# $K$-FLIPS AND VARIATION OF MODULI SCHEME OF SHEAVES ON A SURFACE, II 

KIMIKO YAMADA

## Introduction

We shall consider some analogy between the wall-crossing problem of moduli schemes of stable sheaves on a surface, and the minimal model program of higherdimensional varieties. This article is a continuation of [10].

Let $X$ be a non-singular projective surface over $\mathbb{C}$, and $H$ an ample line bundle on $X$. Denote by $M(H)$ (resp. $\left.M^{s}(H)\right)$ the coarse moduli scheme of rank-two $H$ semistable (resp. $H$-stable) sheaves on $X$ with Chern class $\alpha=\left(c_{1}, c_{2}\right) \in \operatorname{Pic}(X) \times \mathbb{Z}$.

Let $H_{-}$and $H_{+}$be $\alpha$-generic polarizations such that just one $\alpha$-wall $W$ separates them For $a \in[0,1]$ one can define the $a$-semistability of sheaves on $X$ and the coarse moduli scheme $M(a)$ (resp. $\left.M^{s}(a)\right)$ of rank-two $a$-semistable (resp. $a$-stable) sheaves with Chern classes $\alpha$ in such a way that $M(\epsilon)=M\left(H_{+}\right)$and $M(1-\epsilon)=M\left(H_{-}\right)$if $\epsilon>0$ is sufficiently small. $M(a)$ is projective over $\mathbb{C}$. Let $a_{-}<a_{+}$be minichambers separated by only one miniwall $a_{0}$, and denote $M_{+}=M\left(a_{+}\right), M_{-}=M\left(a_{-}\right)$and $M_{0}=M\left(a_{0}\right)$. There are natural morphisms $\phi_{-}: M_{-} \rightarrow M_{0}$ and $\phi_{+}: M_{+} \rightarrow M_{0}$ ([1], [2], [8]). One may say they are morphisms of moduli schemes coming from wall-crossing methods. Let $\phi_{-}: V_{-} \rightarrow V_{0}$ be a birational projective morphism such that (1) $V_{-}$is normal, (2) $-K_{V_{-}}$is $\mathbb{Q}$-Cartier and $\phi_{-}$-ample, (3) the codimension of the exceptional set $\operatorname{Exc}\left(\phi_{-}\right)$is more than 1, and (4) the relative Picard number $\rho\left(V_{-} / V_{0}\right)$ of $\phi_{-}$is 1 . After the theory of minimal model program, we say a birational projective morphism $\phi_{+}: V_{+} \rightarrow V_{0}$ is a $K-f l i p$ of $\phi_{-}: V_{-} \rightarrow V_{0}$ if (1) $V_{+}$is normal, (2) $K_{V_{+}}$is $\mathbb{Q}$-Cartier and $\phi_{+}$-ample, (3) the codimension of the exceptional set $\operatorname{Exc}\left(\phi_{+}\right)$ is more than 1 , and (4) the relative Picard number $\rho\left(V_{+} / V_{0}\right)$ of $\phi_{+}$is 1 .

Theorem 0.1. Fix a closed, finite, rational polyhedral cone $\mathcal{S} \subset \overline{\operatorname{Amp}}(X)$ such that $\mathcal{S} \cap \partial \overline{\operatorname{Amp}}(X) \subset \mathbb{R}_{\geq 0} \cdot K_{X}$. If $c_{2}$ is sufficiently large with respect to $c_{1}$ and $\mathcal{S}$, then for any $\alpha$-generic polarizations $H_{-}$and $H_{+}$in $\mathcal{S}$ separated by just one $\alpha$-wall $W$, and for any adjacent minichambers $a_{-}<a_{+}$separated by a miniwall $a_{0}$ we have the following.
(i) $M_{ \pm}$are normal and $\mathbb{Q}$-factorial, $K_{M_{ \pm}}$are Cartier, $M_{ \pm}^{s}$ are l.c.i., and $M_{-}$and $M_{+}$are isomorphic in codimension 1.
(ii) Suppose $K_{X}$ does not lie in the $\alpha$-wall, and that $K_{X}$ and $H_{+}$lie in the same connected components of $\mathrm{NS}(X)_{\mathbb{R}} \backslash W$. Then $\rho\left(M_{-} / M_{0}\right)=1$ and $\phi_{+}: M_{+} \rightarrow M_{0}$ is a K-flip of $\phi_{-}: M_{-} \rightarrow M_{0}$. This morphism $\phi_{+}$(resp. $\phi_{-}$) is the contraction of an extremal ray of $\overline{\mathrm{NE}}\left(M_{+}\right)$(resp. $\overline{\mathrm{NE}}\left(M_{-}\right)$), which is described in moduli theory.
(iii) Suppose $X$ is minimal and $\kappa(X)>0$, which means $K_{X}$ is not numerically equivalent to 0 and contained in $\overline{\operatorname{Amp}}(X)$. Then there is a polarization, say $H_{X}$,

