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Descending chain condition for stringy invariants

By

Nobuyoshi Takahashi *

Abstract

It is known that the degree of the stringy \mathrm{E}‐function of a \log terminal singularity is

related to the minimal log discrepancy, and the minimal \log discrepancies of certain classes of

singularities satisfy the ascending chain condition. We ask if the stringy \mathrm{E}‐functions of certain

classes of varieties satisfy the descending chain condition. As an example, we look at the case of

toric varieties. We also comment on the non‐standard counting measure, for which the author

asked the question of descending chain condition in [T].

§1. Introduction

Let (X, B) be a Kawamata \log terminal pair over \mathbb{C} , where B=\displaystyle \sum b_{i}B_{i} is a

boundary \mathbb{R}‐divisor. Batyrev([Ba1], [Ba2]) defined its stringy \mathrm{E}‐function E_{st}(X, B;u, v)
as follows. First of all, the usual \mathrm{E}‐polynomial of an algebraic variety X is defined

as E(X;u, v)=\displaystyle \sum(-1)^{k}h^{ij}(H_{c}^{k}(X, \mathbb{C}))u^{i}v^{j} . Take a \log resolution  $\rho$ :  Y\rightarrow X
,

let

(D_{i})_{i\in I} denote the exceptional divisors and proper transforms of B_{i} ,
and a(D_{i};X, B)

the discrepancies. For J\subseteq I ,
write D_{J}:=\displaystyle \bigcap_{j\in J}D_{j} and D_{J}^{\mathrm{o}} :=D_{J}\displaystyle \backslash \bigcup_{i\not\in J}D_{i} . The

stringy \mathrm{E}‐function is then defined to be

E_{st}(X, B;u, v):=\displaystyle \sum_{J\subseteq I}E(D_{J}^{\mathrm{o}};u, v)\prod_{j\in J}\frac{uv-1}{(uv)^{a(D_{j};X,B)+1}-1}.
This is independent of the \log resolution. Batyrev proved this fact by using motivic

integrations. Another method is to use the Weak Factorization Theorem([AKMW]).
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To be rigorous, the �function� E_{st}(X, B;u, v) is an element of a ring Â, which is

definedl as

\displaystyle \{\sum_{p,q\in \mathbb{R}}a_{pq}u^{p}v^{q}|a_{pq}\in \mathbb{R}, \mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t} here a \mathrm{r}\mathrm{e}\mathrm{o}\mathrm{n}1\mathrm{y}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}1\mathrm{y}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{y}p
with p +q>-N\mathrm{a}\mathrm{n}\mathrm{d}a_{pq}\neq 0\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}N

� q\}
Thus E_{st} is a power series in u and v

,
in negative direction. Note that E_{st} is symmetric

in u and v . Let \hat{A}_{sym} denote the subring of Â consisting of elements symmetric in u

and v.

\mathrm{E}‐polynomials are additive, i.e. E(X)=E(X\backslash Y)+E(Y) for any variety X and

its closed subset Y
,

and multiplicative, i.e. E(X\times Y)=E(X)E(Y) for any varieties X

and Y . This shows that the \mathrm{E}‐polynomial is a kind of measure. The stringy \mathrm{E}‐function

can be considered as a kind of volume that takes the singularities into account. To see

how the singularities affect E_{st} ,
let us look at one summand in the defining formula. It

is of the form

( (uv)^{\dim D_{J}}+( lower order)) \displaystyle \prod_{j\in J} ( (uv)^{-a(D_{j})}+( lower order))

=(uv)^{\dim X-$\Sigma$_{j\in J}(a(D_{j})+1)}+ (lower order).

Thus we can roughly say that if the singularities are worse, then a(D) is smaller and

therefore E_{st} is bigger, assuming that we regard uv as big. To be more specific, it

has been known that the degree of E_{st} of a singularity is related to the minimal \log

discrepancy: For a point  P\in X ,
let \mathrm{m}\mathrm{l}\mathrm{d}(P;X, B) denote the minimal \log discrepancy

over  P and let E_{st}(P;X, B;u, v)=E_{st}(X, B;u, v)-E_{st}(X\backslash P, B|_{X\backslash P};u, v) . Then the

highest total‐degree part of E_{st}(P;X, B;u, v) is (uv)^{\dim X-\mathrm{m}\mathrm{l}\mathrm{d}(P;X,B)} times the number

of divisors with the minimal \log discrepancy. Let us pay attention to the following
important properties of the minimal \log discrepancies.

