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HighlightsHighlightsHighlightsHighlights    

1. A computer-assisted system for automatic, systematic and comprehensive  

interpretation of the adult waking EEG was developed for the first time.  

2.  This new system can provide a written report of the adult waking EEG 

which is in good conformity with the results of visual inspection of the  

same record by qualified electroencephalographers (EEGers). 

3.3.3.3. This system can be applied to the clinical diagnosis of EEG as a  

supplementary tool to the EEGer’s visual inspection and to the education  

of EEG trainees and EEG technicians.    
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AbstractAbstractAbstractAbstract    

 

Automatic interpretation of EEG has so far been faced with significant  

difficulties because of a large amount of spatial as well as temporal  

information contained in the EEG, continuous fluctuation of the background  

activity depending on changes in the subject’s vigilance and attention level,  

the occurrence of paroxysmal activities such as spikes and 

spike-and-slow-waves, contamination of the EEG with a variety of artifacts,  

and the use of different recording electrodes and montages.    Therefore,  

previous attempts of automatic EEG interpretation have been focused only  

on a specific EEG feature such as paroxysmal abnormalities, delta waves,  

sleep stages and artifact detection.    As a result of a long-standing  

cooperation between clinical neurophysiologists and system engineers, we  

report for the first time on a comprehensive, computer-assisted, automatic  

interpretation of the adult waking EEG.    This system analyzes the  

background activity, intermittent abnormalities, artifacts and the level of  

vigilance and attention of the subject, and automatically presents its report  

in written form.    Besides, it also detects paroxysmal abnormalities, and  

evaluates the effects of intermittent photic stimulation and hyperventilation 

on the EEG.    This system of automatic EEG interpretation was formed by  

adopting the strategy that the qualified EEGers employ for the systematic  

visual inspection.    This system can be used as a supplementary tool for the  

EEGer’s visual inspection, and for educating EEG trainees and EEG  

technicians. 

 



, Keywords: Automatic interpretation of EEG, quantitative EEG analysis, 

background activity of EEG, posterior dominant rhythm, spike detection, 

automatic writing-of EEG report. 

1 .. Introduction 

. Electroencephalogram (EEG) is conventionally interpreted by · 

4 

electroencephalographers (EEGers) through the visual inspection. If EEG 

can be automatically interpreted, it is expected to be more quantitative and 

more objective than, the visual inspection, and evidence-based as against 

experience-based. However, in strong contrast to electrocardiogram (EKG) 

which can be automatically interpreted and has been universally applied for 

practical use in the clinical setting, the quantitative analysis of EEG which 

is necessary for it~ automatic interpretation is faced with great difficulties 

due to multiple reasons. First, EEG contains an astronomical amount of 

spatial as well as temporal information. Secondly, the background activity 

of EEG tends to fluctuate moment to moment depending on the subject's 

condition such as the vigilance and attention level. . Thirdly, EEG often · 

contains various forms of paroxysmal abnormalities such as spikes and 

spike·and·slow·waves which have to be distinguished from the background 

activities as well as from various artifacts. Fourthly, EEG is often 

contaminated with artifacts of biological source such as electromyogram 

(EMG), EKG, pulsation (plethysmogram), blinks, eye movements and 

sweating, and artifacts of technical origin, in particular electrode artifacts. 
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Fifthly, both bipolar and referential montages are commonly used so that the  

two montages can complement each other for providing the correct spatial  

information.    These factors have made it difficult to practically apply the  

automatic interpretation system of EEG, if any, for clinical purposes 

(Anderson and Doolittle, 2010 for review).    As a result, the previous  

attempts of automatic EEG interpretation have been focused only on a  

specific EEG feature such as paroxysmal abnormalities, delta waves, sleep  

stages and artifact detection.     

Automatic spike detection on either the scalp-recorded or depth-recorded  

EEG in epilepsy patients has been explored by a number of investigators 

(Gotman and Gloor, 1976; Gotman, 1982, 1985 for review; Frost, 1985 for  

review; Wilson et al., 1999; Wilson and Emerson 2002 for review; van Putten,

  2003; von Ellenrieder et al., 2012; Ayoubian et al., 2013).    Automatic  

analyses of sleep stages by using EEG data have also been implemented by  

many investigators 

(Inoue et al., 1982; da Rosa and Paiva, 1993; Jobert et al.,  

1994; Strungaru and Popescu, 1998; Anderer et al., 2010; Jensen et al., 2010;  

Ronzhina et al., 2012; Brignol et al., 2013).    Quantitative analysis of a  

specific EEG feature was applied to the patients with ischemic stroke mainly  

for obtaining its prognostic information (Nuwer et al., 1987; Nagata, 1989;  

Claassen et al., 2004; Finnigan et al., 2004, van Putten et al., 2004a, 2004b;  

Finnigan et al., 2007; Sheorajpanday et al., 2009, 2011; Cloostermans et al.,  

2011; Finnigan and van Putten, 2013 for review).    Quantitative EEG  

analysis was also applied for the diagnostic aid of traumatic brain injury 

(Nuwer et al., 2005), psychiatric diseases (Leuchter et al., 2012), cognitive 
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disorders (Melissant et al., 2005; Buscema et al., 2007; Rossini et al., 2008; 

Caso et al., 2012; Kim et al., 2012), and behavioral disorders (Mathewson et 

al., 2012). 

When an experienced EEGer reads EEG, it appears as if he/she interprets  

each page of the record by just taking a quick look at it.    However, its  

process actually involves a series of systematic analysis of spatial and  

temporal information about all frequency components that constitute the  

EEG, although the actual method employed by each EEGer might differ  

among EEGers to a considerable extent.    Therefore, the present authors  

thought that it might be possible to establish a computer-assisted system for  

automatic interpretation of the whole EEG by adopting the strategy that the  

EEGers employ for the visual inspection.   

To the authors’ knowledge, a computer-assisted system for making  

automatic, systematic and comprehensive interpretation of the whole EEG  

and for writing the report has not been successfully achieved.    In a majority  

of the previously reported studies, the target of automatic analysis was  

restricted to a specific EEG feature such as the posterior dominant rhythm  

(Nakamura et al., 1985; Marcuse et al., 2008; Lodder and van Putten, 2011)  

and the scalp topography of slow waves (Matsuoka et al., 1978).    Recently  

Lodder and van Putten attempted a quantitative analysis of the background  

activities of the adult waking EEG, and achieved the results which were in  

relatively good agreement with the consensus results of EEGers’ visual  

inspection (Lodder and van Putten, 2013).     

Since early 1980’s, the present authors, through close collaboration of 
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clinical neurophysiologists with system engineers, have been engaged in the  

development of a computer-assisted system for automatic, systematic,  

comprehensive interpretation of the adult waking EEG and for writing its  

report (Nakamura et al., 1985, 1992, 1993; 1996; Bai et al., 2000a).    

The aim  

of the study was to automatically present a written report of EEG which was  

in good agreement with the report obtained by the EEGer’s visual inspection.  

This paper will review each process involved in the development of the  

present automatic EEG interpretation system in reference to literatures  

related to the respective process.  

