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Introduction

We shall consider some analogy between the wall‐crossing problem of moduli

schemes of stable sheaves on a surface, and the minimal model program of higher‐
dimensional varieties. This article is a continuation of [10].

Let X be a non‐singular projective surface over \mathbb{C} ,
and H an ample line bundle

on X . Denote by M(H) (resp. M^{s}(H) ) the coarse moduli scheme of rank‐two H‐

semistable (resp. H‐stable) sheaves on X with Chern class  $\alpha$=(c_{1}, c_{2})\in \mathrm{P}\mathrm{i}\mathrm{c}(X)\times \mathbb{Z}.
Let H_{-} and H_{+} be  $\alpha$‐generic polarizations such that just one  $\alpha$‐wall  W separates

them For a\in[0 ,
1 ] one can define the a‐semistability of sheaves on X and the coarse

moduli scheme M(a) (resp. M^{s}(a) ) of rank‐two a‐semistable (resp. a‐stable) sheaves

with Chern classes  $\alpha$ in such a way that  M( $\epsilon$)=M(H) and M(1- $\epsilon$)=M(H_{-}) if

 $\epsilon$>0 is sufficiently small. M(a) is projective over \mathbb{C} . Let a_{-}<a_{+} be minichambers

separated by only one miniwall a_{0} ,
and denote M_{+}=M(a_{+}) , M_{-}=M(a_{-}) and

M_{0}=M(a_{0}) . There are natural morphisms $\phi$_{-}:M_{-}\rightarrow M_{0} and $\phi$_{+}:M_{+}\rightarrow M_{0}
([1], [2], [8]). One may say they are morphisms of moduli schemes coming from

wall‐crossing methods. Let $\phi$_{-}:V_{-}\rightarrow V_{0} be a birational projective morphism such

that (1) V_{-} is normal, (2) -K_{V-} is \mathbb{Q}‐Cartier and $\phi$_{-} ‐ample, (3) the codimension

of the exceptional set \mathrm{E}\mathrm{x}\mathrm{c}($\phi$_{-}) is more than 1, and (4) the relative Picard number

 $\rho$(V_{-}/V_{0}) of $\phi$_{-} is 1. After the theory of minimal model program, we say a birational

projective morphism $\phi$_{+}:V_{+}\rightarrow V_{0} is a K‐flip of $\phi$_{-}:V_{-}\rightarrow V_{0} if (1) V_{+} is normal, (2)
K_{V_{+}} is \mathbb{Q}‐Cartier and $\phi$_{+} ‐ample, (3) the codimension of the exceptional set \mathrm{E}\mathrm{x}\mathrm{c}($\phi$_{+})
is more than 1, and (4) the relative Picard number  $\rho$(V_{+}/V_{0}) of $\phi$_{+} is 1.

Theorem 0.1. Fix a closed, finite, rational polyhedral cone S\subset\overline{\mathrm{A}\mathrm{m}\mathrm{p}}(X) such that

S\cap\partial\overline{\mathrm{A}\mathrm{m}\mathrm{p}}(X)\subset \mathbb{R}_{\geq 0}\cdot K_{X} . If c_{2} is sufficiently large with respect to c_{1} and S
,

then

for any  $\alpha$ ‐generic polarizations  H_{-} and H_{+} in S separated by just one  $\alpha$ ‐wall  W,
and for any adjacent minichambers a_{-}<a_{+} separated by a miniwall a_{0} we have the

following.
(i)  M\pm are normal and \mathbb{Q} ‐factorial, K_{M\pm} are Cartier, M_{\pm}^{s} are l.c. i.

,
and M‐and

M_{+} are isomorphic in codimension 1.