Received May 1, 2010. Accepted July 30, 2010.
1991 Mathematics Subject Classification. Primary 14J60; Secondary 14Exx, 14D20.
contained in $\mathcal{S}$ such that no $\alpha$-wall separates $H_{X}$ and $K_{X}$, and the canonical divisor of $M\left(H_{X}\right)$ is nef.

The greater part of this result has already appeared in [10, Theorem 1.1.]. In Section 1, we shall prove the remaining part of this theorem which has not appeared in [10], that largely is the statement about the $\mathbb{Q}$-factoriality of $M_{ \pm}$and $\rho\left(M_{ \pm} / M_{0}\right)$. The author was not aware of this part at the time of writing [10]. There is some application; suppose $X$ is minimal and $\kappa(X)>0$, and fix a polarization $L$ on $X$. If $c_{2}$ is sufficiently large with respect to $c_{1}$ and $L$, then one can observe a modulitheoretic analogue of the minimal model program of $M(L)$. Here "analogue" means that singularities of $M\left(H_{X}\right)$ are not considered. About this analogy, see Introduction in [10] for detail. We remark that a $K$-flip differs from a Thaddeus-type flip in [8].

In Section 2, we give some notes about extremal faces of $\overline{\mathrm{NE}}(M(H)) \subset N_{1}(M(H))$, where $H$ is an $\alpha$-generic polarization. We shall point out that some extremal faces with dim $\geq 2$ can appear in $\overline{\mathrm{NE}}(M(H))$ when $H$ gets closer to more than one $\alpha$-wall.

Acknowledgment. The author would like to express gratitude to Prof. D. Matsushita for valuable suggestions.

Notation. All schemes are locally of finite type over $\mathbb{C}$ or, more generally, an algebraically closed field of characteristic zero. For a projective scheme $V$ over $\mathbb{C}$, Num $(V)$ means $\operatorname{Pic}(V)$ modulo numerically equivalence. For any coherent sheaf $E$ on $V, \operatorname{Ext}_{V}^{i}(E, E)^{0}$ means the kernel of trace map $\operatorname{Ext}_{V}^{i}(E, E) \rightarrow H^{i}\left(\mathcal{O}_{V}\right)$.

## 1. Proof of Theorem

There is a union of hyperplanes $W \subset \operatorname{Amp}(X)$ called $\alpha$-walls in the ample cone $\operatorname{Amp}(X)$ such that $M(H)=M(H, \alpha)$ changes only when $H$ passes through $\alpha$-walls ([9]). A polarization on $X$ is called $\alpha$-generic if no $\alpha$-wall contains it. Now fix a closed, finite, rational polyhedral cone $\mathcal{S} \subset \overline{\operatorname{Amp}}(X)$ as in Theorem 0.1. Refer to [1, Section 3] about the $a$-stability, minichambers and miniwalls, which appeared in Introduction.

Lemma 1.1. If $c_{2}$ is sufficiently large with respect to $c_{1}$ and $\mathcal{S}$, then for any $\alpha$ generic polarizations $H_{-}$and $H_{+}$in $\mathcal{S}$ separated by just one $\alpha$-wall $W$, and for any adjacent minichambers $a_{-}$and $a_{+}$separated by a miniwall $a_{0}$, (i) $M_{ \pm}$are normal, (ii) $K_{M_{ \pm}}$are Cartier, (iii) $M_{ \pm}^{s}$ are l.c.i., (iv) $M_{-}$and $M_{+}$are isomorphic in codimension 4, and (v) our natural birational map $M_{-} \cdots>M_{+}$induces $\operatorname{Pic}\left(M_{-}^{s}\right) \simeq \operatorname{Pic}\left(M_{+}^{s}\right)$.
Proof. Fix a polarization $L \in \mathcal{S}$. If $c_{2}$ is sufficiently large w.r.t. $c_{1}$ and $L$, then $M(L)$ is normal, $M^{s}(L)$ is of expected dimension, and the codimension of $\operatorname{Sing}^{\prime}(M(L))$ in $M(L)$ is greater than 4 by [5] and [11], where Sing' $(M(L)) \subset M(L)$ is the closed subset consisting of sheaves $E$ such that $E$ is not $L$ - $\mu$-stable or that $\operatorname{Ext}_{X}^{2}(E, E)^{0} \neq 0$. One can check (iv) in a similar way to [10, Lemma 2.4.]. Now we compare $M(L)$ with $M_{+}$. By (iv) and the deformation theory of simple sheaves, $M_{+}^{s}$ is of expected dimension so it is l.c.i., and

