K-FLIPS AND VARIATION OF MODULI SCHEME
OF SHEAVES ON A SURFACE, II

KIMIKO YAMADA

INTRODUCTION

We shall consider some analogy between the wall-crossing problem of moduli schemes of stable sheaves on a surface, and the minimal model program of higher-dimensional varieties. This article is a continuation of [10].

Let X be a non-singular projective surface over \mathbb{C}, and H an ample line bundle on X. Denote by $M(H)$ (resp. $M^s(H)$) the coarse moduli scheme of rank-two H-semistable (resp. H-stable) sheaves on X with Chern class $\alpha = (c_1, c_2) \in \text{Pic}(X) \times \mathbb{Z}$.

Let H_- and H_+ be α-generic polarizations such that just one α-wall W separates them. For $a \in [0, 1]$ one can define the α-semistability of sheaves on X and the coarse moduli scheme $M(a)$ (resp. $M^s(a)$) of rank-two α-semistable (resp. α-stable) sheaves with Chern classes a in such a way that $M(e) = M(H_+)$ and $M(1-e) = M(H_-)$ if $a > 0$ is sufficiently small. $M(a)$ is projective over \mathbb{C}. Let $a_- < a_+$ be minichambers separated by only one miniwall a_0, and denote $M_+ = M(a_+)$, $M_- = M(a_-)$ and $M_0 = M(a_0)$. There are natural morphisms $\phi_- : M_- \to M_0$ and $\phi_+ : M_+ \to M_0$ ([1], [2], [8]). One may say they are morphisms of moduli schemes coming from wall-crossing methods. Let $\phi_- : V_- \to V_0$ be a birational projective morphism such that (1) V_- is normal, (2) $-K_{V_-}$ is \mathbb{Q}-Cartier and ϕ_--ample, (3) the codimension of the exceptional set $\text{Exc}(\phi_-)$ is more than 1, and (4) the relative Picard number $\rho(V_-/V_0)$ of ϕ_- is 1. After the theory of minimal model program, we say a birational projective morphism $\phi_+ : V_+ \to V_0$ is a K-flip of $\phi_- : V_- \to V_0$ if (1) V_+ is normal, (2) K_{V_+} is \mathbb{Q}-Cartier and ϕ_+-ample, (3) the codimension of the exceptional set $\text{Exc}(\phi_+)$ is more than 1, and (4) the relative Picard number $\rho(V_+/V_0)$ of ϕ_+ is 1.

Theorem 0.1. Fix a closed, finite, rational polyhedral cone $S \subset \text{Am}(X)$ such that $S \cap \partial \text{Am}(X) \subset \mathbb{R}_{\geq 0} \cdot K_X$. If c_2 is sufficiently large with respect to c_1 and S, then for any α-generic polarizations H_- and H_+ in S separated by just one α-wall W, and for any adjacent minichambers $a_- < a_+$ separated by a miniwall a_0 we have the following.

(i) M_\pm are normal and \mathbb{Q}-factorial, K_{M_\pm} are Cartier, M_\pm are l.c.i., and M_- and M_+ are isomorphic in codimension 1.

(ii) Suppose K_X does not lie in the α-wall, and that K_X and H_+ lie in the same connected components of $\text{NS}(X)_{\mathbb{R}} \setminus W$. Then $\rho(M_-/M_0) = 1$ and $\phi_+ : M_+ \to M_0$ is a K-flip of $\phi_- : M_- \to M_0$. This morphism ϕ_+ (resp. ϕ_-) is the contraction of an extremal ray of $\overline{\text{NE}}(M_+)$ (resp. $\overline{\text{NE}}(M_-)$), which is described in moduli theory.

(iii) Suppose X is minimal and $\kappa(X) > 0$, which means K_X is not numerically equivalent to 0 and contained in $\text{Am}(X)$. Then there is a polarization, say H_X.

Received May 1, 2010. Accepted July 30, 2010.

1991 Mathematics Subject Classification. Primary 14J60; Secondary 14Exx, 14D20.
contained in S such that no α-wall separates H_X and K_X, and the canonical divisor of $M(H_X)$ is nef.