(ii) Suppose K_{X} does not lie in the  $\alpha$ ‐wall, and that  K_{X} and H_{+} lie in the same

connected components of \mathrm{N}\mathrm{S}(X)_{\mathbb{R}}\backslash W . Then  $\rho$(M_{-}/M_{0})=1 and $\phi$_{+}:M_{+}\rightarrow M_{0} is

a K‐flip of $\phi$_{-}:M_{-}\rightarrow M_{0} . This morphism $\phi$_{+} (resp. $\phi$_{-} ) is the contraction of an

extremal ray of \overline{\mathrm{N}\mathrm{E}}(\mathrm{M}) (resp. \overline{\mathrm{N}\mathrm{E}}(M_{-}) ), which is described in moduli theory.
(iii) Suppose X is minimal and  $\kappa$(X)>0 ,

which means K_{X} is not numerically
equivalent to 0 and contained in Amp(X). Then there is a polarization, say H_{X},

Received May 1, 2010. AcceptediJuly 30, 2010.

1991 Mathematics Subject Classification. Primary 14\mathrm{J}60 ; Secondary 14\mathrm{E}\mathrm{x}\mathrm{x}, 14\mathrm{D}20.



2 KIMIKO YAMADA

contained in S such that no  $\alpha$ ‐wall separates  H_{X} and K_{X} ,
and the canonical divisor

of M(H) is nef.

The greater part of this result has already appeared in [10, Theorem 1.1.]. In

Section 1, we shall prove the remaining part of this theorem which has not appeared
in [10], that largely is the statement about the \mathbb{Q}‐factoriality of  M\pm and  $\rho$(M\pm/M_{0}) .

The author was not aware of this part at the time of writing [10]. There is some

application; suppose X is minimal and  $\kappa$(X)>0 ,
and fix a polarization L on X.

If c_{2} is sufficiently large with respect to c_{1} and L
,

then one can observe a moduli‐

theoretic analogue of the minimal model program of M(L) . Here
 $\zeta$

(analogue� means

that singularities of  M(H) are not considered. About this analogy, see Introduction

in [10] for detail. We remark that a K‐flip differs from a Thaddeus‐type flip in [8].
In Section 2, we give some notes about extremal faces of \overline{\mathrm{N}\mathrm{E}}(M(H))\subset N_{1}(M(H)) ,

where H is an  $\alpha$‐generic polarization. We shall point out that some extremal faces

with \dim\geq 2 can appear in \overline{\mathrm{N}\mathrm{E}}(M(H)) when H gets closer to more than one  $\alpha$‐wall.

Acknowledgment. The author would like to express gratitude to Prof. D. Matsushita

for valuable suggestions.

Notation. All schemes are locally of finite type over \mathbb{C} or, more generally, an

algebraically closed field of characteristic zero. For a projective scheme V over \mathbb{C},
\mathrm{N}\mathrm{u}\mathrm{m}(V) means Pic(V) modulo numerically equivalence. For any coherent sheaf E

on V, \mathrm{E}\mathrm{x}\mathrm{t}_{V}^{i}(E, E)^{0} means the kernel of trace map \mathrm{E}\mathrm{x}\mathrm{t}_{V}^{i}(E, E)\rightarrow H^{i}(\mathcal{O}_{V}) .

1. Proof 0F Theorem

There is a union of hyperplanes W\subset \mathrm{A}\mathrm{m}\mathrm{p}(X) called  $\alpha$‐walls in the ample cone

Amp(X) such that  M(H)=M(H,  $\alpha$) changes only when H passes through  $\alpha$‐walls

([9]). A polarization on  X is called  $\alpha$‐generic if no  $\alpha$‐wall contains it. Now fix a

closed, finite, rational polyhedral cone  S\subset\overline{\mathrm{A}\mathrm{m}\mathrm{p}}(X) as in Theorem 0.1. Refer to

[1, Section 3] about the a‐stability, minichambers and miniwalls, which appeared in

Introduction.

Lemma 1.1. If c_{2} is sufficiently large with respect to c_{1} and S
,

then for any  $\alpha$-

generic polarizations H_{-} and H_{+} in S separated by just one  $\alpha$ ‐wall  W
,

and for any

adjacent minichambers a_{-} and a+ separated by a miniwall a_{0} , (i)  M\pm are normal, (ii)
 K_{M\pm} are Cartier, (iii) M_{\pm}^{s} are l.c. i.