$$
\begin{equation*}
\operatorname{codim}\left(\operatorname{Sing}^{\prime}\left(M_{+}\right), M_{+}\right)>4 \tag{1}
\end{equation*}
$$

Thereby $M_{+}^{s}$ is normal. Since $H_{ \pm}$are $\alpha$-generic and $a_{ \pm}$are minichambers, if a ranktwo sheaf $E$ with Chern classes $\alpha$ is $a_{-}$-semistable and not $a_{+}$-semistable, then $E$
is $H$-semistable for any polarization $H$, and so our birational map $M_{+} \cdots>M_{-}$is isomorphic near $M_{+} \backslash M_{+}^{s}$. Thus $M_{+}$is normal near $M_{+} \backslash M_{+}^{s}$, and accordingly $M_{+}$ itself is normal. Item (v) follows item (iv) and (1) because of Fact 1.3 below.Last, $M_{+}$is the GIT quotient of an open subset $R_{+}$of some Quot-scheme on $X$. Let $\mathcal{E}$ be a universal family of $R_{+}$on $X \times R_{+}$. Since $a_{+}$is not a miniwall, one can check that the line bundle $\operatorname{det} R \mathcal{H}$ om $_{p_{2}}(\mathcal{E}, \mathcal{E})$ on $R_{+}$descends to a line bundle on $M_{+}$, that equals $K_{M_{+}}$.

Next we recall a fact concerning $\operatorname{Pic}\left(M_{+}^{s}\right)$ from [6]. For a moment we assume $M_{+}^{s}$ has a universal family $\mathcal{E}$ on $X \times M_{+}^{s}$. Let $K$ be the Grothendieck group of $X \times X$ and let $\tilde{K}$ be the kernel of $\xi: K \rightarrow \mathbb{Z}$, that is defined by $\xi(C)=\chi\left(C \boxtimes \pi_{1}^{*} \mathcal{E} \boxtimes \pi_{2}^{*} \mathcal{E}\right)$. Here $\boxtimes$ denotes the tensor product of complexes. Let $\sigma: X \times X \rightarrow X \times X$ be the map exchanging factor and let $\operatorname{Pic}(X \times X)^{\sigma}$ be the subgroup consisting of line bundles invariant under $\sigma$. The map $\psi: \tilde{K} \rightarrow \operatorname{Pic}\left(M_{+}\right)$defined by

$$
\begin{equation*}
\psi(C)=\operatorname{det}\left(\left(p_{1}\right)_{!}\left(p_{23}^{*}(C) \boxtimes p_{12}^{*} \mathcal{E} \boxtimes p_{13}^{*} \mathcal{E}\right)\right) \quad(C \in \tilde{K}) \tag{2}
\end{equation*}
$$

induces a homomorphism

$$
\begin{equation*}
\Phi_{ \pm}: \operatorname{Pic}(X \times X)^{\sigma} \oplus \mathbb{Z} \longrightarrow \operatorname{Pic}\left(M_{ \pm}^{s}\right) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{12}\right] \tag{3}
\end{equation*}
$$

as explained in [6, p. 132]. One can define $\Phi$ also when $M_{+}^{s}$ do not necessarily admit a universal family.

Proposition 1.2. Let $a_{ \pm}$be a minichamber satisfying assumptions in Lemma 1.1. If $c_{2}$ is sufficiently large with respect to $c_{1}$ and $\mathcal{S}$, then

$$
\begin{equation*}
\Phi_{ \pm} \otimes \mathbb{Q}: \operatorname{Pic}(X \times X)^{\sigma} \otimes \mathbb{Q} \oplus \mathbb{Q} \rightarrow \operatorname{Pic}\left(M_{ \pm}^{s}\right) \otimes \mathbb{Q} \tag{4}
\end{equation*}
$$

is isomorphic.
Proof. One can verify this from Lemma 1.1 (v) and by reading [6] (especially Lemma 3.10.) carefully.