The greater part of this result has already appeared in [10, Theorem 1.1]. In Section 1, we shall prove the remaining part of this theorem which has not appeared in [10], that largely is the statement about the \mathbb{Q}-factoriality of M_\pm and $\rho(M_+/M_0)$. The author was not aware of this part at the time of writing [10]. There is some application; suppose X is minimal and $\kappa(X) > 0$, and fix a polarization L on X. If c_2 is sufficiently large with respect to c_1 and L, then one can observe a moduli-theoretic analogue of the minimal model program of $M(L)$. Here “analogue” means that singularities of $M(H_X)$ are not considered. About this analogy, see Introduction in [10] for detail. We remark that a K-flip differs from a Thaddeus-type flip in [8].

In Section 2, we give some notes about extremal faces of $\overline{\operatorname{NE}}(M(H)) \subset N_1(M(H))$, where H is an α-generic polarization. We shall point out that some extremal faces with dim ≥ 2 can appear in $\overline{\operatorname{NE}}(M(H))$ when H gets closer to more than one α-wall.

Acknowledgment. The author would like to express gratitude to Prof. D. Matsushita for valuable suggestions.

Notation. All schemes are locally of finite type over \mathbb{C} or, more generally, an algebraically closed field of characteristic zero. For a projective scheme V over \mathbb{C}, $\operatorname{Num}(V)$ means $\operatorname{Pic}(V)$ modulo numerically equivalence. For any coherent sheaf E on V, $\operatorname{Ext}^i_V(E,E)^0$ means the kernel of trace map $\operatorname{Ext}^i_V(E,E) \to H^i(\mathcal{O}_V)$.

1. Proof of Theorem

There is a union of hyperplanes $W \subset \operatorname{Amp}(X)$ called α-walls in the ample cone $\operatorname{Amp}(X)$ such that $M(H) = M(H, \alpha)$ changes only when H passes through α-walls ([9]). A polarization on X is called α-generic if no α-wall contains it. Now fix a closed, finite, rational polyhedral cone $S \subset \operatorname{Amp}(X)$ as in Theorem 0.1. Refer to [1, Section 3] about the α-stability, minichambers and miniwalls, which appeared in Introduction.

Lemma 1.1. If c_2 is sufficiently large with respect to c_1 and S, then for any α-generic polarizations H_- and H_+ in S separated by just one α-wall W, and for any adjacent minichambers a_- and a_+ separated by a miniwall a_0, (i) M_\pm are normal, (ii) K_{M_\pm} are Cartier, (iii) M_\pm^s are l.c.i., (iv) M_- and M_+ are isomorphic in codimension 4, and (v) our natural birational map $M_- \cdots > M_+ \text{ induces } \operatorname{Pic}(M^s) \simeq \operatorname{Pic}(M_+^s)$.

Proof. Fix a polarization $L \in S$. If c_2 is sufficiently large w.r.t. c_1 and L, then $M(L)$ is normal, $M^s(L)$ is of expected dimension, and the codimension of $\operatorname{Sing}'(M(L))$ in $M(L)$ is greater than 4 by [5] and [11], where $\operatorname{Sing}'(M(L)) \subset M(L)$ is the closed subset consisting of sheaves E such that E is not L-stable or that $\operatorname{Ext}^2_X(E,E)^0 \neq 0$. One can check (iv) in a similar way to [10, Lemma 2.4]. Now we compare $M(L)$ with M_+. By (iv) and the deformation theory of simple sheaves, M_+^s is of expected dimension so it is l.c.i., and

\[
\operatorname{codim}(\operatorname{Sing}'(M_+^s), M_+) > 4.
\]

Thereby M_+^s is normal. Since H_\pm are α-generic and a_\pm are minichambers, if a rank-two sheaf E with Chern classes α is a_--semistable and not a_+-semistable, then E
is H-semistable for any polarization H, and so our birational map $M_+ \cdots > M_-$ is isomorphic near $M_+ \setminus M_+^s$. Thus M_+ is normal near $M_+ \setminus M_+^s$, and accordingly M_+ itself is normal. Item (v) follows item (iv) and (1) because of Fact 1.3 below. Last, M_+ is the GIT quotient of an open subset R_+ of some Quot-scheme on X. Let E be a universal family of R_+ on $X \times R_+$. Since a_+ is not a miniwall, one can check that the line bundle $R\text{Hom}_{p_2}(E, E)$ on R_+ descends to a line bundle on M_+, that equals K_{M_+}.