2.2.2.2. Extraction of features of Extraction of features of Extraction of features of Extraction of features of EEGEEGEEGEEGerererer’’’’s visual inspection and quantitative s visual inspection and quantitative s visual inspection and quantitative s visual inspection and quantitative 

scoringscoringscoringscoring    

 

The information about each frequency component, which is analyzed by  

the systematic visual inspection of EEGers, is formed of (1) the posterior  

dominant rhythm: as to whether it exists or not, and its organization and  

symmetry if it exists, peak frequency and its symmetry, amplitude and its  

symmetry, and the antero-posterior distribution, (2) beta rhythm: amplitude  

and its symmetry, (3) theta waves: location and duration, (4) delta waves:  

location and duration, and (5) non-dominant alpha rhythm (alpha rhythm  

not attributed to the posterior dominant alpha rhythm): distribution and  

duration (Table 1).    Based on the method of visual inspection employed by  

qualified EEGers among the present authors (initially HS, and later HS and 

AI), each parameter of each frequency band was quantified and scored into  

four categories; namely normal and three different degrees of abnormality 
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(mild, moderate and marked) (Table 1).   

‘Posterior dominant rhythm’ was defined as a rhythmic activity usually in  

the alpha frequency band in healthy adults which is maximally located at  

the occipital or parietal region and is seen predominantly in time (Nakamura  

et al., 1985; Marcuse et al., 2008; Lodder and van Putten, 2011).    The  

posterior dominant rhythm is the most essential component of the waking  

background EEG, and thus this activity should be attended first whenever  

reading a waking EEG record.    Therefore, this activity was the first target  

of the authors’ series of investigation, and its automatic analysis was  

successfully achieved (Nakamura et al, 1985).    More recently, Lodder and  

van Putten also reported an automated analysis of the posterior dominant  

rhythm with a three-component curve-fitting technique (Lodder and van  

Putten, 2011).    In the present paper, the ‘background activity’ is defined as  

any EEG activity representing the setting in which a given normal or  

abnormal pattern appears and from which such pattern is distinguished 

(Noachtar et al., 1999 for terminology).   

In the present automatic analysis system, if the record was acquired in a  

completely resting condition with the subject’s eyes closed, complete absence  

of the posterior dominant rhythm in an adult EEG was judged markedly  

abnormal (‘lack of posterior dominant rhythm’) and was quantitatively  

scored 3 (Table 1).    Regarding the lack of the posterior dominant rhythm,  

however, a particular attention is required for interpreting the results of  

automatic interpretation, because it is well known that, even in healthy  

adults, alpha rhythm can be completely replaced by the low amplitude beta 
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rhythm in a highly attended condition, for example during the state of eyes  

open.    In the present system of automatic interpretation, the distinction of  

‘lack of posterior dominant rhythm’ from physiological blocking of the  

dominant rhythm due to an increased attention level was made possible by  

calculating the amount of slow waves during the corresponding segment of  

EEG.    In the pathological conditions associated with ‘lack of posterior  

dominant rhythm’, a various amount of slow waves is present in the  

background activity, with an exception of the electrocerebral silence which is  

encountered in the condition of brain death.    If there were eye blinks just  

before the segment, the eye blink artifacts were also taken into account for  

making the judgment of physiological blocking of the alpha rhythm (see  

Section 5 for automatic detection of the eye blink artifacts).    It is important  

to note that, if the results of automatic interpretation suggest ‘lack of  

posterior dominant rhythm’, the finding should be carefully confirmed by  

qualified EEGers before making the final judgment. 

According to a glossary of terms proposed by the International Federation 

of Clinical Neurophysiology (IFCN) (Noachtar et al, 1999), ‘organization’ of 

the posterior dominant rhythm was defined as ‘the degree to which 

physiologic EEG rhythms conform to certain ideal characteristics displayed 

by a majority of subjects in the same age group, without personal or family 

history of neurologic and psychiatric diseases, or other illnesses that might 

be associated with dysfunction of the brain’.  In the present system, 

abnormality of organization was scored into three categories; poorly 

organized (score 1), disorganized (score 2) and markedly disorganized (score 
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3) (Table 1).     

It should be noted that, even in the adult waking EEG, the posterior 

dominant rhythm can be slower than the alpha frequency band in  

pathological conditions.    Thus the fact that the posterior dominant rhythm  

is not necessarily in the alpha frequency band has to be taken into account  

for the automatic EEG interpretation system.    In the present system, the  

peak frequency of the posterior dominant rhythm in healthy adults was  

judged normal when it was 9 Hz or above, mildly abnormal (score 1) when it  

was between 8 and 9 Hz (‘slow alpha rhythm’), and moderately abnormal 

(score 2) when it was 8 Hz or less but more than 6 Hz (Table 1).    As for the  

asymmetry of the peak frequency of the posterior dominant rhythm between  

two sides, it was judged asymmetric when there was a left-to-right difference  

by 0.5 Hz or more.    It was judged mildly asymmetric (score 1) when the  

left-right difference was 0.5 Hz or more but less than 1.0 Hz, moderately  

asymmetric (score 2) when the difference was 1.0 Hz or more but less than  

2.0 Hz, and markedly asymmetric (score 3) when it was 2.0 Hz or more 

(Table 1).     

Amplitude of the posterior dominant rhythm was judged abnormal when it 

exceeded 100 μV in the referential derivation against the ipsilateral ear 

lobe reference.  It was judged mildly abnormal (score 1) when it was 100  

μV or larger but smaller than 130 μV, and moderately abnormal (score 2) 

when it was 130 μV or larger (Table 1).  The amplitude was judged to be 

significantly asymmetric when its left-right difference was 50% or more.  It 

was judged mildly abnormal (score 1) when it was asymmetric by 50% or 
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more but less than 60%, moderately abnormal (score 2) when it was so by  

60% or more but less than 80%, and markedly abnormal (score 3) when it  

was 80% or more (Table 1).    As for the anterior extension of the posterior 

  

dominant rhythm, the amplitude was calculated after automatically  

excluding the effect of activation of the ear lobe reference electrode by the  

posterior dominant rhythm and by taking into account the bipolar derivation.  

And it was judged mildly abnormal (score 1) when the posterior dominant  

rhythm extended to the frontal (F3, Fz, F4) or anterior temporal electrodes  

(F7, F8), and moderately abnormal (score 2) when it reached the fronto-polar  

electrodes (Fp1, Fp2) with low amplitude, and markedly abnormal (score 3)  

when it did so with high amplitude (Table 1). 

Rhythmic activity of the beta frequency was judged abnormal when its  

amplitude as measured in the referential derivation against the ipsilateral  

ear lobe reference exceeded 50  μV at any electrode (Table 1).    The  

amplitude of beta rhythm was judged asymmetric when its left-right  

difference exceeded 50% between any pair of the homologous electrodes.    It  

was judged mildly asymmetric (score 1) when the left-right difference was  

50% or more but less than 60%, moderately asymmetric (score 2) when it was  

60% or more but less than 80%, and markedly asymmetric (score 3) when it  

was 80% or more (Table 1).     