Before the proof of Theorem 0.1, recall a useful fact at [SGA2, p.132].
Fact 1.3. Let $W$ be any quasi-projective and l.c.i. scheme with $\operatorname{codim}(\operatorname{Sing}(W), W) \geq$ 4. Then for any closed subset $\Lambda \subset W$ of codimension at least two, the restriction map $\operatorname{Pic}(W) \rightarrow \operatorname{Pic}(W \backslash \Lambda)$ is an isomorphism.

Now we shall prove two propositions; those and [10] end the proof of Theorem 0.1.

Proposition 1.4. Let $a_{+}$be a minichamber satisfying assumptions in Lemma 1.1. Suppose $c_{2}$ is so large with respect to $c_{1}$ and $\mathcal{S}$ that $M_{ \pm}$are normal, $M_{ \pm}^{s}$ are l.c.i., $\operatorname{codim}\left(\operatorname{Sing}\left(M_{ \pm}^{s}\right), M_{ \pm}^{s}\right) \geq 4, \operatorname{codim}\left(M_{ \pm} \backslash M_{ \pm}^{s}, M_{ \pm}\right) \geq 2$, and the homomorphisms at (4) are isomorphic. Then $M_{ \pm}$are $\mathbb{Q}$-factorial.

Proof. First remark that assumptions in this proposition holds for $c_{2} \gg 0$ from Lemma 1.1, Proposition 1.2, [11], and [3, Theorem 9.1.2.]. We shall verify this only for $M_{+}$. Let $U$ be the open set $M_{+} \backslash \operatorname{Sing}\left(M_{+}\right)$in $M_{+}$. If $\mathrm{Cl}\left(M_{+}\right)$means its divisor class group generated by Weil divisors, then we have

$$
\mathrm{Cl}\left(M_{+}\right) \longrightarrow \mathrm{Cl}(U) \simeq \operatorname{Pic}(U) \longrightarrow \operatorname{Pic}\left(M_{+}^{s}\right),
$$

where the first map is restriction, the second map is isomorphism since $U$ is smooth, and the third map is an extension map, which is assured by Fact 1.3. Next, we have the following diagram.

where $\bar{\Phi}_{+}$is defined at the equation (1.13) in [6] since $H_{ \pm}$are $\alpha$-generic and $a_{+}$ is not a miniwall, and the second column is a restriction map. Proposition 1.2 implies that the second column is surjective. On the other hand, the assumptions in this proposition implies that the second column is injective. As a result we get a homomorphism $\mathrm{Cl}\left(M_{+}\right) \rightarrow \operatorname{Pic}\left(M_{+}\right) \otimes \mathbb{Q}$. Thus we end the proof.

For a projective morphism $f$, we define $N_{1}(f)$ and $\overline{\mathrm{NE}}(f)$ according to [4, Example 2.16], an extremal ray or extremal face of $\overline{\mathrm{NE}}(f)$ according to [4, Definition 1.15], and the contraction of an extremal ray or face according to [4, Definition 1.25].

Proposition 1.5. Let $a_{ \pm}$be minichambers as in Theorem 0.1. Suppose $c_{2}$ is sufficiently so large with respect to $c_{1}$ and $\mathcal{S}$ that conclusions in Lemma 1.1 and Proposition 1.2 hold good. Then we have the following. Let $t$ be any point in $\phi_{+}\left(\operatorname{Exec}\left(\phi_{+}\right)\right) \subset M_{0}$, and let $l \simeq \mathbf{P}^{1}$ be any line in $\phi_{+}^{-1}(t) \simeq \mathbf{P}^{N_{t}}$. Then $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\mathrm{NE}}\left(M_{+}\right)$, and $\phi_{+}$is the contraction of this extremal ray. In particular $\rho\left(M_{+} / M_{0}\right)=1$. The similar statement holds also for $\phi_{-}: M_{-} \rightarrow M_{0}$.