, (iv) M_{-} and M_{+} are isomorphic in codimension

4, and (v) our natural birational map M_{-}\cdots>M_{+} induces \mathrm{P}\mathrm{i}\mathrm{c}(M_{-}^{s})\simeq \mathrm{P}\mathrm{i}\mathrm{c}(M_{+}^{s}) .

Proof. Fix a polarization L\in S . If c_{2} is sufficiently large w.r.t. c_{1} and L
,
then M(L)

is normal, M^{s}(L) is of expected dimension, and the codimension of \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}'(M(L)) in

M(L) is greater than 4 by [5] and [11], where \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}'(M(L))\subset M(L) is the closed

subset consisting of sheaves E such that E is not  L- $\mu$‐stable or that \mathrm{E}\mathrm{x}\mathrm{t}_{X}^{2}(E, E)^{0}\neq 0.
One can check (iv) in a similar way to [10, Lemma 2.4.]. Now we compare M(L)
with M_{+} . By (iv) and the deformation theory of simple sheaves, M_{+}^{s} is of expected
dimension so it is l.c. \mathrm{i}.

,
and

(1) \mathrm{c}\mathrm{o}\dim(\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}'(M_{+}), M_{+})>4.

Thereby M_{+}^{s} is normal. Since  H\pm are  $\alpha$‐generic and  a\pm are minichambers, if a rank‐

two sheaf  E with Chern classes  $\alpha$ is  a_{-} ‐semistable and not a‐semistable, then E
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is H‐semistable for any polarization H
,

and so our birational map M_{+}\cdots>M_{-} is

isomorphic near M_{+}\backslash M_{+}^{s} . Thus M_{+} is normal near M_{+}\backslash M_{+}^{s} ,
and accordingly M_{+}

itself is normal. Item (v) follows item (iv) and (1) because of Fact 1.3 below.Last,
M_{+} is the GIT quotient of an open subset R_{+} of some Quot‐scheme on X . Let \mathcal{E}

be a universal family of R_{+} on X\times R_{+} . Since a_{+} is not a miniwall, one can check

that the line bundle \det R\mathcal{H}om_{p_{2}}(\mathcal{E}, \mathcal{E}) on R_{+} descends to a line bundle on M_{+} ,
that

equals K_{M_{+}}. \square 

Next we recall a fact concerning \mathrm{P}\mathrm{i}\mathrm{c}(M_{+}^{s}) from [6]. For a moment we assume M_{+}^{s}
has a universal family \mathcal{E} on X\times M_{+}^{s} . Let K be the Grothendieck group of X\times X

and let \tilde{K} be the kernel of  $\xi$ :  K\rightarrow \mathbb{Z}
,
that is defined by  $\xi$(C)= $\chi$(C\otimes$\pi$_{1}^{*}\mathcal{E}\otimes$\pi$_{2}^{*}\mathcal{E}) .

Here \otimes denotes the tensor product of complexes. Let  $\sigma$ :  X\times X\rightarrow X\times X be

the map exchanging factor and let \mathrm{P}\mathrm{i}\mathrm{c}(X\times X)^{ $\sigma$} be the subgroup consisting of line

bundles invariant under  $\sigma$ . The map  $\psi$ : \tilde{K}\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(\mathrm{M}) defined by

(2)  $\psi$(C)=\det((p_{1})_{!}(p_{23}^{*}(C)\otimes p_{12}^{*}\mathcal{E}\otimes p_{13}^{*}\mathcal{E})) (C\in\tilde{K})
induces a homomorphism

(3)  $\Phi$\displaystyle \pm:\mathrm{P}\mathrm{i}\mathrm{c}(X\times X)^{ $\sigma$}\oplus \mathbb{Z}\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(M_{\pm}^{s})\otimes_{\mathbb{Z}}\mathbb{Z}[\frac{1}{12}],
as explained in [6, p. 132]. One can define  $\Phi$ also when  M_{+}^{s} do not necessarily admit

a universal family.

Proposition 1.2. Let a\pm be a minichamber satisfy ing assumptions in Lemma 1.1.