 

As for the slow waves, the presence of activities of the theta frequency  

band was grouped into three degrees of abnormality depending on its  

proportional duration in time; mildly abnormal (score 1) when it was seen 

less than 5% of the total time, moderately abnormal (score 2) when it was 
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seen 5% or more but less than 50% of the total time, and markedly abnormal  

(score 3) when it was seen 50% or more of the total time (Table 1).    In the  

subjects of age over 65, however, a short run of theta waves at the temporal  

electrodes was accepted physiological as far as its amount did not exceed  

10% of the total time.    Presence of activities of the delta frequency band at  

any electrode was always judged abnormal at least to a moderate degree.    It  

was judged moderately abnormal (score 2) when it was seen less than 50% of  

the total time and markedly abnormal (score 3) when it was seen 50% or  

more of the time (Table 1).    In the present automatic interpretation system,  

distribution of the theta and delta waves over the head was automatically  

illustrated on an electrode map (Example data will be presented in Sections  

7 and 9).     

 

3.3.3.3. Preparation of EEG dataPreparation of EEG dataPreparation of EEG dataPreparation of EEG data    for quantitative analysisfor quantitative analysisfor quantitative analysisfor quantitative analysis        

In contrast to the visual inspection of EEG which mainly adopts analysis  

of the time series, analysis of the frequency domain has been applied and  

proved more useful for the quantitative analysis (Nakamura et al., 1985;  

Nishida et al., 1986; Nuwer et al., 1987; Nakamura et al., 1992; Aurlien et al.,

  2004; Anderson and Doolittle, 2010 for review).    The rationale for  

developing the present automatic interpretation system was based on an  

EEG model proposed by the authors’ group (Nishida et al., 1986; Bai et al.,  

2000a).    In this model, the amplitude information of EEG represented in the  

time domain was shown to be reliably obtained from the power spectrum in  

the frequency domain by the use of a Markov process amplitude model.     
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At the initial stage of the present project when an 16-channel analog  

electroencephalograph was used for recording EEG, the data were acquired  

with a referential montage with respect to the ipsilateral ear lobe electrode  

as well as with the standard bipolar montage according to the International  

10-20 Electrode System, with the time constant of 0.1 ~ 0.3 s and the 

low-pass filter of 60 ~ 120 Hz.  The conversion from the analog to digital  

data was done either from the data stored in a magnetic tape or from the  

pen-written data.    In the early phase of the present system development, 10 

artifact-free segments of 5 s long each were selected from the whole EEG,  

and the 10 segments data were digitized at a sampling rate of 50 Hz 

(Nakamura et al., 1985).    This low sampling rate was utilized because the  

analysis at that time was made only for the activities of frequency below 25  

Hz.    Later the whole EEG was sectioned into consecutive segments of 5 s  

long each and processed for further analysis (Fig. 1) (see Section 9 for the  

updated procedure of analysis).     

After the digital electroencephalograph became available for the clinical  

use, recording of EEG was made with a wide frequency response at a high  

sampling rate.    And later the high frequency cut-off at 60 Hz was applied,  

and all the EEG data were analyzed with the sampling rate of 200 Hz.    

Sixteen channels EEG against the ipsilateral ear lobe reference were  

subjected for the analysis, and the standard bipolar montage was referred to  

when necessary.    The power spectrum of each EEG segment was calculated  

by the Fast Fourier Transform (FFT) (Cooly and Tukey, 1965) (Fig. 1, Fig. 2),  

and was subjected to the following quantitative analysis. 



4. Construction: of algorithm for calculating parameters of each :frequency 

band 

14 

In accordance with the quantitative data of visual inspection by the 

qualified EEGers (Table 1), algorithms for calculating parameters of each 

frequency band were constructed as presented in Table 2 (Nakamura et aL, 

1992). These algorithms were prepared so that the results could match 

those of the visual inspection by the qualified EEGers as closely as possible 

by using a least square method (Bjorck, 1996). As for the posterior 

dominant rhythm, first the peak frequency in the interval of 7.2· 13.0 Hz was 

searched at the left and right occipital electrodes (01 and 02, respectively). 

Then the power of the rhythmic activity within± 1 Hz across the detected 

peak frequency, which is called 'dominant frequency band' in this paper, was 

measured at the occipital (0) and parietal (P) electrodes on each hemisphere. 

The power of the dominant frequency band at either the electrode 0 or P, 

depending on whichever was larger, for each hemisphere was designated sd 

for that hemisphere, and the rhythm in question was judged to be dominant 

in time when Sd was 10% Or more of the total power (ST) at that electrode 

(Equation 1.1). Then the maximum power within the dominant frequency 

band at all electrodes other than 0 and P (namely Fp, F, C, T) was 

designated as sd. When sd was· equal to or larger than sd, the rhythm in 

question was judged to have spatial dominance over the posterior region of 

the head (Equation 1.2). The threshold.aniplitU:de for the existence of the 

dominant rhythm was set to 10 µ V (Equation 1.3). Regarding the 
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Equation 1.1 and 1.3, as explained above (Section 3), the amplitude  

information was estimated from the power spectrum based on the authors’  

EEG model which is expressed by the sinusoidal waves with the Markov  

process amplitude (Nishida et al., 1986; Bai et al., 2000a).    If all of these  

three criteria were fulfilled, the posterior dominant rhythm was judged to  

exist in the analyzed segments (Table 2).   

        

��̅/��̅ 	� 0.1      (1.1) 

 ��̅/��� � 1.0      (1.2)  

10���̅ 	� 10	μV     (1.3) 

        

Then other features of the posterior dominant rhythm were evaluated as 

follows.  For scoring ‘organization’ of the posterior dominant rhythm, five 

parameters measured at either electrode O or P, depending on which 

electrode ��̅ belongs to, were taken into account (Equation 2, Table 2).   

 

�� � 0.49 � 0.58�� � 0.13�� � 4.82 � 10������� � 0.41��/�� � 3.12� /�� 

 

                (2) 

This equation was formed by the linear combination of  ��  (standard  

deviation of the alpha rhythm),  ��  (integrated power of the alpha rhythm), 

��/��  (ratio of the integrated power of the alpha rhythm to that of all  

rhythms), and  � /��  (ratio of the integrated power of the delta rhythm to  

that of all rhythms).    The regression coefficients in this equation were  

determined by the use of a least square method (Bjorck, 1996) based on the 
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data of visual inspection of the standard EEG records by four EEGers 

(Nakamura et al., 1985; Nakamura et al., 1992). Based on the criteria of 

AIC <Akaike Information Criteria) for determining the number of coefficients 

in a regression model CAkaike, 1977), the combination of the parameters 

of CTa. Sa, Sa/Sr and S6/Sr was judged to be the best selection out of all 

possible combinations. 

As for the slow waves, the integrated power of delta rhythm, but not of 

theta rhythm, was incorporated in this linear regression, because inclusion 

of the integrated power of theta rhythm even deteriorated the agreement of 

the analysis results with the results of visual inspection_(Nakamura et al., 

1992). 

The quantity of 'asymmetry of the organization' was defined as an absolute 

value of dlfference of the organization score between the two sides (Table 2). 

The quantity of 'frequency' was expressed by the peak frequency (f d) of the · 

power spectrum parameter. 'Asymmetry' of the frequency was defined as 

an absolute value of the difference of peak frequency between the two sides 

(Table 2). Since the _quantity of 'amplitude' was defined by the qualified 

EEGer's as the median voltage of the EEG waves measured peak-to·peak, it 

was-expressed as 10.JSa_. 'Asymmetry' ~fthe amplitude was defined as a 

relative ratio in percentage of the measurement on two sides (Table 2).· 

For evaluating 'extension' of the posterior dominant rhythm to the anterior 

region of the head, in order to elimina,te the effect of activation of the ear lobe 

reference electrode by the posterior dominant rhythm, a bipolar derivation 

was computed from the original referential derivation and subjected to the. 
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analysis. The 'extension of the posterior dominant rhythm' was represented 

by the amount of the power within the same dominant frequency band at the 

fronto·polar to frontal bipolar lead (Fp-F) (10.,[S;;;) on each hemisphere 

(Table 2). 