Proof. We check it for $a_{+}$; the proof is the same for $a_{-}$. For simplicity suppose that $M_{+}^{s}$ has a universal family $\mathcal{E}$ on $X \times M_{+}$, but the proof goes in a similar way for general case. The set

$$
\begin{equation*}
M_{+} \supset P_{+}=\left\{[E] \mid E \text { is not } a_{-} \text {-semistable }\right\} \tag{5}
\end{equation*}
$$

is contained in $M_{+}^{s}$ since we consider rank-two case. Take a point $t \in \phi_{+}\left(P_{+}\right)$. By Proposition 2.1. in [10], it holds that $\phi_{+}^{-1}(t) \simeq \mathbf{P}^{N}$, and there is a nontrivial exact sequence on $X \times \mathbf{P}^{N}$

$$
\begin{equation*}
\left.0 \longrightarrow \pi_{1}^{*} F \otimes \mathcal{O}_{\mathbf{P}^{N}}(1) \longrightarrow \mathcal{E}\right|_{\phi_{+}^{-1}(t)} \otimes \pi_{2}^{*} L \longrightarrow \pi_{1}^{*} G \longrightarrow 0 \tag{6}
\end{equation*}
$$

where $F$ and $G$ are coherent sheaves on $X$, which depends on the choice of $t$, and $L$ is a line bundle on $\phi_{+}^{-1}(t)$. Let $l \simeq \mathbf{P}^{1}$ be a line in $\phi_{+}^{-1}(t)$. Then (6) implies that $\operatorname{ch}\left(\left.\mathcal{E}\right|_{l}\right)=\operatorname{ch}(E)+\mathcal{O}_{l}(1) \cdot \operatorname{ch}(F)$ in $A(X \times l)$, where $E$ is a rank-two sheaf with Chern classes $\alpha$. Let $C$ be a class in $\tilde{K}$. Because of the definition of $\tilde{K}$ and the G.R.R. theorem, we have

$$
\begin{array}{r}
\operatorname{deg}(\psi(C) \cdot l)=\left[p_{1 *}\left(\operatorname{ch}\left(\left.\left.p_{23}^{*} C \boxtimes p_{12}^{*} \mathcal{E}\right|_{l} \boxtimes p_{13}^{*} \mathcal{E}\right|_{l}\right) \cdot p_{23}^{*} t d(X \times X)\right)\right]_{1, l \times X \times X} \cdot \mathcal{O}_{l}(1) \\
=\left[p _ { 1 * } \left(p_{23}^{*} \operatorname{ch}(C) \cdot\left\{p_{2}^{*} \operatorname{ch}(E)+p_{1}^{*} \mathcal{O}_{l}(1) \cdot p_{2}^{*} \operatorname{ch}(F)\right\} .\right.\right. \\
\left.\left.\left\{p_{3}^{*} \operatorname{ch}(E)+p_{1}^{*} \mathcal{O}_{l}(1) \cdot p_{3}^{*} \operatorname{ch}(F)\right\} \cdot p_{23}^{*} t d(X \times X)\right)\right]_{1, l \times X \times X} \cdot \mathcal{O}_{l}(1) \\
=\left[\operatorname{ch}(C) \cdot \operatorname{td}(X \times X) \cdot\left\{\pi_{1}^{*} \operatorname{ch}(F) \pi_{2}^{*} \operatorname{ch}(E)+\pi_{2}^{*} \operatorname{ch}(F) \pi_{1}^{*} \operatorname{ch}(E)\right\}\right]_{0, X \times X} \\
=\chi\left(X \times X, C \boxtimes\left(\pi_{1}^{*} F \boxtimes \pi_{2}^{*} E+\pi_{2}^{*} F \boxtimes \pi_{1}^{*} E\right)\right) .
\end{array}
$$

By the projection formula and again by the definition of $\tilde{K}$, the last term equals