Next we recall a fact concerning $\text{Pic}(M^s_+)$ from [6]. For a moment we assume M^s_+ has a universal family E on $X \times M^s_+$. Let K be the Grothendieck group of $X \times X$ and let \tilde{K} be the kernel of $\xi : K \to \mathbb{Z}$, that is defined by $\xi(C) = \chi(C \boxtimes \pi^*_1E \boxtimes \pi^*_2E)$. Here \boxtimes denotes the tensor product of complexes. Let $\sigma : X \times X \to X \times X$ be the map exchanging factor and let $\text{Pic}(X \times X)^\sigma$ be the subgroup consisting of line bundles invariant under σ. The map $\psi : \tilde{K} \to \text{Pic}(M_+)$ defined by

$$
\psi(C) = \det \left((p_1)_! \left(p_{23}^*(C) \boxtimes p_{12}^*(E) \boxtimes p_{13}^*(E) \right) \right) \quad (C \in \tilde{K})
$$

induces a homomorphism

$$
\Phi_\pm : \text{Pic}(X \times X)^\sigma \otimes \mathbb{Z} \to \text{Pic}(M^s_+) \otimes \mathbb{Z}[1/12],
$$

as explained in [6, p. 132]. One can define Φ also when M^s_+ do not necessarily admit a universal family.

Proposition 1.2. Let a_\pm be a minichamber satisfying assumptions in Lemma 1.1. If c_2 is sufficiently large with respect to c_1 and \mathcal{S}, then

$$
\Phi_\pm \otimes \mathbb{Q} : \text{Pic}(X \times X)^\sigma \otimes \mathbb{Q} \oplus \mathbb{Q} \to \text{Pic}(M^s_+) \otimes \mathbb{Q}
$$

is isomorphic.

Proof. One can verify this from Lemma 1.1 (v) and by reading [6] (especially Lemma 3.10.) carefully. \hfill \Box

Before the proof of Theorem 0.1, recall a useful fact at [SGA2, p.132].

Fact 1.3. Let W be any quasi-projective and l.c.i. scheme with codim(Sing(W), W) ≥ 4. Then for any closed subset $\Lambda \subset W$ of codimension at least two, the restriction map $\text{Pic}(W) \to \text{Pic}(W \setminus \Lambda)$ is an isomorphism.

Now we shall prove two propositions; those and [10] end the proof of Theorem 0.1.

Proposition 1.4. Let a_+ be a minichamber satisfying assumptions in Lemma 1.1. Suppose c_2 is so large with respect to c_1 and \mathcal{S} that M_\pm are normal, M^s_\pm are l.c.i., codim(Sing(M^s_\pm), M^s_\pm) ≥ 4, codim($M^s_\pm \setminus M^s_\pm, M_\pm$) ≥ 2, and the homomorphisms at (4) are isomorphic. Then M_\pm are \mathbb{Q}-factorial.

Proof. First remark that assumptions in this proposition holds for $c_2 \gg 0$ from Lemma 1.1, Proposition 1.2, [11], and [3, Theorem 9.1.2.]. We shall verify this only for M_+. Let U be the open set $M_+ \setminus \text{Sing}(M_+)$ in M_+. If $\text{Cl}(M_+)$ means its divisor class group generated by Weil divisors, then we have

$$
\text{Cl}(M_+) \to \text{Cl}(U) \simeq \text{Pic}(U) \to \text{Pic}(M^s_+),
$$
where the first map is restriction, the second map is isomorphism since U is smooth, and the third map is an extension map, which is assured by Fact 1.3. Next, we have the following diagram.

\[
\begin{array}{c}
\Phi_{+} \otimes \mathbb{Q} : \text{Pic}(X \times X) \otimes \mathbb{Q} \oplus \mathbb{Q} \longrightarrow \text{Pic}(M_{+}) \otimes \mathbb{Q} \\
\Phi_{+} \otimes \mathbb{Q} : \text{Pic}(X \times X) \otimes \mathbb{Q} \oplus \mathbb{Q} \longrightarrow \text{Pic}(M_{+}^{s}) \otimes \mathbb{Q},
\end{array}
\]

where Φ_{+} is defined at the equation (1.13) in [6] since H_{\pm} are α-generic and a_{+} is not a miniwall, and the second column is a restriction map. Proposition 1.2 implies that the second column is surjective. On the other hand, the assumptions in this proposition implies that the second column is injective. As a result we get a homomorphism $\text{Cl}(M_{+}) \to \text{Pic}(M_{+}) \otimes \mathbb{Q}$. Thus we end the proof.

