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Abstract 36 

Purpose: To quantify the intra- and interfractional variations between lung tumours and 37 

implanted markers.  38 

Materials and Methods: Gold markers were implanted transbronchially around a lung 39 

tumour in fifteen patients. They underwent four-dimensional computed tomography scans 40 

twice, and the centroids of the tumour and markers were determined. Intrafractional variations 41 

were defined as the residual tumour motions relative to the markers due to respiration from 42 

the end-exhale phase. Interfractional variations were defined as the residual setup errors after 43 

correction for the position of the implanted markers in end-exhale phase images. 44 

Results: The intrafractional variations differed between patients. The root mean squares of 45 

standard deviations for each phase were 0.6, 0.9, and 1.5 mm in the right-left, 46 

anterior-posterior, and superior-inferior directions, respectively. The maximum difference in 47 

intrafractional variation among 10 phases was correlated with the amplitude of tumour motion 48 

in all directions and the tumour-marker distance in the anterior-posterior and superior-inferior 49 

directions. The interfractional variations were within 2.5 mm.  50 

Conclusions: The intrafractional variations differed according to the amount of tumour 51 

motion and the tumour-marker distance. Additionally, interfractional variations of up to 2.5 52 

mm were observed. Thus, a corresponding margin should be considered during implanted 53 

marker-based beam delivery to account for these variations. 54 
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Introduction 55 

Stereotactic body radiation therapy (SBRT) is an innovative technique that delivers high-dose 56 

radiation limited precisely to the region of the tumour [1,2]. In SBRT for targets affected by 57 

respiratory motion, such as lung tumours, appropriate motion management is recommended to 58 

reduce doses delivered to the surrounding normal tissues. Several methods of accounting for 59 

respiratory motion have been developed, including methods in which the radiation delivery is 60 

synchronised with respiration; i.e. the dynamic tumour tracking (DTT) method and the 61 

respiratory gating method [3].  62 

 With the above respiratory-synchronised methods, markers implanted either in the 63 

tumour itself or nearby are often used as the internal surrogate to localise the tumour position 64 

[4-6]. However, the position of the implanted markers does not always represent the tumour 65 

position because the tumour and markers move non-synchronously during respiration, 66 

especially in cases in which the markers were located slightly distal from the tumour [7]. This 67 

intrafractional positional difference between the tumour and markers should be incorporated 68 

into the DTT or respiratory gating irradiation treatment plan by using a wider gating window, 69 

within which the beam is delivered during the respiration cycle. Furthermore, the relative 70 

position of the tumour with respect to the markers may vary from day to day; therefore, the 71 

interfractional positional difference must be addressed. However, little about these variations 72 

is known. 73 

 The purpose of this study was to quantify the intra- and interfractional variations 74 

between the lung tumour position and the position of the implanted markers to evaluate the 75 

margin necessary to account for the associated errors during respiratory-synchronised 76 

irradiation treatment. 77 

  78 
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Materials and Methods 79 

Patients and implanted markers 80 

Fifteen patients who underwent SBRT for a solitary lung tumour were enrolled in this study. 81 

With the approval of the Institutional Review Board, written informed consent was obtained 82 

from all patients. One to two weeks prior to the date of the computed tomography (CT) 83 

simulation, four or five disposable gold markers (Olympus Corporation, Tokyo, Japan), 84 

spherical markers with a diameter of 1.5 mm, were implanted transbronchially. The insertion 85 

technique was similar to the one reported by Harada et al [4]. Prior to the implantation, the 86 

relative position between tumour and bronchi was evaluated on the multiplanar reformatted 87 

CT images. The markers were implanted into the peripheral surrounding bronchi near tumour 88 

under fluoroscopy guidance. A total of 66 markers were placed. The median interval between 89 

marker placement and the CT simulation was 8 (range, 2 to 16) days. Twelve markers were 90 

coughed up before CT simulation. After CT simulation, 2 markers were coughed up on the 91 

seventh and thirteenth day, and 1 marker migrated on the sixth day after insertion. The 92 

markers that coughed up or migrated after CT simulation during the treatment period were 93 

excluded from this analysis. No adverse effect associated with the implantation was observed. 94 

The characteristics of patients and tumours are shown in Table 1. 95 

 96 

Patient set-up and four-dimensional CT data acquisition 97 

The patients were immobilised using vacuum immobilisation devices: BodyFix system 98 