If c_{2} is sufficiently large with respect to c_{1} and S
,

then

(4)  $\Phi$\pm\otimes \mathbb{Q} : Pic (\mathrm{X} \times X)^{ $\sigma$}\otimes \mathbb{Q}\oplus \mathbb{Q}\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(M_{\pm}^{s})\otimes \mathbb{Q}
is isomorphic.

Proof. One can verify this from Lemma 1.1 (v) and by reading [6] (especially Lemma

3.10.) carefully. \square 

Before the proof of Theorem 0.1, recall a useful fact at [SGA2, p.132].

Fact 1.3. Let W be any quasi‐projective and l.c. i . scheme with \mathrm{c}\mathrm{o}\dim(\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(W), W)\geq
 4 . Then for any closed subset  $\Lambda$\subset W of codimension at least two, the restriction

map \mathrm{P}\mathrm{i}\mathrm{c}(W)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(W\backslash  $\Lambda$) is an isomorphism.

Now we shall prove two propositions; those and [10] end the proof of Theorem

0.1.

Proposition 1.4. Let a_{+} be a minichamber satisfy ing assumptions in Lemma 1.1.

Suppose c_{2} is so large with respect to c_{1} and S that  M\pm are normal,  M_{\pm}^{s} are l.c. i.,
\mathrm{c}\mathrm{o}\dim(\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(M_{\pm}^{s}), M_{\pm}^{s})\geq 4, \mathrm{c}\mathrm{o}\dim(M\pm\backslash M_{\pm}^{s}, M_{\pm})\geq 2 ,

and the homomorphisms at

(4) are isomorphic. Then  M\pm are \mathbb{Q} ‐factorial.

Proof. First remark that assumptions in this proposition holds for c_{2}\gg 0 from

Lemma 1.1, Proposition 1.2, [11], and [3, Theorem 9.1.2.]. We shall verify this only
for M_{+} . Let U be the open set M_{+}\backslash \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(\mathrm{M}) in M_{+} . If CI(M) means its divisor

class group generated by Weil divisors, then we have

\mathrm{C}1(M_{+})\rightarrow \mathrm{C}1(U)\simeq \mathrm{P}\mathrm{i}\mathrm{c}(U)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(M_{+}^{s}) ,
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where the first map is restriction, the second map is isomorphism since U is smooth,
and the third map is an extension map, which is assured by Fact 1.3. Next, we have

the following diagram.

\overline{ $\Phi$}_{+}\otimes \mathbb{Q} : Pic (\mathrm{X} \times X)^{ $\sigma$}\otimes \mathbb{Q}\oplus \mathbb{Q}\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(M_{+})\otimes \mathbb{Q}

$\Phi$_{+}\otimes \mathbb{Q}:\mathrm{P}\mathrm{i}\mathrm{c}(X\times X)^{ $\sigma$}\otimes \mathbb{Q}\oplus \mathbb{Q}\Vert\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(M_{+}^{s})\otimes \mathbb{Q}\downarrow,
where \overline{ $\Phi$}_{+} is defined at the equation (1.13) in [6] since  H\pm are  $\alpha$‐generic and  a+
is not a miniwall, and the second column is a restriction map. Proposition 1.2

implies that the second column is surjective. On the other hand, the assumptions
in this proposition implies that the second column is injective. As a result we get a

homomorphism \mathrm{C}1(M_{+})\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(M_{+})\otimes \mathbb{Q} . Thus we end the proof. \square 

For a projective morphism f ,
we define N_{1}(f) and \overline{\mathrm{N}\mathrm{E}}(f) according to [4, Example

2.16], an extremal ray or extremal face of \overline{\mathrm{N}\mathrm{E}}(f) according to [4, Definition 1.15],
and the contraction of an extremal ray or face according to [4, Definition 1.25].

Proposition 1.5. Let a\pm be minichambers as in Theorem 0.1. Suppose c_{2} is suf‐
ficiently so large with respect to c_{1} and S that conclusions in Lemma 1.1 and

Proposition 1.2 hold good. Then we have the following. Let t be any point in

$\phi$_{+}( Exec ( $\phi$_{+}))\subset M_{0} ,
and let l\simeq \mathrm{P}^{1} be any line in $\phi$_{+}^{-1}(t)\simeq \mathrm{P}^{N_{t}} . Then \mathbb{R}_{\geq 0} l

is an extremal ray of \overline{\mathrm{N}\mathrm{E}}(M_{+}) ,
and $\phi$_{+} is the contraction of this extremal ray. In

particular  $\rho$(M_{+}/M_{0})=1 . The similar statement holds also for $\phi$_{-}:M_{-}\rightarrow M_{0}.