For a projective morphism f, we define $N_{1}(f)$ and $\overline{\text{NE}}(f)$ according to [4, Example 2.16], an extremal ray or extremal face of $\overline{\text{NE}}(f)$ according to [4, Definition 1.15], and the contraction of an extremal ray or face according to [4, Definition 1.25].

Proposition 1.5. Let a_{\pm} be minichambers as in **Theorem 0.1**. Suppose c_{2} is sufficiently large with respect to c_{1} and S that conclusions in **Lemma 1.1** and **Proposition 1.2** hold good. Then we have the following. Let t be any point in $\phi_{+}(\text{Exec}^{\alpha} \phi_{+}) \subset M_{0}$, and let $l \simeq \mathbb{P}^{1}$ be any line in $\phi_{+}^{-1}(t) \simeq \mathbb{P}^{N}$. Then $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\text{NE}}(M_{+})$, and ϕ_{+} is the contraction of this extremal ray. In particular $\rho(M_{+}/M_{0}) = 1$. The similar statement holds also for $\phi_{-} : M_{-} \to M_{0}$.

Proof. We check it for a_{+}; the proof is the same for a_{-}. For simplicity suppose that M_{+}^{s} has a universal family \mathcal{E} on $X \times M_{+}^{s}$, but the proof goes in a similar way for general case. The set

\[(5) \quad M_{+} \supset P_{+} = \{[E] \mid E \text{ is not } a_{-}\text{-semistable}\}\]

is contained in M_{+}^{s} since we consider rank-two case. Take a point $t \in \phi_{+}(P_{+})$. By **Proposition 2.1.** in [10], it holds that $\phi_{+}^{-1}(t) \simeq \mathbb{P}^{N}$, and there is a nontrivial exact sequence on $X \times \mathbb{P}^{N}$

\[(6) \quad 0 \longrightarrow \pi_{1}^{*}F \otimes \mathcal{O}_{\mathbb{P}^{N}}(1) \longrightarrow \mathcal{E}|_{\phi_{+}^{-1}(t)} \otimes \pi_{2}^{*}L \longrightarrow \pi_{1}^{*}G \longrightarrow 0,\]

where F and G are coherent sheaves on X, which depends on the choice of t, and L is a line bundle on $\phi_{+}^{-1}(t)$. Let $l \simeq \mathbb{P}^{1}$ be a line in $\phi_{+}^{-1}(t)$. Then (6) implies that $\text{ch}(\mathcal{E}|_{l}) = \text{ch}(E) + \mathcal{O}(1) \cdot \text{ch}(F)$ in $A(X \times l)$, where E is a rank-two sheaf with Chern classes α. Let C be a class in \overline{K}. Because of the definition of \overline{K} and the G.R.R. theorem, we have