$$
\begin{gathered}
\chi\left(X \times X, C \boxtimes\left\{\pi_{1}^{*}(F+G+F-G) \boxtimes \pi_{2}^{*}(E)+\pi_{2}^{*}(F+G+F-G) \boxtimes \pi_{1}^{*}(E)\right\}\right) / 2 \\
\quad=\chi\left(X \times X, C \boxtimes\left\{\pi_{1}^{*}(F-G) \boxtimes \pi_{2}^{*}(E)+\pi_{2}^{*}(F-G) \boxtimes \pi_{1}^{*}(E)\right\}\right) / 2= \\
{\left[\pi_{1}^{*} t d(X) \cdot \pi_{2}^{*} t d(X) \cdot \operatorname{ch}(C) \cdot\left\{\pi_{1}^{*} \operatorname{ch}(F-G) \cdot \pi_{2}^{*} \operatorname{ch}(E)+\pi_{2}^{*} \operatorname{ch}(F-G) \cdot \pi_{1}^{*} \operatorname{ch}(E)\right\}\right]_{0} / 2=} \\
{\left[\left\{\pi_{1 *}\left(\operatorname{ch}(C) \cdot \pi_{2}^{*}(t d(X) \operatorname{ch}(E))\right)+\pi_{2 *}\left(\operatorname{ch}(C) \cdot \pi_{1}^{*}(t d(X) \operatorname{ch}(E))\right)\right\} \cdot t d(X) \operatorname{ch}(F-G)\right]_{0} / 2 .}
\end{gathered}
$$

From [1, Section 3], if we denote $\xi=c_{1}(F)-c_{1}(G) \in \operatorname{NS}(X), n=c_{2}(F)$ and $m=c_{2}(G)$, then $W^{\xi}=\{H \in \operatorname{Amp}(X) \mid H \cdot \xi=0\}$ equals $W$ and one can check that $t d(X) \cdot \operatorname{ch}(F-G)=\left(0, \xi,\left(a_{0}-1\right)\left(H_{+}-H_{-}\right) \cdot \xi\right)$. Thereby one can verify that

$$
\begin{align*}
& \operatorname{deg}(\psi(C) \cdot l)=\left[\left\{\pi_{1 *}\left(C \cdot \pi_{2}^{*} \operatorname{td}(X)\right)+\pi_{2 *}\left(C \cdot \pi_{1}^{*} t d(X)\right)\right\}^{1}+\right.  \tag{7}\\
& \left.\quad\left(a_{0}-1\right)\left\{\pi_{1 *}\left(C \cdot \pi_{2}^{*} t d(X)\right)+\pi_{2 *}\left(C \cdot \pi_{1}^{*} t d(X)\right)\right\}^{0} \cdot\left(H_{+}-H_{-}\right)\right] \cdot \xi / 2
\end{align*}
$$

Now we shall show that $\mathrm{rk} N_{1}\left(M_{+} / M_{0}\right)=1$. If we pick two points $t_{1}$ and $t_{2}$ in $\phi_{+}\left(P_{+}\right)$, then $\phi_{+}^{-1}\left(t_{i}\right) \simeq \mathbf{P}^{N_{i}}$ for $i=1,2$. Fix lines $l_{i} \subset \phi_{+}^{-1}\left(t_{i}\right)$. Then there are exact sequences on $X \times l_{i}$

$$
\left.0 \longrightarrow \pi_{1}^{*} F_{i} \otimes \mathcal{O}_{\mathbf{P}^{N}}(1) \longrightarrow \mathcal{E}\right|_{L_{i}} \otimes \pi_{2}^{*} L_{i} \longrightarrow \pi_{1}^{*} G_{i} \longrightarrow 0
$$

where $F_{i}$ and $G_{i}$ are coherent sheaves on $X$, and $L_{i}$ is a line bundle on $l_{i}$, for $i=1,2$. Since the wall defined by $\xi_{i}=c_{1}\left(F_{i}\right)-c_{1}\left(G_{i}\right)$ equals $W$ for $i=1,2$, there is a rational number $r$ such that $\xi_{1}=r \xi_{2}$ in $\operatorname{Num}(X)$. Then (4) and (7) imply that $l_{1} \equiv r \cdot l_{2}$ in $N_{1}\left(M_{+} / M_{0}\right)$. As a result, we have $\overline{\mathrm{NE}}\left(\phi_{+}\right)=\mathbb{R}_{\geq 0} \cdot l$.