Proof. We check it for a_{+} ; the proof is the same for a_{-} . For simplicity suppose that

M_{+}^{s} has a universal family \mathcal{E} on X\times M_{+} ,
but the proof goes in a similar way for

general case. The set

(5) M+\supset P+= { [E]|E is not a_{-} ‐semistable}
is contained in M_{+}^{s} since we consider rank‐two case. Take a point t\in$\phi$_{+}(P_{+}) . By
Proposition 2.1. in [10], it holds that $\phi$_{+}^{-1}(t)\simeq \mathrm{P}^{N} ,

and there is a nontrivial exact

sequence on X\times \mathrm{P}^{N}

(6) 0\rightarrow$\pi$_{1}^{*}F\otimes \mathcal{O}_{\mathrm{P}^{N}}(1)\rightarrow \mathcal{E}|_{$\phi$_{+}^{-1}(t)}\otimes$\pi$_{2}^{*}L\rightarrow$\pi$_{1}^{*}G\rightarrow 0,
where F and G are coherent sheaves on X

,
which depends on the choice of t

,
and

L is a line bundle on $\phi$_{+}^{-1}(t) . Let l\simeq \mathrm{P}^{1} be a line in $\phi$_{+}^{-1}(t) . Then (6) implies that

ch(\mathcal{E}|_{l})=ch(E)+\mathcal{O}_{l}(1)\cdot ch(F) in A(X\times l) ,
where E is a rank‐two sheaf with Chern

classes  $\alpha$ . Let  C be a class in \tilde{K} . Because of the definition of \tilde{K} and the G.R.R.

theorem, we have

\deg( $\psi$(C) . l)=[p_{1*}(ch(p_{23}^{*}C\otimes p_{12}^{*}\mathcal{E}|_{l}\otimes p_{13}^{*}\mathcal{E}|_{l}) . p_{23}^{*}td(X\times X))]_{1,l\times X\times X}\cdot \mathcal{O}_{l}(1)
=[p_{1*}(p_{23}^{*}ch(C) . \{p_{2}^{*}ch(E)+p_{1}^{*}\mathcal{O}_{l}(1) . p_{2}^{*}ch(F)\}.

\{p_{3}^{*}ch(E)+p_{1}^{*}\mathcal{O}_{l}(1) . p_{3}^{*}ch(F)\}\cdot p_{23}^{*}td(X\times X))]_{1,l\times X\times X}\cdot \mathcal{O}_{l}(1)
=[ch(C) . td(X\times X) . \{$\pi$_{1}^{*}ch(F)$\pi$_{2}^{*}ch(E)+$\pi$_{2}^{*}ch(F)$\pi$_{1}^{*}ch(E)\}]_{0,X\times X}

= $\chi$(X\times X, C\otimes($\pi$_{1}^{*}F\otimes$\pi$_{2}^{*}E+$\pi$_{2}^{*}F\otimes$\pi$_{1}^{*}E)) .
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By the projection formula and again by the definition of \tilde{K}
,

the last term equals

 $\chi$(X\times X, C\otimes\{$\pi$_{1}^{*}(F+G+F-G)\otimes$\pi$_{2}^{*}(E)+$\pi$_{2}^{*}(F+G+F-G)\otimes$\pi$_{1}^{*}(E)\})/2

= $\chi$(X\times X, C\otimes\{$\pi$_{1}^{*}(F-G)\otimes$\pi$_{2}^{*}(E)+$\pi$_{2}^{*}(F-G)\otimes$\pi$_{1}^{*}(E)\})/2=