\[
\text{deg}(\psi(C) \cdot l) = \left[\text{ch}(p_{23}^{*}C \otimes p_{13}^{*}E|_{t} \otimes p_{13}^{*}E|_{l}) \cdot p_{23}^{*}td(X \times X)|_{1 \times X \times X} \cdot \mathcal{O}(1)\right]_{1 \times X \times X} = \chi(X \times X, C \otimes (\pi_{1}^{*}F \otimes \pi_{2}^{*}E + \pi_{2}^{*}F \otimes \pi_{1}^{*}E)).
\]
By the projection formula and again by the definition of \tilde{K}, the last term equals
\[
\chi(X \times X, C \otimes \{\pi_1^*(F + G + F - G) \boxtimes \pi_2^*(E) + \pi_2^*(F + G + F - G) \boxtimes \pi_1^*(E)\}) / 2
\]
\[
- \chi(X \times X, C \boxtimes \{\pi_1^*(F - G) \boxtimes \pi_2^*(E) + \pi_2^*(F - G) \boxtimes \pi_1^*(E)\}) / 2
\]
\[
= [\pi_1^*td(X) \cdot \pi_2^*td(X) \cdot ch(C) \cdot \{\pi_1^*ch(F - G) \cdot \pi_2^*ch(E) + \pi_2^*ch(F - G) \cdot \pi_1^*ch(E)\}]_0 / 2
\]
\[
= [\{\pi_1^*(ch(C) \cdot \pi_2^*(td(X)ch(E))) + \pi_2^*(ch(C) \cdot \pi_1^*(td(X)ch(E)))\} \cdot td(X)ch(F - G)]_0 / 2.
\]
From [1, Section 3], if we denote $\xi = c_1(F) - c_1(G) \in NS(X)$, $n = c_2(F)$ and $m = c_2(G)$, then $W^\xi = \{H \in \text{Amp}(X) | H \cdot \xi = 0\}$ equals W and one can check that
\[
\text{td}(X) \cdot ch(F - G) = (0, \xi, (a_0 - 1)(H_+ - H_-) \cdot \xi).
\]
Then there are exact sequences on $X \times l_i$
\[
0 \rightarrow \pi_i^*F \otimes \mathcal{O}_{\mathbb{P}^N}(1) \rightarrow \mathcal{E}|_{l_i} \otimes \pi_2^*L \rightarrow \pi_i^*G \rightarrow 0,
\]
where F_i and G_i are coherent sheaves on X, and L_i is a line bundle on l_i, for $i = 1, 2$. Since the wall defined by $\xi_i = c_1(F_i) - c_1(G_i)$ equals W for $i = 1, 2$, there is a rational number r such that $\xi_1 = r\xi_2$ in Num(X). Then (4) and (7) imply that $l_1 \equiv r \cdot l_2$ in $N_1(M+/M_0)$. As a result, we have $\overline{\text{NE}}(\phi_+) = \mathbb{R}_{\geq 0} \cdot l$.

Now $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\text{NE}}(M_+)$. Indeed, let $u_i \in \overline{\text{NE}}(M_+)$ $(i = 1, 2)$ satisfy that $u_1 + u_2 \in \mathbb{R}_{\geq 0} \cdot l$. Then, for any $H \in \text{Amp}(M_0)$, $0 = (u_1 + u_2) \cdot \phi_+^*(H) = u_1 \cdot \phi_+^*(H) + u_2 \cdot \phi_+^*(H)$. Since $u_i \in \overline{\text{NE}}(M_+)$, we have $u_i \cdot \phi_+^*(H) \geq 0$, and hence $u_i \cdot \phi_+^*(H) = 0$ for $i = 1, 2$. Recall that, by Example-Exercise 3-5-1 in [7], a natural inclusion $N_1(\phi_+) \subset N_1(M_+)$ identifies $\overline{\text{NE}}(\phi_+)$ with
\[
\{z \in \overline{\text{NE}}(M_+) \mid z \cdot \phi_+^*(H) = 0 \text{ for any } H \in \text{Amp}(M_0)\}.
\]
Thereby $u_i \in \overline{\text{NE}}(\phi_+) = \mathbb{R}_{\geq 0} \cdot l$.

Last, ϕ_+ is the contraction of $\mathbb{R}_{+} \cdot l$. Indeed, for any irreducible curve $C \subset M_+$, one can verify that $\phi_+(C)$ is a point if and only if $C \subset \mathbb{R}_{+} \cdot l$ by using arguments above. Also it holds that $\phi_+(\mathcal{O}_{M_+}) \simeq \mathcal{O}_{M_0}$, since one can show that M_0 is normal from conclusions in Lemma 1.1 and Serre’s criterion of normality, and so we conclude the proof of this proposition.