(Elekta AB, Stockholm, Sweden) or Esform (Engineering System, Nagano, Japan). After 99 

set-up with skin marks, four-dimensional CT (4DCT) data were acquired using a 100 

16-multidetector row CT: LightSpeed RT or BrightSpeed (General Electric Healthcare, 101 

Waukesha, WI, USA) with an axial slice thickness of 2.5 mm. The cine duration time of the 102 

scan at each couch position was set to 6.0 or 7.0 s, which was more than the maximum 103 
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observed respiratory period. Simultaneously, the respiratory phase was monitored using the 104 

Varian Real-time Position Management system (Varian Medical Systems, Palo Alto, CA, 105 

USA) under free breathing without coaching. CT slices and respiratory phase data were 106 

transferred to the Advantage SIM workstation (General Electric Healthcare, Waukesha, WI, 107 

USA) and sorted into 10 respiratory phase bins. Motion phases were assigned for each 108 

respiratory phase as percentages; end-inhalation corresponded to 0% and end-exhalation to 109 

50%. 4DCT scans were performed during the CT simulation (CT-1) and repeated once during 110 

the course of treatment (CT-2). Fifteen pairs, corresponding to a total of thirty 4DCT scans, 111 

were obtained. The median period from the day of CT-1 until the day of CT-2 was 8 days 112 

(range, 4 to 12). All 4DCT datasets were imported into a commercial radiotherapy planning 113 

system, iPlan 4.5.1 (BrainLAB AG, Fieldkirchen, Germany).  114 

 115 

Analysis 116 

The intrafractional variations assessed in this study were defined as the residual tumour 117 

motions relative to the markers due to respiration. In all 10 phases of the CT-1 scans, gross 118 

tumours and implanted markers were contoured manually with a pulmonary window setting 119 

(window level, -700 Hounsfield units; window width, 2000 Hounsfield units) by a single 120 

radiation oncologist. The centroid of the tumour Gt,n = (xt,n, yt,n, zt,n) and the centroids of all 3 121 

to 5 markers Gm,n = (xm,n, ym,n, zm,n) were recorded at n% respiratory phase (0≤n≤90). The 122 

coordinates (x, y, z) correspond to the right-left (RL), anterior-posterior (AP), and 123 

superior-inferior (SI) directions, respectively. Along each axis, a positive value corresponds to 124 

the right, anterior, and superior directions. The relative position of the tumour and centroid of 125 

markers for each phase was represented by the vector Vn = Gt,n − Gm,n. Using the relative 126 

positions on 50% phase images (V50) as a reference, the error En = Vn − V50 was calculated. 127 

The mean (Mn) and standard deviation (SDn) of En in fifteen 4DCT CT-1 datasets were also 128 
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calculated. The mean and SD of Mn (0≤n≤90) were calculated to evaluate systematic 129 

displacement between respiratory phases. The root mean square (RMS) of SDn (0≤n≤90) was 130 

calculated to evaluate interpatient variations. The range of intrafractional variations is defined 131 

as the maximum difference in En among 10 phases for each direction. To evaluate the 132 

influence of the tumour motion amplitude and the tumour-marker distance on the ranges of 133 

intrafractional variations, a multiple linear regression analysis was performed. The tumour 134 

motion amplitude was defined as the maximal difference in the tumour centroid position 135 

among the 10 respiratory phases in each direction. The tumour-marker distance in each 136 

direction was defined as the distance between the tumour centroid and the centroid of all 3 to 137 

5 markers in the 50% phase images. 138 

 The interfractional variations in this study represent the residual setup errors after 139 

correction based on the implanted markers. Firstly, to correct the rotational set up errors, the 140 

50% phase images for CT-2 were rigidly registered to the 50% phase images of CT-1 based on 141 

bony structure. Then the translational errors were modified by registering those images based 142 

on the marker centroids. The interfractional variations were evaluated as the residual 143 

difference in the tumour centroids for each direction between CT-1 and CT-2 for each patient. 144 