Regarding the beta rhythm, by taking into account the possible presence of 

the second harmonic of the posterior dominant rhythm, the power in the beta 

band (Sp) was obtained by summing up the power within that band while 

excluding the amount of± 1 Hz around twice the peak frequency of the 

dominant rhythm. The threshold value for the existence of beta rhythm 

and its asymmetry were given as Equation 3.1and3.2, respectively (Table 2). 

Equation 3.1 was, like Equationl.3, derived from the Markov process 

amplitude EEG model (Nishida et al., 1986; Bai et al., 20QOa). 

6/"Sa ::: 10 µ V 

{Se <x2 )·Sa <x1)}/max{Se (X1 ), Sa (X2)}x100 

(3.1) 

(3.2) 

The threshold values for the existence of theta rhythm, delta rhythm and 

the non-dominant alpha rhythm were set as Equation 4.1, 4.2 and 4.3, 

respectively (Table 2). 

(Sa/ST)x 100 if 6/"Sa ;:::15 µ V 

(S8'ST)xlOO if 6/"SB ;:::25 µ V 

(Sa/ST)xlOO if 6/"Sa;:::15 µ V 

(4.1) 

(4.2) 

(4.3) 
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All these regression coefficients were determined so that the results of  

automatic analysis could match those of visual inspection by the qualified  

EEGers as closely as possible by a least square method (Bjorck, 1996).     

 

In the present study, each frequency band was defined as the rhythmic  

activity of 8 Hz or more but 13 Hz or less for the alpha, more than 13 Hz but 

less than 25 Hz for the beta, 4 Hz or more but less than 8 Hz for the theta,  

and less than 4 Hz for the delta band (Nakamura et al., 1985). 

 

5.5.5.5. Detection of artifactsDetection of artifactsDetection of artifactsDetection of artifacts    

Automatic detection of artifacts has so far been applied mainly for the  

polysomnographic recording (Anderer et al., 1999 for review; Klekowicz et al.,  

2009).    Methods for automatically removing artifacts from the EEG record  

have also been developed (Gao et al., 2010).    The present authors developed  

a system for automatically eliminating the EKG artifacts from EEG which  

was monopolarly recorded against a non-cephalic reference electrode 

(Nakamura et al., 1987; 1990).    Among different kinds of methods developed  

for the automatic artifact detection, the methods based on independent  

component analysis (ICA) have been shown to be useful in various conditions  

(Anderer et al., 1999 for review; Gao et al., 2010; Grandchamp et al., 2012;  

Kong et al., 2013).     

In the present system of automatic EEG interpretation, artifacts due to  

blinks, lateral eye movements, EMG, and electrode troubles including that of  

the ear lobe reference were automatically detected by adopting the strategy  

which was employed by the qualified EEGers for visually detecting those 
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artifacts, and the EEG segments which were found to contain those artifacts  

were automatically rejected from the final analysis (Fig. 1).    Blink artifacts  

were defined as components within the frequency band of 0.5 – 4 Hz which  

were formed of symmetric positive peaks maximally at the fronto-polar  

region and which rapidly declined posteriorly (Sugi et al., 1995; Nakamura  

et al., 1996; Bai et al., 2000b).    Artifacts arising from the lateral eye  

movements were identified when activities of the delta frequency band were  

detected at bilateral anterior temporal electrodes (F7 and F8) with opposite  

polarity between the two sides and without any extension to the posterior  

electrodes (Sugi et al., 1995).    Electrode artifact was defined as an activity  

involving a single electrode without any extension to the adjacent electrodes.  

Electrode artifact arising from an ear lobe reference was considered when an  

activity of delta frequency band was present at all electrodes on one  

hemisphere with the similar waveform and similar amplitude and when  

there was no similar activity on the opposite hemisphere (Sugi et al., 1995).    

EMG artifacts were defined as the existence of high frequency activities (35 -  

50 Hz) of the amplitude above 10  μV but not higher than the amplitude of  

beta rhythm in that EEG record (Sugi et al., 1995).    All these criteria were  

established according to the criteria adopted by the qualified EEGers for  

visual inspection.    In the present system, therefore, the annotations made  

by an EEG technician such as ‘eye closure’ and ‘eye opening’, ‘artifacts’ and  

‘vigilance level of the subject’ were not taken into account. 

Other artifacts related to electrodes such as the electrode bridge (Alschuler  

et al., 2013) and the ground projection have not been taken into account in 
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the present study.    

It may be possible, however, to incorporate the detection  

of these artifacts into the system.       

6.6.6.6. Judgment ofJudgment ofJudgment ofJudgment of    subjectsubjectsubjectsubject’’’’s s s s vigilance vigilance vigilance vigilance and attention and attention and attention and attention level and selection of level and selection of level and selection of level and selection of 

appropriateappropriateappropriateappropriate    segmentssegmentssegmentssegments    

Vigilance level of the subjects was judged to be decreased when there was a

  decrease in the amplitude, quantity, frequency and/or organization of the  

posterior dominant rhythm and when there was an increase of slow waves  

(Nakamura et al., 1996).    In addition, a method for automatically detecting  

an EEG segment recorded during eyes open was developed by taking into  

account the above methods for detecting blink artifacts (see Section 5) (Bai et  

al., 2000b).    The EEG segments which were judged to contain the above  

features of decreased vigilance level or the state of eyes open were excluded  

from the final analysis (Fig. 1) (Nakamura et al., 1985; 1992; 1996).     

As described in Section 2, in some subjects who can maintain a highly  

attended condition for a short period of time, the posterior dominant rhythm  

may be completely replaced by the low amplitude beta rhythm during that  

period.    In the automatic interpretation system, therefore, a special caution  

should be given to avoid misinterpretation of this condition as ‘lack of  

posterior dominant rhythm’.    Actually this misinterpretation can be avoided  

by taking into account the amount of slow waves during that period, because  

slow waves are expected to increase during the decreased vigilance level or  

in pathological conditions.    In the highly attended condition, by contrast,  

slow waves are either absent or decreased as compared with the resting 



  21 
 

condition.  

In case the patient in question is suspected of being in the state of brain  

death, all EEG activities including slow waves are expected to be totally  

absent.    Therefore, whenever the results of automatic interpretation  

suggest ‘lack of posterior dominant rhythm’, the findings should be carefully  

confirmed by qualified EEGers on the time series of the EEG data before  

reaching the final conclusion.   