Now $\mathbb{R}_{\geq 0} \cdot l$ is an extremal ray of $\overline{\mathrm{NE}}\left(M_{+}\right)$. Indeed, let $u_{i} \in \overline{\mathrm{NE}}\left(M_{+}\right)(i=1,2)$ satisfy that $u_{1}+u_{2} \in \mathbb{R}_{\geq 0} \cdot l$. Then, for any $H \in \operatorname{Amp}\left(M_{0}\right), 0=\left(u_{1}+u_{2}\right) \cdot \phi_{+}^{*}(H)=$ $u_{1} \cdot \phi_{+}^{*}(H)+u_{2} \cdot \phi_{+}^{*}(H)$. Since $u_{i} \in \overline{\mathrm{NE}}\left(M_{+}\right)$, we have $u_{i} \cdot \phi_{+}^{*}(H) \geq 0$, and hence $u_{i} \cdot \phi_{+}^{*}(H)=0$ for $i=1,2$. Recall that, by Example-Exercise 3-5-1 in [7], a natural inclusion $N_{1}\left(\phi_{+}\right) \subset N_{1}\left(M_{+}\right)$identifies $\overline{\mathrm{NE}}\left(\phi_{+}\right)$with

$$
\left\{z \in \overline{\mathrm{NE}}\left(M_{+}\right) \mid z \cdot \phi_{+}^{*}(H)=0 \text { for any } H \in \operatorname{Amp}\left(M_{0}\right)\right\} .
$$

Thereby $u_{i} \in \overline{\mathrm{NE}}\left(\phi_{+}\right)=\mathbb{R}_{\geq 0} \cdot l$.
Last, $\phi_{+}$is the contraction of $\mathbb{R}_{+} \cdot l$. Indeed, for any irreducible curve $C \subset M_{+}$, one can verify that $\phi_{+}(C)$ is a point if and only if $C \in \mathbb{R}_{+} \cdot l$ by using arguments above. Also it holds that $\phi_{+*}\left(\mathcal{O}_{M_{+}}\right) \simeq \mathcal{O}_{M_{0}}$, since one can show that $M_{0}$ is normal from conclusions in Lemma 1.1 and Serre's criterion of normality, and so we conclude the proof of this proposition.

## 2. Some extremal faces of $M(H)$

Now we suppose that a polarization $H_{+}$is $\alpha$-generic and contained in an $\alpha$ chamber $\mathcal{C}$, with which two different $\alpha$-walls $W_{1}$ and $W_{2}$ contact, that a polarization $H_{0}$ is contained in $W_{1} \cap W_{2} \cap \overline{\mathcal{C}}$, and that no $\alpha$-wall except $W_{1}$ and $W_{2}$ contains $H_{0}$. Similarly to [1, Section 3], for $a \in[0,1]$ one can define the $a$-stability of a coherent sheaf on $X$ and the moduli scheme $M(a)$ of $a$-semistable rank-two sheaves on $X$ with fixed Chern classes in such a way that $M(1)=M\left(H_{0}\right)$ and $M(\epsilon)=M\left(H_{+}\right)$if $\epsilon \geq 0$ is sufficiently small. Let $a_{ \pm}$be minichambers separated by just one miniwall $a_{0}$. Then Proposition 2.1 below says that $\rho\left(M_{+} / M_{0}\right)$ can be greater than $1, \overline{\mathrm{NE}}\left(M_{+}\right)$can have an extremal face with $\operatorname{dim} \geq 2$, and so $\overline{\mathrm{NE}}\left(M_{+}\right)$can admit a "polyhedral-like part".

Let $P_{+} \subset M_{+}^{s}$ be the set defined at (5). Every member $E \in P_{+}$has a HarderNarasimhan filtration with respect to $a_{-}$, that is given by a nontrivial exact sequence

$$
0 \longrightarrow F \longrightarrow E \longrightarrow G \longrightarrow 0
$$

and then one can check that the wall defined by $\xi(E):=c_{1}(F)-c_{1}(G) \in \operatorname{NS}(X)$ equals $W_{1}$ or $W_{2}$ because of the way to derive $a_{ \pm}$from $H_{ \pm}$. For $j=1,2$, we define a set

$$
P_{+} \supset P_{+}^{(j)}=\left\{[E] \in P_{+} \mid \text {the wall defined by } \xi(E) \text { equals } W_{j}\right\} .
$$