  145 

Results 146 

Tumour motion amplitude and tumour-marker distance 147 

The median (range) tumour motion amplitudes in CT-1 were 1.8 mm (0.4 to 5.6), 3.1 mm (0.6 148 

to 7.8), and 8.2 mm (0.9 to 28.9) in the RL, AP, and SI directions, respectively. The median 149 

values (range) of the distance between the tumour centroid and the centroid of all markers in 150 

the 50% phase images for CT-1 were 11.9 mm (1.9 to 30.5), 8.1 mm (0.7 to 35.3), and 10.3 151 

mm (0.3 to 30.1) in the RL, AP, and SI directions, respectively. 152 

 153 
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Intrafractional variations 154 

The divergence in the range of intrafractional variations between patients is shown in Fig. 1, 155 

and the values of En in the respiratory phases (0≤n≤90) are shown in Fig. 2. The means ± SD 156 

of Mn (0≤n≤90) were 0.1±0.1 mm, 0.3±0.2 mm, and 0.0±0.2 mm, and the RMS of SDn were 157 

0.6 mm, 0.9 mm, and 1.5 mm in the RL, AP, and SI directions, respectively. These results 158 

indicate that the systematic difference between respiratory phases is negligible. In addition, as 159 

shown in Fig. 2, the further towards inhale then the greater the intrafractional variations. 160 

 The tumour motion amplitude was positively correlated with the range of 161 

intrafractional variations in all directions, and the tumour-marker distances were also 162 

positively correlated in the AP and SI directions (Table 2).  163 

  164 

Interfractional variations 165 

The median (range) interfractional variations were -0.1 mm (-2.4 to 0.7), 0.1 mm (-2.3 to 2.4), 166 

and -0.6 mm (-1.3 to 1.6) in the RL, AP, and SI directions, respectively. As shown in Fig. 3, 167 

all interfractional variations were within 2.5 mm; the greatest variations were in the AP 168 

direction. The 95
th

 percentiles of interfractional variations for one side of each direction were 169 

0.6 and 2.1 mm to the right and left, 1.9 and 2.1 mm in the anterior and posterior directions, 170 

and 1.6 and 1.3 mm in the superior and inferior directions.  171 

  172 

Discussion 173 

Implanted markers are often used as a surrogate for the tumour position in radiation therapy 174 

for lung tumours. The transcutaneous and transbronchial approaches are the two major 175 

methods for implantation of markers in the vicinity of lung tumours [8-13]. These procedures 176 

may cause pneumothorax as a complication, which can delay radiation delivery and could be 177 

life-threatening for those with comorbidities. The incidences of all pneumothorax and of those 178 
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requiring chest tube placement after transcutaneous implantation have been reported to be 30 179 

to 67% and 16 to 40%, respectively [8-10]. By contrast, the reported incidence of 180 

pneumothorax with the transbronchial approach is low [10-13] and in our series no 181 

complication was observed. Therefore, the transbronchial approach is preferable due to its 182 

less invasive nature. However, the placement of markers near or inside the tumour is more 183 

difficult with the transbronchial approach than with the transcutaneous approach, because in 184 

the former the markers are placed along the small bronchi near a tumour. The greater distance 185 

between the tumour and markers leads to a larger positional error [14]. This error must be 186 

considered when performing radiotherapy using markers placed outside the tumour. In the 187 

current study, we quantified the intra- and interfractional positional variations between the 188 

lung tumour and implanted markers using 4DCT scans to determine the necessary margin for 189 

respiratory-synchronised irradiation using implanted markers. Another issue about the 190 

markers implanted transbronchially is the low fixation rate. In our series, the fixation rate of 191 

implanted markers was 77.3%: 51 of 66 markers implanted markers were fixed throughout 192 

treatment. This is comparable to the reported fixation rate using the same insertion technique 193 

[11]. Due to the low fixation rate, we inserted 4 or 5 markers to avoid an additional insertion 194 

procedure and used multiple markers as a surrogate for the tumour position to address the 195 

change in geometric arrangement of markers by dislocation.  196 

 Although several authors reported the intrafractional verification of the tumour position 197 

by the kilo-voltage (kV) X-ray images during gating irradiation, they calculated the tumour 198 

positions from the detected positions of the implanted markers assuming the relative position 199 

between the tumour and markers were constant [7,15]. The planar kV X-ray imaging is 200 

superior to CT in terms of the temporal resolution but it is difficult to quantify the motion of 201 

tumor itself accurately on the projected images. To quantify the variations between the tumour 202 