 

7.7.7.7. Detection of spikesDetection of spikesDetection of spikesDetection of spikes    

Along with the recent advance in various neuroimaging techniques which  

are often employed for clinical diagnosis of brain disorders (Shibasaki, 2008  

for review), one of the most important purposes for evaluating EEG is to  

detect the paroxysmal activities, above all the epileptic spikes and 

spike-and-slow-waves.    Therefore, it is of utmost importance to incorporate  

the spike detection in the automatic EEG interpretation system.    A number  

of methods have already been adopted for the automatic detection of spikes  

(Gotman and Gloor, 1976; Gotman, 1982, 1985 for review; Frost, 1985 for  

review; Wilson et al., 1999; Wilson and Emerson 2002 for review; van Putten,

  2003; Ji et al., 2011; Olejarczyk et al., 2012; von Ellenrieder et al., 2012;  

Ayoubian et al., 2013).    In this review article, details of the previously  

reported methods for the automatic spike detection are not introduced,  

because it is not the main purpose of this paper.     

The present authors initially adopted an automatic system for 

distinguishing a spike signal from the background EEG activities by using a 
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morphological filter (Nishida et al., 1999), and recently by determining the 

threshold values for detecting spikes based on the conditional probability 

(adaptive spike detection) (Sugi et al, 2002). The systeIQ. took into account . 
the duration and sharpness of spike, the amplitude of a slow wave 

immediately following the spike, and the prominence of the slow wave from 

the background activity (Fig. 3). 

Although the present automatic analysis system is still preliminary for 

accurately detecting all the paroxysmal abnormalities, it was shown that 

spike detection could be incorporated. in the present system as one of its 

important functions (Fig. 4). However, as an epileptiform discharge varies 

in morphology during the whole recording session even in the same patient, 

the sensitivity and specificity;for spike detection should be controlled 

depending on the patient's condition. In this regard, the method of spike 

detection adopted in the present system of automatic EEG interpretation 

remains to be further refined. Furthermore, differentiation between the 

inte:rictaland ictai patterns is· an important issue in the field of clinical 

epileptology, but this is ~eyond the scope of the present system of automatic 

EEG interpretation. 

(\ 

8. Evaluation of the effects of intermittent photic stimulation and 

hyperventilation 

The present system was also applied to the automatic detection of changes 

induced in the background activity as a result of intermittent photic 

stimulation and hyperventilation, and to the automatic detection of 
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paroxysmal activities induced by these activation procedures (Fig. 1). As 

for the intermittent photic stimulation, the present system analyzed any 

change in the posterior dominant rhythm, the presence or absence of photic 

evoked potentials to the low stimulus rate and photic driving to the high 

stimulus rate, asymmetry of those evoked responses, and any paroxysmal 

abnormalities induced by the stimulation. 

Regarding hyperventilation, change in the posterior dominant rhyphm, an 

increase in slow waves and its asymmetry, any paroxysmal abnormalities 

induced by the procedure, alid the duration of the induced slow waves after 

the end of hyperventilation were automatically analyzed. The results of 

evaluation of the hyperventilation effect were shown to be in good conformity 

with those of visual inspection by th~ qualified EEGers (Zhang et al., 2011). 

Thus, the automatic analysis of these activation procedures can also be 

implemented in the automatic interpretation system. 

9. Integrative interpretation of waking EEG and writing its report 

By exploring a computer-assisted system for each step of the 

above-described procedures and by integrating all of the steps into a 

consecutive series, the present authors have established an off· line 

automatic system for making a systematic, quantitative, comprehensive 

ana'lysis of the adult waking EEG (Nakamura et al., 1992). 

The overall flow of the steps taken for the present automatic 

interpretation system is illustrated in Fig. 1. . First, the whole series of 16 

channels digital EEG recorded in a referential montage with the ipsilateral 
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 ear lobe reference is sectioned into consecutive segments of 5 sec long each at 

all electrodes, and the power spectrum is obtained for all segments.    Then  

the parameters are calculated for all segments and are quantitatively  

expressed for each frequency component as described in Section 4, and all  

segments are arranged in the order of organization score of the posterior  

dominant rhythm.    Then, the segments judged to contain artifacts as  

explained in Section 5 are excluded from the final analysis.    Furthermore,  

the segments in which the subject was judged to be in the decreased  

vigilance level or in the highly attended condition are also excluded.    Of the  

remaining segments, 10 segments which were judged to be best in the  

organization of the posterior dominant rhythm were automatically selected  

and subjected to the final analysis of the background activity and focal or  

intermittent abnormalities (Fig. 1).    In this regard, an attempt to analyze a  

larger number of EEG segments is currently under way.     

 

In parallel with this main flow of steps, spikes and spike-and-slow-waves  

are automatically detected from the whole series of the EEG record by the  

method described in Section 7 (Fig. 3 and Fig. 4).    Furthermore, as was  

described in Section 8, the effects of intermittent photic stimulation and  

hyperventilation are evaluated in each corresponding part of the EEG.    And 

finally, all results are automatically presented in written form as described  

below.    This procedure is automatically applied from the beginning of the  

EEG record unless otherwise specified, but it can be started from any point  

of the EEG record if specified. 

For the automatic writing of EEG report, the terminology for describing 
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normal as well as abnormal findings for each parameter of each frequency  

component was newly established by the present authors, so that the results  

of automatic interpretation appeared in written form in both Japanese and  

English languages (Appendix A and B) (Nakamura et al., 1993; Nakamura et  

al., 1996).    Recently a group of European investigators proposed a glossary  

of terminology for the standardized computer-based writing of EEG report  

(Beniczky et al., 2013).    As the terminology proposed by those investigators  

focused on its application to the epilepsy patients, it was not adopted in the  

present system.     

A written report of EEG in the present system includes an overall  

judgment of the whole EEG as to whether it is normal or abnormal, and its  

degree of abnormality if it is abnormal, a systematic list of abnormal findings,

  the amount and distribution of slow waves if any, the distribution of spikes  

or spike-and-slow-waves if any, and the results of intermittent photic  

stimulation and hyperventilation.    In addition to the written report, the  

quantitative data of each parameter for each frequency band are available  

for each segment of EEG.    In view of the fact that an EEGer puts different  

degrees of weight on each parameter for making the overall judgment of  

EEG, each parameter was weighted differently as shown in Appendix A.    

Furthermore, the present EEG report provides comments on the detected  

artifacts and the information about activation of the ear lobe reference  

electrode by the posterior dominant rhythm, if any.    All these steps are  

carried out automatically as a single series of continuous procedures, and it  

takes a few seconds for completing the automatic analysis of an EEG of 



ordinary length. 

This automatic analysis system was successfully applied to the adult 

waking EEG of healthy subjects as well as to patients with various brain 

disorders (Fig. 5a and 5b, Fig. 6, Table 3 and Table 4) 

(Nakamura et al., 1985, 1992, 1993; 1996; Bai et al., 2000a). 

The results thus obtained were 

26 

generally in good agreement with those obtained through visual inspection of 

the same record by qualified EEGers both in .healthy subjects and in patients 

with brain disorders including epilepsy patients (Fig. 6) (Nakamura et al., 

1992; Nakamura et al., 1996). 

10.Real time evaluation of the tec.hnical quality' of EEG 

By using a modified version of the present analysis system, it is possible to 

identify various artifacts and changes in the vigilance level of the subject 

during the actual data acquisition. The information thus obtained can be 

provided as a caution for the EEG technicians on a computer display during 

the actual data acquisition, so that the artifacts and the subject's vigilance 

. level can be controlled during the recording (Fig. 7) (Nakamura et al., 2005). 

Thus,· application of this system will improve the technical quality of EEG 

records, wl~ich is essential for the clinical as well as research purposes. 