2. Some extremal faces of $M(H)$

Now we suppose that a polarization H_+ is α-generic and contained in an α- chamber \mathcal{C}, with which two different α-walls W_1 and W_2 contact, that a polarization H_0 is contained in $W_1 \cap W_2 \cap \mathcal{C}$, and that no α-wall except W_1 and W_2 contains H_0. Similarly to [1, Section 3], for $\alpha \in [0, 1]$ one can define the α-stability of a coherent sheaf on X and the moduli scheme $M(\alpha)$ of α-semistable rank-two sheaves on X with fixed Chern classes in such a way that $M(1) = M(H_0)$ and $M(\epsilon) = M(H_+)$ if $\epsilon \geq 0$ is sufficiently small. Let a_\pm be minichambers separated by just one miniface a_0. Then Proposition 2.1 below says that $\rho(M+/M_0)$ can be greater than 1, $\overline{\text{NE}}(M_+)$ can have an extremal face with dim ≥ 2, and so $\overline{\text{NE}}(M_+)$ can admit a “polyhedral-like part.”
Let $P_+ \subset M_+^a$ be the set defined at (5). Every member $E \in P_+$ has a Harder-Narasimhan filtration with respect to a_-, that is given by a nontrivial exact sequence
\[0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0, \]
and then one can check that the wall defined by $\xi(E) := c_1(F) - c_1(G) \in \text{NS}(X)$ equals W_1 or W_2 because of the way to derive a_\pm from H_\pm. For $j = 1, 2$, we define a set
\[P_+ \supset P^{(j)}_+ = \{ [E] \in P_+ \mid \text{the wall defined by } \xi(E) \text{ equals } W_j \}. \]

Then, from the uniqueness of a_--HNF, $P^{(j)}_+$ is a union of some connected components of P_+, and it holds that $P^{(1)}_+ \cap P^{(2)}_+ = \emptyset$.

Proposition 2.1. Suppose that both $P^{(1)}_+$ and $P^{(2)}_+$ are non-empty. Then $\overline{\text{NE}}(M_+)$ has a two-dimensional extremal face spanned by $\mathbb{R}_{\geq 0} \cdot l_1$ and $\mathbb{R}_{\geq 0} \cdot l_2$, where $l_j \simeq \mathbb{P}^1$ is a line contained in $\phi^{-1}_+(t_j) \simeq \mathbb{P}^{N_j}$ with some $t_j \in \phi_+(P^{(j)}_+)$, for $j = 1, 2$. The morphism ϕ_+ is the contraction of this extremal face.

Proof. If a sheaf $E_j \in M_+^a$ is a member of $l_j \subset P_+$, then one can check that $\mathbb{R} \cdot \xi(E_1)$ does not contain $\xi(E_2)$ in $\text{Num}(X)$ since $W_1 \neq W_2$. Thus it follows from (7) that the ray $\mathbb{R}_{\geq 0} \cdot l_1$ does not contain l_2 in N_1. In a similar way to the proof of Proposition 1.5, we can check that (i) $\overline{\text{NE}}(\phi_+) = \mathbb{R}_{\geq 0} \cdot l_1 + \mathbb{R}_{\geq 0} \cdot l_2$, (ii) this is a two-dimensional extremal face of $\overline{\text{NE}}(M_+)$, and (iii) ϕ_+ is the contraction of this extremal face.

Similarly, suppose that different a-walls W_j $(1 \leq j \leq N)$ contact with an a-chamber C containing H_+ and satisfy that $\cap_{j=1}^N W_j \cap C$ is non-empty. Then $\rho(M_+/M_0)$ can be N or more, and $\overline{\text{NE}}(M_+)$ can have an extremal face with dim $\geq N$.

Remark 2.2. There does exist an example of a surface X, a class α with $4c_2 - c_1^2 \gg 0$, an a-chamber C, two a-walls W_1 and W_2, an α-generic polarization H_+, a polarization H_0, a minichamber a_+ and a miniwall a_0 such that both $P^{(1)}_+$ and $P^{(2)}_+$ are non-empty. We leave it to the reader to find such examples. In rank-two case, the definition of a-walls is rather numerical. Hence if one grasps the structure of $\text{Amp}(X)$, then it may be just a calculating exercise to find such an example. Remark that, when X is an Abelian surface, $\text{Amp}(X)$ is just a connected component of the big cone of X.

References

E-mail address: kyamada@math.kyoto-u.ac.jp

Department of mathematics, Kyoto University, Japan