and implanted markers, we used 4DCT. Two studies are available which evaluated the 203 
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geometrical difference between tumour and markers due to respiration using 4DCT. Smith et 204 

al. analysed the motion of lung tissue in 10 patients with deformable registration between 205 

exhalation and inhalation of 4DCT scans and reported stronger correlations between tumour 206 

and surrounding lung tissues in the upper lobes than in the lower lobes [16]. Finally, they 207 

concluded that the correlation between the tumour and the surrounding tissue was highly 208 

specific to the patient and lobe [16]. Since the amplitude of the tumour motion is typically 209 

smaller in the upper lobe than that in the lower lobe, then it is likely the bigger variations 210 

observed in lower lobe tumours by Smith et al. may be related to the amplitude of motion. 211 

Yamazaki et al. evaluated the distances between tumours and the distal bronchi during 212 

respiration cycle with 4DCT for 8 patients. They showed that the distances in the mid-inhale 213 

to end-inhale phase images were significantly larger than the distances in the end-exhale 214 

phase images [17]. Smith et al. and Yamazaki et al. suggested that markers that are closer to 215 

the tumour give a more accurate representation of tumour motion [16,17]. These results are 216 

consistent with our findings: the values needed to compensate for the intrafractional variations 217 

differed between patients, and depended on the amplitude of tumour motion and the 218 

tumour-marker distance.  219 

 Moreover, our results indicated that the intrafractional errors were different for each 220 

patient both in direction and in amplitude, as shown in Fig 1. A uniform isotropic margin was 221 

not adequate to cover the errors observed. Consequently, the variations must be evaluated on a 222 

per-patient basis and compensated for by addition of a patient-specific margin in DTT or 223 

gating irradiation treatment with a wider gating window. In our treatment planning process of 224 

DTT, we create an enlarged target volume which cover the intrafractional variations in the 225 

following steps. Firstly, 4DCT images from each phase are translated based on the centroid of 226 

the markers. Then, the phase images are superimposed onto the 50% phase image that is used 227 

as a reference image set. Finally, the enlarged target volume is delineated encompassing gross 228 
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tumour volumes on all fused phase image. This enlarged volume can compensate for the 229 

patient-specific intrafractional variations. 230 

 All interfractional variations in the present study were within 2.5 mm. Previous reports 231 

on interfractional variations between lung tumours and implanted markers are summarised in 232 

Supplementary Table 1 (Electronic Appendix). The reported values are larger than those in 233 

this study. This discrepancy may be attributed to two causes. One is a change in 234 

tumour-marker distance during the course of treatment. Several investigators reported tumour 235 

shrinkage and deformation after radiotherapy with conventional fractionation [5,10,14], which 236 

altered the distance. Meanwhile, Imura et al. [11] evaluated the interfractional variations in 237 

the distances between markers using orthogonal X-ray images with a median treatment time 238 

of 6 days, and showed that the variations during treatment were within 2 mm in 95% of cases. 239 

Their results support our finding that the interfractional variation between the tumour and 240 

markers was smaller in those undergoing hypofractionated treatment than in those undergoing 241 

conventional fractionation. A second interesting finding was the respiratory phase 242 

reproducibility. Van der Voort van Zyp et al. assessed marker displacement compared to the 243 

centroid of the tumour in patients that underwent SBRT; however, their results were 244 

influenced by the nonsynchronous tumour-marker motion due to divergence in the timing of 245 

breath holding [6]. Persson et al. also used the breath-hold CT with voluntary deep inspiration 246 

[18]. The interfractional variations in the current study were evaluated using end-exhale phase 247 

images under free breathing, which has high reproducibility compared with breath-holding. 248 

 Several limitations of our study should be mentioned. Firstly, the intrafractional 249 

variations evaluated with 4DCT during a few respiration cycles may not be representative of 250 

those during treatment in some patients although a single 4DCT is thought to be reliable for 251 

the tumour motion in the majority of patients [19]. Therefore, in our institution, we validate 252 

margins to compensate for the intrafractional variations, by visual verification with kV x-ray 253 
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fluoroscopy after the margins are determined based on the simulation 4DCT. Secondly, 254 

motion artefacts affected the contouring of tumours and implanted markers evaluated in 255 

binned 4DCT images. Because of this uncertainty in contouring, the intrafractional variations 256 

for tumours with larger motion may be over- or underestimated [20]. Furthermore, we 257 

evaluated the position of markers of 1.5-mm diameter using 4DCT with a 2.5-mm axial slice 258 

thickness. The use of 2.5-mm CT slice thickness would affect the accuracy of contouring the 259 

markers, with a maximum uncertainty of localising tumours and markers of 1.25 mm in the SI 260 

direction [6]. Those errors could be reduced by acquiring CT images with a thinner axial slice 261 

thickness or by the volumetric acquisition [21,22].  262 

 263 

 264 

Conclusions 265 

Intrafractional variations of the difference between tumour centroid and marker centroid 266 

position increased with both tumour motion amplitude and tumour-marker distance. 267 