11. Discussion 

As a result of a long-standing, continuous, collaborative research by 

clinical EEGers and system engin~ers, the present authors liave for the first 

time established a computer-assisted system for automatically interpreting 
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the adult waking EEG by taking into account all parameters of all frequency  

components that constitute the EEG, and the results were successfully  

presented in written form.    This system was aimed at providing the results  

of automatic interpretation which were in good conformity with the results of  

visual inspection by qualified EEGers.    This system can be used as a  

supplementary tool for the visual inspection of EEG, and can be also used for  

educating the EEG trainees and EEG technicians.    Upon application of this  

automatic interpretation system, however, it is of utmost importance to keep  

in mind that the results of this automatic interpretation can serve only as a  

supplementary aid for the clinician’s diagnostic procedure, and that it never  

replaces the visual inspection of the qualified EEGers (Nuwer et al., 1999b).  

This is especially important from a legal/ethical viewpoint. 

So far the quantitative EEG analysis has been applied to increase the  

sensitivity and specificity in the diagnosis of specific disease conditions such  

as learning and attention disorders in children and adolescents (Chabot et  

al., 2001) and cognitive disorders in elderly (Prichep et al., 2006).    In  

contrast, the present system of quantitative EEG analysis was developed so  

that it could be applied to all kinds of brain disorders and not specific for any  

particular disease condition. 

At the initial stage of the present study, the EEG data acquired with an  

analog electroencephalograph was converted to the digital data before  

subjecting to a quantitative analysis.    After the digital  

electroencephalograph became available for practical use, the system of  

automatic interpretation has become more easily applicable because the step 
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of analog-digital conversion was spared (Nuwer et al., 1999a for review).    At 

the present time, however, this system of automatic EEG interpretation is 

not yet applicable to real-time data processing.    This is mainly due to the 

fact that the EEG segments containing various artifacts have to be removed 

and the appropriate segments have to be selected before making the final 

quantitative analysis, although all these steps can be automatically 

conducted within a few seconds as a series of continuous procedures (Fig. 1) 

(Nakamura et al., 1996).  

 

Two different kinds of data are applicable for testing the usefulness and 

validity  of  an  automatic  EEG  interpretation  system.    One  is,  like  the 

present  system,  to  establish  a  system  based  on  the  features  of  visual 

inspection  of  each  parameter  by  a  limited  number  of  qualified  EEGers.  

This  approach  is  based  on  the  fact  that  there  is  a  large  variability  of 

the  threshold  values  adopted  by  different  EEGers  for  visual  inspection. 

 This  system  can  be  compared  with  the  results  of  visual  inspection  by 

another  group  of  EEGers  and  can  be  modified  according  to  the 

features  of  visual  inspection by the second group if needed.   

 

Another way of testing the validity of an automatic EEG interpretation is  

to  subject  the  results  to  comparison  with  the  consensus  data  of  visual 

inspection such as a large computer database as obtained by Aurlien et al. 

(2004).    The  similar  method  was  applied  to  the  data  of  epilepsy  

patients (Halford et al., 2013) and to those of the background pattern of norm

al as  well as abnormal EEGs (Lodder and van Putten, 2013). 

Recently Lodder and van Putten made a quantitative analysis of the 
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background EEG activity and applied the obtained system to the diagnosis of  

a number of EEGs (Lodder and van Putten, 2013).    They proposed  

guidelines for describing the background properties of EEG in order to  

improve the consistency and to reduce the inter-rater variability, and they  

introduced quantitative algorithms to some key features of the background  

pattern.    In contrast, the present authors took into account all possible  

properties of the background EEG activities, focal or intermittent  

abnormalities and paroxysmal abnormalities for enabling an automatic,  

systematic, integrative, quantitative analysis of the whole series of EEG.    

These two studies commonly compared the results of the automatic  

quantitative analysis with the results of visual inspection by qualified  

EEGers, and both groups obtained relatively good conformity of results  

between the automatic interpretation and visual inspection.         

 

 

In view of multiple factors including the use of different EEG instruments  

and different recording techniques among laboratories, significant 

inter-rater variability due to different criteria adopted by EEGers and  

different population of subjects and patients, the concordance of the results  

between the present system and the EEGer’s visual inspection has not been  

statistically evaluated based on a large number of samples.   Instead, data of  

individual subjects and patients have been reported in a series of papers  

published by the present authors (Nakamura et al, 1992; 1993; 

1996).   Another reason for refraining from a large scale statistical study was 

that the present system was developed based on the threshold values  

adopted by a limited number of qualified EEGers.   In this regard, it is 



  30 
 

important to construct a validation system of the overall judgment of the  

whole EEG by taking into account the scores of all individual 

parameters.   Once this validation system is established, the inter-rater    

variability will be evaluated among the laboratories which use the same  

instrument, the same recording technique and the same diagnostic criteria. 

 

The present study is characterized by its flexibility so that the  

quantitative representation can be adjusted to the strategy adopted by any  

individual EEGer for visual inspection.    In other words, the threshold  

values for each parameter could be modified by each EEGer as necessary  

based on his/her own standard criteria employed for visual inspection.    In  

this regard, however, if a reasonable set of standard quantitative criteria for 

each EEG parameter becomes available in the future, it may be possible to  

implement those data into the present system. 

In relation to the individuality of the present system, the characteristic  

features of visual inspection by each individual EEGer can be extracted by  

the use of an artificial neural network, and those features can be further  

used to modify the automatic interpretation system if found necessary 

(Nakamura et al., 1998; 2002). 

In the waking EEG of healthy adults, there are some physiological  

activities which stand out from the time series of the background activity on  

visual inspection and thus may appear as a special peak in the power  

spectrum.    A typical example is ‘slow alpha variant rhythm’ which appears  

mostly at 4 - 5 Hz over the posterior region of the head intermixed with the  

alpha rhythm (Noachtar et al., 1999 for terminology).    This activity is 
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considered to result from fusion of two successive alpha waves thus 

obliterating the borderline between the two waves. As another example, 

'mu rhythm' appears as an arch-shaped rhythmic activity at 7 - 11 Hz over 

the central or centro-parietal region bilaterally, which remains during the 

eyes open and is blocked by intended movement of the contralateral hand 

such as the fist clenching (Noachtar et al., 1999 for terminology). Both 'slow 

alpha variant rhythm' and 'mu rhythm' are phy~iologically seen in healthy 

subjects,· and should be distinguished from 'slow posterior dominant rhythm' 

at the posterior head and rhythmic spikes at the central electrodes, 

respectively, both of which are clearly abnormal. Since the present system 

of automatic interpretation does not take into account these two special 

activities, the system remains to be improved by taking these physiological 

findings into account. In the present system, if these findings appear as 

abnormal in the automatic report, the findings should be carefully confirmed 

by qualified EEGers. 

Other physiological activities may appear in the special ag,e groups. A 

small amount of delta waves can be seen at the posterior region of the head . 

in young adults of age below 25, which are called 'posterior slow waves of 

youth' and physioiogical. In the· subjects over age 65, a short run of theta 

waves may be seen at the temporal electrodes. This is supposed to be also 

physiological as far as its amount does not exceed 10% of the total time. In 

the present system, special criteria were established for two groups of young 

subjects; one between 19 and 20 years and the other between 20 and 25 years. 