Then, from the uniqueness of $a_{-}-\mathrm{HNF}, P_{+}^{(j)}$ is a union of some connected components of $P_{+}$, and it holds that $P_{+}^{(1)} \cap P_{+}^{(2)}=\emptyset$.
Proposition 2.1. Suppose that both $P_{+}^{(1)}$ and $P_{+}^{(2)}$ are non-empty. Then $\overline{\mathrm{NE}}\left(M_{+}\right)$ has a two-dimensional extremal face spanned by $\mathbb{R}_{\geq 0} \cdot l_{1}$ and $\mathbb{R}_{\geq 0} \cdot l_{2}$, where $l_{j} \simeq \mathbf{P}^{1}$ is a line contained in $\phi_{+}^{-1}\left(t_{j}\right) \simeq \mathbf{P}^{N_{j}}$ with some $t_{j} \in \phi_{+}\left(P_{+}^{(j)}\right)$, for $j=1,2$. The morphism $\phi_{+}$is the contraction of this extremal face.
Proof. If a sheaf $E_{j} \in M_{+}^{s}$ is a member of $l_{j} \subset P_{+}$, then one can check that $\mathbb{R} \cdot \xi\left(E_{1}\right)$ does not contain $\xi\left(E_{2}\right)$ in $\operatorname{Num}(X)$ since $W_{1} \neq W_{2}$. Thus it follows from (7) that the ray $\mathbb{R}_{\geq 0} \cdot l_{1}$ does not contain $l_{2}$ in $N_{1}\left(M_{+}\right)$. In a similar way to the proof of Proposition 1.5, we can check that (i) $\overline{\mathrm{NE}}\left(\phi_{+}\right)=\mathbb{R}_{\geq 0} \cdot l_{1}+\mathbb{R}_{\geq 0} \cdot l_{2}$, (ii) this is a two-dimensional extremal face of $\overline{\mathrm{NE}}\left(M_{+}\right)$, and (iii) $\phi_{+}$is the contraction of this extremal face.

Similarly, suppose that different $\alpha$-walls $W_{j}(1 \leq j \leq N)$ contact with an $\alpha$ chamber $\mathcal{C}$ containing $H_{+}$and satisfy that $\cap_{j=1}^{N} W_{j} \cap \overline{\mathcal{C}}$ is non-empty. Then $\rho\left(M_{+} / M_{0}\right)$ can be $N$ or more, and $\overline{\mathrm{NE}}\left(M_{+}\right)$can have an extremal face with $\operatorname{dim} \geq N$.
Remark 2.2. There does exist an example of a surface $X$, a class $\alpha$ with $4 c_{2}-$ $c_{1}^{2} \gg 0$, an $\alpha$-chamber $\mathcal{C}$, two $\alpha$-walls $W_{1}$ and $W_{2}$, an $\alpha$-generic polarization $H_{+}$, a polarization $H_{0}$, a minichamber $a_{+}$and a miniwall $a_{0}$ such that both $P_{+}^{(1)}$ and $P_{+}^{(2)}$ are non-empty. We leave it to the reader to find such examples. In rank-two case, the definition of $\alpha$-walls is rather numerical. Hence if one grasps the structure of $\operatorname{Amp}(X)$, then it may be just a calculating exercise to find such an example. Remark that, when $X$ is an Abelian surface, $\operatorname{Amp}(X)$ is just a connected component of the big cone of $X$.

## References

[1] G. Ellingsrud and L. Göttsche, Variation of moduli spaces and Donaldson invariants under change of polarization, J. Reine Angew. Math. 467 (1995), 1-49.
[2] R. Friedman and Z. Qin, Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces, Comm. Anal. Geom. 3 (1995), no. 1-2, 11-83.
[3] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Friedr. Vieweg \& Sohn, 1997.
[4] J. Kollár and S. Mori, Birational geometry of algebraic varieties, vol. 134, Cambridge University Press, 1998.
[5] J. Li, Kodaira dimension of moduli space of vector bundles on surfaces, Invent. Math. 115 (1994), no. 1, 1-40
[6] , Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 129-146.
[7] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002.
[8] K. Matsuki and R. Wentworth, Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Internat. J. Math. 8 (1997), no. 1, 97-148.
[9] Z. Qin, Birational properties of moduli spaces of stable locally free rank-2 sheaves on algebraic surfaces, Manuscripta Math. 72 (1991), no. 2, 163-180.
[10] K. Yamada, Flips and variation of moduli scheme of sheaves on a surface, J. Math. Kyoto Univ. 49 (2009), no. 2, 419-425, arXiv:0811.3522.
[11] K. Zuo, Generic smoothness of the moduli spaces of rank two stable vector bundles over algebraic surfaces, Math. Z. 207 (1991), no. 4, 629-643.
E-mail address: kyamada@math.kyoto-u.ac.jp
Department of mathematics, Kyoto University, Japan