Additionally interfractional variations of the distance between between tumour centroid and 268 

marker centroid position were observed up to 2.5mm. Thus, an appropriate margin to account 269 

for these variations should be considered when planning implanted-marker-based beam 270 

delivery. 271 
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Figure legends 

Fig. 1. The range of intrafractional variations in the RL (a), AP (b), and SI (c) directions for 

each patient rearranged according to the three-dimensional tumour motion amplitude in 

descending order. Abbreviations: RL, right-left; AP, anterior-posterior; SI, superior-inferior  

 

Fig. 2. En values in the RL (a), AP (b), and SI (c) directions for each respiratory phase. En is 

the error in the relative position of the tumour to the centroid of the markers on n% phase 

images (0≤n≤90), using the relative position on the 50% phase images as a reference. Other 

abbreviations are as in Fig. 1. 

 

Fig. 3. Interfractional variation in the RL, AP, and SI directions. Abbreviations are as in Fig. 

1. 

Table 1. Characteristics of patients and tumours (n=15). 

Characteristics n = 15 

Age (y)  

Median 82 

[range] [54–87] 

Gender  

Male 12 

Female 3 

Tumour size  

≤20 mm 4 

>20 to ≤30 mm 6 

>30 to ≤50mm 5 

Tumour location  

Right middle lobe 2 

Right lower lobe 7 

Left upper lobe 2 

Left lower lobe 4 

No. of implanted markers  

4 9 
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5 6 

No. of markers evaluated  

3 10 

4 4 

5 1 
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Table 2. Predictive factors for the range of intrafractional variation as determined by 

multiple linear regression analysis. 

Predictive factor 

Range of intrafractional variation 

RL AP SI 

β p β p β p 

Tumour motion 

amplitude  
0.539 0.048 0.428 0.076 0.591 0.011 

Tumour–marker distance  -0.051 0.84 0.449 0.064 0.327 0.012 

R 0.549 0.649 0.780 

Abbreviations: R, correlation coefficient; other abbreviations are as in Fig. 1. 



 20 / 23 

 

 

Supplementary Table 1. Summary of reports of interfractional variation between 

tumours and markers. 

Author  n Modality 
Implanted Markers 

Result 
n Shape Insertion 

Nelson et al. 

[5] 
5 4DCT 1 to 4 Cylinder Transbronchial 6 ± 3 mm* 

Roman et al. 

[14] 
7 4D CBCT 2 to 4 

Long 

coil 
Transbronchial 

4 ± 2 mm ( lateral),  

3 ± 2 mm (AP), and 4 

± 3 mm (SI) * 

Kupelian et 

al. [10] 
23 

Breath-hold 

CT (exhale) 
NA 

Long 

coil 

Transcutaneous 

/ Transbronchial 

2.6 ± 1.3 mm* 

(range, 0.2 to 5.4) 

Van der 

Voort van 

Zyp et al. [6]  

42 
Breath-hold 

CT (exhale) 
3 Cylinder Transcutaneous 

Median 1.3 mm 

(range, 0.1 to 53.6) 

Persson et al. 

[18]  
14 

Breath-hold 

CT (inhale) 
1 

Long 

coil 
Transcutaneous 

Range: -2.9 to 2.6 

mm (LR), -1.8 to 1.5 

mm (AP), and -2.6 to 

2.8 mm (SI)  

This study 15 4DCT (50%) 3 to 5 Sphere Transbronchial 

All values in each 

direction were within 

2.5 mm 

* mean ± standard deviation.  

Abbreviations: 4D, four-dimensional; CT, computed tomography; CBCT, cone-beam CT; RL, 

right-left; AP, anterior-posterior; SI, superior-inferior 
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