Furthermore, special criteria were also prepared ·for two groups of aged 
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subjects; one between 65 and 80 years and the other _over 80 years. For 

EEG of children below age 15, special criteria must be developed for each age 

group by taking into account the developmental change. 

The present system may misdiagnose some EEG abnormalities of atypical 

waveforms such as 'psychomotor variant' and 'phantom spike·and·wave'. 

Although these terms are discouraged in the IFCN Terminology (Noachtar et 

al., 1999), the present system may report the former as 'a short run of 

rhythmic theta waves in the temporal region' and the l~tter as '6 Hz 

spike·and~slow·wave'. 

In the future, it is hoped to increase the specificity in detecting epileptic 

spikes arid spike·and·slow·waves, and to add functions to analyze the sleep 

EEG records, not only to classify the sleep stages but also to detect abnormal 

activities during sleep. Furthermore; changes of the background activities 

caused by various.procedures during the data acquisition, such as calling 

attention, talking and opening eyes, might be also automatically analyzed. 

EEG is becoming increasingly important for the diagnostic aid of neonatal 

and developmental disorders and infants with brain diseases (Scher, 2004 for· 

reView; McCoy and Hahn, 2013). Furthermore, along with an increase in· 

the aged population and with the increasing prevalence of senile brain 

diseases (Melissant et al., 2005; Buscema et al., 2007; Rossini et al., 2008), 

further development of the standard criteria for different age groups aiming 

at the automatic interpretation is warranted. 
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Figure Legends 

Figure 1. A flow of steps taken for the present automatic EEG interpretation 

system. First the whole series of digital EEG is sectioned into the 

consecutive segments of 5 sec long each, and the power spectrum is 

obtained for each segment. Then the parameters are calculated and 

quantitatively expressed for each frequency component, and all segments 

are arranged in the order of organization score. After the segments found 

to contain artifacts and those found to be in the state of drowsiness or 

highly attended condition of the subject are removed, 10 most appropriate 

segments are selected and subjected to the final analysis of the . 

background activity and focal or intermittent abnormalities. In parallel 

with this main flow, spikes and spike-and-slow-waves are automatically 

detected from the whole series of an EEG record~ and the effects of 

intermittent photic stimulation and hyperventilation are evaluated in 

each corresponding part of the EEG. Quantitative data thus obtained are 

then translated into a language by using the terminology proposed by the 

authors (Appendix A and B), and the report is automatically presented in 

written fo:rm. 

Figure 2. The time series of a 5 s segment of 16-channel EEG recorded in a 

referential montage (left panel) and the power spectrum calculated from 

the time series (right panel). The data were obtained from a 29-year-old 

patient with left temporal lobe epilepsy who was taking a large dose of 



carbamazepine after the surgical treatment of the epileptogenic focus. 

This EEG segment shows 'slow alpha rhythm' which might be due to the 

medication. 

Figure 3. Criteria adopted for detecting spikes in the present system of 

automatic EEG interpretation, Amplitude of the peak of a 

44 

· surface-negative spike measured from the preceding positive peak and to 

the following positive peak is represented by Asi and As2, respectively. 

Duration of the negative spike measured from the preceding positive peak 

and to the following positive peak is represented by Ds1 and Ds2, 

respectively. Thus, the sharpness of spike is represented by Asi!Ds1 and 

As:/Ds2. Amplitude of a slow wave following the spike is represented by 

Aw. Prominence of the slow wave from the background activity is 

represented by AwlATwhereATis the mean amplitude of the whole 

background activities in all frequency bands computed for each EEG 

segment. (Modified from Sugi et al., 2002 with permission.) 

Figure 4. An example of the automatic detection of spikes in a 26-year-old 

patient with clinical diagnosis of temporal lobe epilepsy. The time series 

of EEG is shown on the left panel, and the results of quantitative analysis 

are shown in the table on the left upper corner of the right panel, and the 

topographic information ofeach frequency band of the background EE~ is 

presented on the right upper corner of the right panel. The scalp 

distribution of the spike thus detected is-shown on the bottom of the right 
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panel. 

Figure 5. Examples of 3 segments out of the, 10 selected EEG segments 

subjected to the automatic analysis (a) and topographic illustration of slow 

waves thus detected (b) from a 40-year-old patient with temporal lobe 

epilepsy. In (a), segment 1 contains a blink artifact and segment 5 

contains a short episode ofrhythmic theta waves of moderate amplitude on 

the midline fronto-central region. Table 3 shows the results of 

quantitative analysis of the same record, and Table 4 shows the written 

report obtained by automatic analysis of the same data. 

Figure 6. Results of atJtomatic interpretation of an EEG in comparison with 

those of visual inspection of the same record by a qualified EEGer. The 

patient was 46 years old with bilateral temporal lobe epilepsy following 

acute encephalitis in childhood. The time series of EEG contains high' 

amplitude epileptic spike-and-slow-waves over the right hemisphere. 

There is a good agree~ent between the two sets of reports. 

Figure 7. Diagram illustrating a flow of methods employed for the real time 

evaluation of the quality of EEG recording. (Modified from Nakamura et , 

. al., 2005 with permission) 



Appendix A. Terminology used in the present system for automatically writing the EEG 

report 

No. Items Sc. Terminology Weight 

Posterior dominant rhythm 

1 Existence 3 lack of dominant rhythm 10.0 

2 Organization 3 markedly disorganized 7.0 

2 disorganized  4.5 

1 poorly organized  2.0 

3 Asymmetry 3 marked asymmetry of dominant rhythm organization, poor on (L, R) 5.0 

2 asymmetry of dominant rhythm organization, poor on (L, R) 3.5 

1 slight asymmetry of dominant rhythm organization, poor on (L, R) 2.0 

4 Frequency 3 markedly slow dominant rhythm ( Hz) 8.0 

2 slow dominant rhythm ( Hz) 5.0 

1 slow alpha rhythm 2.0 

5 Asymmetry 3 marked asymmetry of dominant rhythm frequency, slower on (L, R) 5.0 

2 asymmetry of dominant rhythm frequency, slower on (L, R) 3.5 

1 slight asymmetry of dominant rhythm frequency, slower on (L, R) 2.0 

6 Amplitude 2 excessively high amplitude dominant rhythm 3.0 

1 high amplitude dominant rhythm 2.0 

7 Asymmetry 3 suppression of dominant rhythm on (L, R) 5.0 

2 depression of dominant rhythm on (L, R) 3.5 

1 mild depression of dominant rhythm on (L, R) 2.0 

8 Extension 3 excessive anterior extension of alpha rhythm 2.0 

2 anterior extension of alpha rhythm 1.5 

1 mild anterior extension of alpha rhythm 1.0 

Beta rhythm 

9 Amplitude 2 excessively high amplitude rhythmic fast activity 3.0 

1 high amplitude rhythmic fast activity 2.0 

10 Asymmetry 3 suppression of rhythmic fast activity on (L, R) 5.0 

2 depression of rhythmic fast activity on (L, R) 3.5 

1 mild depression of rhythmic fast activity on (L, R) 2.0 

Theta rhythm 

11 Duration 3 continuous, rhythmic and/or irregular theta waves 8.0 

2 intermittent, rhythmic and/or irregular theta waves 5.0 

1 occasional theta waves 2.0 

12 Electrodes 

Delta rhythm 

13 Duration 3 continuous, rhythmic and/or irregular delta waves 8.0 

2 intermittent, rhythmic and/or irregular delta waves 5.0 

1 occasional delta waves 2.0 

14 Electrodes 

Non-dominant alpha rhythm 

15 Duration 3 continuous non-dominant alpha frequency 4.0 

2 intermittent non-dominant alpha frequency 3.0 

1 occasional non-dominant alpha frequency 2.0 

16 Electrodes 

Modified from Nakamura et al., 1993 with permission. 
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Appendix B. Terminology used in the present system for automatically 

