Medial septal nucleus 95.0 
Nucleus of the diagonal band 85.5 
Bed nucleus of the stria terminalis, ventral divisions 95.7 

Basal ganglia  
Caudate putamen 84.1 
Accumbens nucleus 120.0 
Globus pallidus 97.4 
Ventral pallidum 85.9 
Navicular nucleus of the basal forebrain 81.6 
Endopiriform nucleus  

Rostral part 83.4 
Caudal part 88.3 

Amygdala  
Cortical amygdaloid nucleus 74.0 
Medial amygdaloid nucleus 77.2 
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Brain region % reduction 
Lateral amygdaloid nucleus 82.9 
Basomedial amygdaloid nucleus 74.6 

Preoptic area and hypothalamus  
Medial preoptic area 79.1 
Lateral preoptic area 66.6 
Septohypothalamic nucleus 91.1 
Parastrial nucleus 120.9 
Ventrolateral preoptic nucleus 58.2 
Suprachiasmatic nucleus 117.5 
Periventricular hypothalamic nucleus 82.3 
Paraventricular hypothalamic nucleus  

Medial parvicellular part 87.1 
Ventral part 81.1 

Arcuate nucleus  
Rostral part 85.0 
Caudal part 97.7 

Dorsal hypothalamic area 72.0 
Dorsomedial hypothalamic nucleus 56.7 
Perifornical nucleus 82.8 
Peduncular part of the lateral hypothalamus 74.2 
Posterior hypothalamic area 93.2 
Premammillary nucleus  

Dorsal part 72.2 
Ventral part 59.0 

Supramammillary nucleus 76.7 
Medial mammillary nucleus 104.4 
Ventral tuberomammillary nucleus 67.5 

Habenula  
Lateral habenular nucleus 67.9 

Thalamus  
Association thalamic nuclei  

Anterodorsal nucleus 87.1 
Anteromedial nucleus 64.4 
Anteroventral nucleus 67.3 
Mediodorsal nucleus 56.0 
Laterodorsal nucleus 83.6 
Reticular nucleus 97.8 
Submedius nucleus 40.0 

Midline and intralaminar thalamic nuclei  
Central lateral nucleus 68.0 
Central medial nucleus 59.2 
Intermediodorsal nucleus 60.1 
Paraventricular nucleus 88.1 
Rhomboid nucleus 87.1 

Motor thalamic nuclei  
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Brain region % reduction 
Ventral medial nucleus 63.8 

Sensory thalamic nuclei  
Posterior nucleus 84.6 
Ventral posterior complex 98.9 

Zona incerta 107.1 
Midbrain  

Periaqueductal gray  
Lateral part 47.9 
Ventrolateral part 78.3 

Interfascicular nucleus 54.3 
Paranigral nucleus 75.8 
Ventral tegmental area 93.8 
Cuneiform nucleus 59.8 
Ventral tegmental nucleus 136.1 
Median raphe nucleus 130.5 
Dorsal raphe nucleus 63.4 

 

Inhibition % of stress-induced increase in the density of Fos-IR cells in type 1 regions 
is listed.  In each region, the mean basal density of Fos-IR cells in the 
Vehicle/Control group was subtracted from the mean densities in the Vehicle/Stress 
and Diazepam/Stress groups (see Table 1) to obtain stress-induced changes in Fos-
IR cell density following vehicle and diazepam injections, respectively.  Then, the 
reduction of the stress-induced increase in Fos-IR cell density by diazepam injection 
was expressed in % of the stress-induced increase in Fos-IR cell density following 
vehicle injection. 

 