[$\pi$_{1}^{*}td(X)\cdot$\pi$_{2}^{*}td(X)\cdot ch(C)\cdot\{$\pi$_{1}^{*}ch(F-G)\cdot$\pi$_{2}^{*}ch(E)+$\pi$_{2}^{*}ch(F-G)\cdot$\pi$_{1}^{*}ch(E)\}]_{0}/2=
[\{$\pi$_{1*}(ch(C)\cdot$\pi$_{2}^{*}(td(X)ch(E)))+$\pi$_{2*}(ch(C)\cdot$\pi$_{1}^{*}(td(X)ch(E)))\}\cdot td(X)ch(F-G)]_{0}/2.
From [1, Section 3], if we denote  $\xi$=c_{1}(F)-c_{1}(G)\in \mathrm{N}\mathrm{S}(X) , n=c_{2}(F) and

m=c_{2}(G) ,
then W^{ $\xi$}=\{H\in \mathrm{A}\mathrm{m}\mathrm{p}(X)|H\cdot $\xi$=0\} equals W and one can check that

td(X)\cdot ch(F-G)=(0,  $\xi$, (a_{0}-1)(H_{+}-H_{-})\cdot $\xi$) . Thereby one can verify that

(7) \deg( $\psi$(C)\cdot l)=[\{$\pi$_{1*}(C\cdot$\pi$_{2}^{*}td(X))+$\pi$_{2*}(C\cdot$\pi$_{1}^{*}td(X))\}^{1}+
(a_{0}-1)\{$\pi$_{1*}(C\cdot$\pi$_{2}^{*}td(X))+$\pi$_{2*}(C\cdot$\pi$_{1}^{*}td(X))\}^{0}\cdot(H_{+}-H .  $\xi$/2.

Now we shall show that \mathrm{r}\mathrm{k}N_{1}(M_{+}/M_{0})=1 . If we pick two points t_{1} and t_{2} in

$\phi$_{+}(P_{+}) ,
then $\phi$_{+}^{-1}(t_{i})\simeq \mathrm{P}^{N_{i}} for i=1

,
2. Fix lines l_{i}\subset$\phi$_{+}^{-1}(t_{i}) . Then there are exact

sequences on X\times l_{i}

0\rightarrow$\pi$_{1}^{*}F_{i}\otimes \mathcal{O}_{\mathrm{P}^{N}}(1)\rightarrow \mathcal{E}|_{l_{i}}\otimes$\pi$_{2}^{*}L_{i}\rightarrow$\pi$_{1}^{*}G_{i}\rightarrow 0,
where F_{i} and G_{i} are coherent sheaves on X

,
and L_{i} is a line bundle on l_{i} ,

for i=1
,
2.

Since the wall defined by $\xi$_{i}=c(F)c(G) equals W for i=1
, 2, there is a rational

number r such that $\xi$_{1}=r$\xi$_{2} in Num(X). Then (4) and (7) imply that l_{1}\equiv r\cdot l_{2} in

N_{1}(M_{+}/M_{0}) . As a result, we have \overline{\mathrm{N}\mathrm{E}}($\phi$_{+})=\mathbb{R}_{\geq 0}\cdot l.
Now \mathbb{R}_{\geq 0}\cdot l is an extremal ray of \overline{\mathrm{N}\mathrm{E}}(M_{+}) . Indeed, let u_{i}\in\overline{\mathrm{N}\mathrm{E}}(M_{+})(i=1,2)

satisfy that u_{1}+u_{2}\in \mathbb{R}_{\geq 0}\cdot l . Then, for any H\in \mathrm{A}\mathrm{m}\mathrm{p}(M_{0}) , 0=(u_{1}+u_{2})\cdot$\phi$_{+}^{*}(H)=
u_{1} $\phi$_{+}^{*}(H)+u_{2} $\phi$_{+}^{*}(H) . Since u_{i}\in\overline{\mathrm{N}\mathrm{E}}(M_{+}) ,

we have u_{i} $\phi$_{+}^{*}(H)\geq 0 ,
and hence

u_{i}\cdot$\phi$_{+}^{*}(H)=0 for i=1
,
2. Recall that, by Example‐Exercise 3‐5‐1 in [7], a natural

inclusion N_{1}($\phi$_{+})\subset N(M) identifies \overline{\mathrm{N}\mathrm{E}}($\phi$_{+}) with

{ z\in\overline{\mathrm{N}\mathrm{E}}(M_{+})|z\cdot$\phi$_{+}^{*}(H)=0 for any H\in \mathrm{A}\mathrm{m}\mathrm{p}(M_{0}) }.
Thereby u_{i}\in\overline{\mathrm{N}\mathrm{E}}($\phi$_{+})=\mathbb{R}_{\geq 0}\cdot l.