describing the scalp distribution of normal as well as 

abnormal activities  

Region Electrodes Terminology 

R1 
12 ≤ (total) 

diffusely 

R2 
6 ≤ (left), (total) ≤ 11 

more on the left hemisphere 

R3 
6 ≤ (right), (total) ≤ 11 

more on the right hemisphere 

R4 
6 ≤ (Fp, F > C, T3, T4), symmetry 

bianteriorly 

R5 
6 ≤ (Fp, F > C, T3, T4) 

anteriorly 

R6 
6 ≤ (O, P > T, C) 

posteriorly 

R7 
5 ≤ (C, F) 

on the fronto-central region 

R8 
4 ≤ (Fp1, F3, F7 > C3, T3) 

on the left anterior quadrant 

R9 
4 ≤ (Fp2, F4, F8 > C4, T4) 

on the right anterior quadrant 

R10 
3 ≤ (O1, P3, T5 > C3, T3) 

on the left posterior quadrant 

R11 
3 ≤ (O2, P4, T6 > C4, T4) 

on the right posterior quadrant 

R12 
2 ≤ (C, P) 

on the centro-parietal region 

R13 
2 ≤ (Fp1, F3, F7) 

on the left frontal region 

R14 
2 ≤ (Fp2, F4, F8) 

on the right frontal region 

R15 
2 ≤ (F) 

on the frontal region 

   R1 – R15 of Region: categories of scalp distribution 

Appendix B
Click here to view linked References

http://ees.elsevier.com/clinph/viewRCResults.aspx?pdf=1&docID=9115&rev=1&fileID=402782&msid={2A4AF233-F13D-46A2-B533-2B8BF1C4A950}


 

Modified from Nakamura et al., 1993 with permission. 
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Automatic interpretation including spikes

Markedly abnormal record

because of
(1) disorganized background activity,
(2) asymmetry of dominant rhythm organization, 

poor on the right,
(3) slow alpha rhythm,
(4) intermittent irregular theta waves,
(5) continuous irregular delta waves,
(6) frequent high amplitude spike-and-slow-waves 

on the right temporal region, and 
(7) frequent high amplitude spike-and-slow-

waves on the left temporal region.
Visual interpretation

Markedly abnormal waking record

because of 
(1) lack of dominant rhythm,
(2) continuous irregular delta and theta waves 

diffusely more on the right  hemisphere, and 
(3) frequent high amplitude spike-and-waves on 

the right hemisphere, anｄ occasionally on 
the left.

Figure 6
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Table 1. Quantitative scoring of the adult waking EEG based on visual inspection by 

electroencephalographers (EEGers)

Mild Moderate Marked

Score 0 Score 1 Score 2 Score 3

Present Absent

Left or Rright Good
Poorly 

organized 
Disorganized

Markedly 

disorganized

L-R difference < 0.3 0.3≤ <0.6 0.6 ≤ <1.0 1.0 ≤ 

Left or Right (Hz) 9 ≤ 8 <  < 9 6 <  ≤ 8

L-R difference (Hz) < 0.5 0.5 ≤ < 1.0 1.0 ≤ < 2.0 2.0 ≤ 

Left or Right (μV) < 100 100 ≤ < 130 130 ≤ 

L-R difference (%) < 50 50 ≤ < 60 60 ≤  < 80 80 ≤ 

To C, MT To F, AT To Fp (low) To Fp (high)

Left or Right (μV) ≤ 50 50 < < 100 ≤ 100

L-R difference (%) < 50 50 ≤  < 60 60 ≤  < 80 80 ≤ 

0 < 5 5 ≤  < 50 50 ≤ 

0 - < 50 50 ≤ 

<10 10 ≤  < 30 30 ≤  < 75 75 ≤ 

amplitude

 L-R difference:   difference between left and right

 Extension:  
Alpha: 

C:central, MT: midtemporal, F: frontal, AT: anterior temporal, Fp: frontopolar

non-dominant alpha rhythm (alpha rhythm not  attributed to the posterior dominant 

alpha rhythm)

(Modified from Nakamura et al., 1992 with permission)
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Table 2. Equations employed for the computer-assisted calculation of parameters of each 

frequency band of the adult waking EEG. 

Items EEG parameters 

P
o
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er

io
r 

D
o

m
in

a
n

t 
R

h
y

th
m

 

Existence  
                                       

Organization 

Left or Right 
                                   

           

          

L-R difference                

Frequency 

Left or Right (Hz)   

L-R difference (Hz)                

Amplitude 

Left or Right (μV)            

L-R difference (%)    
                                            

Extension       
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a
 

Amplitude 
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L-R difference (%)                                       
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a
 

Duration (%)                         

Location Active electrodes 
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ta
 

Duration (%)                         

Location Active electrodes 

A
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Duration (%)                         

Location Active electrodes 

                     : power within the respective band where   is dominant rhythm and α is 

non-dominant α rhythm. Sd’ : power of the dominant rhythm at anterior electrodes.                   

                          α                                                                  

X1: left, X2: right. Otherwise the same designation as for Table 1. 

(Modified from Nakamura et al., 1992 with permission) 
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Table 3. Results of quantitative analysis of 10 segments of EEG, three of which are shown 

in Fig. 5a.

Value       Score

Present 0

Left or Rright L: 1.1   R: 1.1 1

L-R difference 0 0

Left or Right (Hz) L: 8.1   R: 7.9 1

L-R difference (Hz) 0.1 0

Left or Right (μV) L: 49.9   R: 57.3 0

L-R difference (%) 13.1 0

L: 16.8   R: 20.6 0

Left or Right (μV) 12.8 0

L-R difference (%) 26.6 0

16.4 2

Fp1, F3, P3, Fp2, F4, C4, P4

14.3 2

P4

8.8 0
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Table 4. Written report automatically obtained as a result of quantitative 

analysis of 10 segments of EEG, three of which are shown in Fig. 5a.   

Automatic EEG Report 

[Main report] 

Moderately abnormal waking record 

because of 

*(1)poorly organized background activity, 

*(2)slow alpha rhythm, 

*(3) intermittent theta waves on the frontal region, and 

*(4) intermittent delta waves. 

[Artifacts] 

Blink artifacts were present in the following segments (1, 2, 4, 8, 10), 

and were taken into account in the interpretation. 

EMG artifacts were present in the following segments (1, 2, 3, 4, 5, 6, 7, 

8, 9, 10) at the electrode T4, and were taken into account in the 

interpretation. 

[Remarks] 

Waking record. 

A1 electrode: activation by dominant rhythm was observed (2, 3, 5, 7). 

A2 electrode: activation by dominant rhythm was observed (2, 3, 5, 7). 

See Table 3 for the results of quantitative analysis of the same data. 

Table 4