Last, $\phi$_{+} is the contraction of \mathbb{R}_{+}\cdot l . Indeed, for any irreducible curve C\subset M_{+},
one can verify that $\phi$_{+}(C) is a point if and only if C\in \mathbb{R}_{+} l by using arguments
above. Also it holds that $\phi$_{+*}(\mathcal{O}_{M_{+}})\simeq \mathcal{O}_{M_{0}} ,

since one can show that M_{0} is normal

from conclusions in Lemma 1.1 and Serre�s criterion of normality, and so we conclude

the proof of this proposition. \square 

2. Some extremal faces 0F M(H)
Now we suppose that a polarization H_{+} is  $\alpha$‐generic and contained in an  $\alpha$-

chamber C ,
with which two different  $\alpha$‐walls  W_{1} and W_{2} contact, that a polarization

H_{0} is contained in W_{1}\cap W_{2}\cap\overline{C} ,
and that no  $\alpha$‐wall except  W_{1} and W_{2} contains H_{0}.

Similarly to [1, Section 3], for a\in[0 ,
1 ] one can define the a‐stability of a coherent

sheaf on X and the moduli scheme M(a) of a‐semistable rank‐two sheaves on X with

fixed Chern classes in such a way that M(1)=M(H) and M( $\epsilon$)=M(H) if  $\epsilon$\geq 0 is

sufficiently small. Let a_{\pm} be minichambers separated by just one miniwall a_{0} . Then

Proposition 2.1 below says that  $\rho$(M_{+}/M_{0}) can be greater than 1, \overline{\mathrm{N}\mathrm{E}}(\mathrm{M}) can have

an extremal face with \dim\geq 2 ,
and so \overline{\mathrm{N}\mathrm{E}}(\mathrm{M}) can admit a  $\zeta$(\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{h}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{l}‐like part�
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Let P_{+}\subset M_{+}^{s} be the set defined at (5). Every member E\in P_{+} has a Harder‐

Narasimhan filtration with respect to a_{-}
,
that is given by a nontrivial exact sequence

0\rightarrow F\rightarrow E\rightarrow G\rightarrow 0,

and then one can check that the wall defined by  $\xi$(E) :=c_{1}(F)-c_{1}(G)\in \mathrm{N}\mathrm{S}(X)
equals W_{1} or W_{2} because of the way to derive a_{\pm} from  H\pm\cdot For  j=1 , 2, we define

a set

P_{+}\supset P_{+}^{(j)}= { [E]\in P_{+}| the wall defined by  $\xi$(E) equals W_{j} }.
Then, from the uniqueness of a_{-} ‐HNF, P_{+}^{(j)} is a union of some connected components
of P_{+} ,

and it holds that P_{+}^{(1)}\cap P_{+}^{(2)}=\emptyset.
Proposition 2.1. Suppose that both P_{+}^{(1)} and P_{+}^{(2)} are non‐empty. Then \overline{\mathrm{N}\mathrm{E}}(\mathrm{M})
has a two‐dimensional extremal face spanned by \mathbb{R}_{\geq 0}\cdot l_{1} and \mathbb{R}_{\geq 0}\cdot l_{2} , where l_{j}\simeq \mathrm{P}^{1}
is a line contained in $\phi$_{+}^{-1}(t_{j})\simeq \mathrm{P}^{N_{j}} with some t_{j}\in$\phi$_{+}(P_{+}^{(j)}) , forj=1 ,

2. The

morphism $\phi$_{+} is the contraction of this extremal face.

Proof. If a sheaf E_{j}\in M_{+}^{s} is a member of l_{j}\subset P_{+} ,
then one can check that \mathbb{R}\cdot $\xi$(E)

does not contain  $\xi$(E) in Num(X) since W_{1}\neq W_{2} . Thus it follows from (7) that

the ray \mathbb{R}_{\geq 0} l_{1} does not contain l_{2} in N_{1}(M_{+}) . In a similar way to the proof of

Proposition 1.5, we can check that (i) \overline{\mathrm{N}\mathrm{E}}($\phi$_{+})=\mathbb{R}_{\geq 0} l_{1}+\mathbb{R}_{\geq 0} l_{2} , (ii) this is a

two‐dimensional extremal face of \overline{\mathrm{N}\mathrm{E}}(M_{+}) ,
and (iii) $\phi$_{+} is the contraction of this

extremal face. \square 

Similarly, suppose that different  $\alpha$‐walls  W_{j}(1\leq j\leq N) contact with an  $\alpha$-

chamber C containing H_{+} and satisfy that \displaystyle \bigcap_{j=1}^{N}W_{j}\cap\overline{C} is non‐empty. Then  $\rho$(M_{+}/M_{0})
can be N or more, and \overline{\mathrm{N}\mathrm{E}}(\mathrm{M}) can have an extremal face with \dim\geq N.

Remark 2.2. There does exist an example of a surface X
,

a class  $\alpha$ with  4c_{2}-

c_{1}^{2}\gg 0 ,
an  $\alpha$‐chamber  C ,

two  $\alpha$‐walls  W_{1} and W_{2} ,
an  $\alpha$‐generic polarization  H_{+}, \mathrm{a}

polarization H_{0} ,
a minichamber a_{+} and a miniwall a_{0} such that both P_{+}^{(1)} and P_{+}^{(2)}

are non‐empty. We leave it to the reader to find such examples. In rank‐two case,

the definition of  $\alpha$‐walls is rather numerical. Hence if one grasps the structure of

Amp(X), then it may bejust a calculating exercise to find such an example. Remark

that, when  X is an Abelian surface, Amp(X) is just a connected component of the

big cone of X.

References

[1] G. Ellingsrud and L. Göttsche, va riation of moduli spaces and Donaldson invariants under

change of polarization, J. Reine Angew. Math. 467 (1995), 149.

[2] R. Friedman and Z. Qin, Flips of moduli spaces and transition formulas for Donaldson poly‐
nomial invariants of rational surfaces, Comm. Anal. Geom. 3 (1995), no. 1‐2, 1183.

[3] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Friedr. Vieweg &

Sohn, 1997.

[4] J. Kollár and S. Mori, Birational geometry of algebraic varieties, vol. 134, Cambridge Univer‐

sity Press, 1998.

[5] J. Li, Kodaira dimension of moduli space of vector bundles on surfaces, Invent. Math. 115

(1994), no. 1, 140.

[6] —,
Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli

of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol.

179, Dekker, New York, 1996, pp. 129146.



K‐FLIPS AND VARIATION OF MODULI OF SHEAVES, II 7

[7] K. Matsuki, Introduction to the Mori program, Universitext, Springer‐Verlag, New York, 2002.

[8] K. Matsuki and R. Wentworth, Mumford‐Thaddeus principle on the moduli space of vector

bundles on an algebraic surface, Internat. J. Math. 8 (1997), no. 1, 97148.

[9] Z. Qin, Birational properties of moduli spaces of stable locally free rank‐2 sheaves on algebraic
surfa ces, Manuscripta Math. 72 (1991), no. 2, 163180.

[10] K. Yamada, Flips and variation of moduli scheme of sheaves on a surfa ce, J. Math. Kyoto
Univ. 49 (2009), no. 2, 419425, arXiv:0811.3522.

[11] K. Zuo, Generic smoothness of the moduli spaces of rank two stable vector bundles over alge‐
braic surfaces, Math. Z. 207 (1991), no. 4, 629643.

E‐mail address: kyamada@math.kyoto‐u.ac.jp

Department 0F mathematics, Kyoto University, Japan