(1) The minimal \log discrepancy does not increase, and sometimes decreases, in the

course of MMP.

(2) The set of minimal \log discrepancies is expected to satisfy the ascending chain

condition under various settings.

It is natural to ask2 if something analogous can be said about the stringy \mathrm{E}‐functions.

More precisely, can one define (partial, \mathrm{p}\mathrm{r}\mathrm{e}- ) order of power series for which uv is big
and the stringy \mathrm{E}‐functions satisfy properties similar to (1) and (2) above?

Let us give a few examples of ordering.
lIn [Ba2, Definition 2.7], Â is defined as a certain completion of \mathbb{Z}[$\tau$^{\pm}][$\theta$^{\mathbb{Q}}] . One may replace $\theta$^{\mathbb{Q}} by

$\theta$^{\mathbb{R}} , and our definition is related to this by u= $\tau \theta$^{-1} and v=$\tau$^{-1}$\theta$^{-1}.
2The question about DCC is a variant of [ \mathrm{T}

, Problem 2.15]. See §2.
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Definition 1.1. Let f(u, v) be an element of \hat{A}_{sym}.
\bullet  f(u, v)>00 if the highest total‐degree part is of the form a_{s}(uv)^{s} with a_{S}>0 . This

defines a partial order.

\bullet Let Â� denote the field

\displaystyle \{\sum_{s\in \mathbb{R}}a_{S}w^{s}|a_{s}\in \mathbb{R} ,
there are only finitely many s>-N with a_{S}\neq 0 ,

for any N\},
and consider the lexicographic order > on Â�. That is, if f=\displaystyle \sum_{s\leq s_{0}}a_{S}w^{S} is an

element of Â� with a_{s_{0}}\neq 0 ,
then f>0 if and only if a_{s_{0}}>0 . This order makes

Â� an ordered field. For t\in \mathbb{R}\cup S^{1} ,
let f_{t}(w) :=f(tw, t^{-1}w) , by which we mean

u^{p}v^{q}+u^{q}v^{p}\mapsto w^{p+q}(t^{p-q}+t^{q-p}) . We obtain a homomorphism \hat{A}_{sym}\rightarrow\hat{A}' in this

way. (A better choice for the parameter might be t+t^{-1}\in \mathbb{R}. ) Declare  f(u, v)>_{t}0\sim
if  f_{t}\geq 0 . The relation \sim>_{t} is a total preorder.

\bullet More generally, one can define a partial preorder \sim^{ $\tau$}> for any T\subseteq \mathbb{R}\cup S^{1} , by

f>\sim^{ $\tau$}0\Leftrightarrow\forall t\in T, f>_{t}\sim 0 It is a partial order if T is either infinite or contains

a transcendental number. In fact, assume that f>\sim^{ $\tau$}0 and 0>\sim^{ $\tau$}f holds for some

f\in\hat{A}_{sym}\backslash \{0\} . This is equivalent to saying f_{t}=0 for all t\in T . In particular,
if we write the highest degree part of f as (uv)g(u, v) ,

where g is a homogeneous

polynomial, then we have g(t, t^{-1})=0 for all t\in T . Therefore, T must be a finite

set of algebraic numbers.

For any of the (pre‐)orders above, the stringy \mathrm{E}‐function strictly decreases after

any MMP step, as is easily seen from the defining formula. Similarly, if X is projective,
has only terminal singularities, say, and is not uniruled, then X is a minimal model if

and only if its stringy \mathrm{E}‐function is minimal among terminal varieties birational to X.

It is tempting to imagine that the set of stringy \mathrm{E}‐functions satisfies the descending
chain condition for certain classes of (X, B) — although the author is not so sure that

this point of view is useful in Minimal Model Program.
In the rest of this article, we give further motivating discussions and look at a few

examples. In §2, we comment on another stringy invariant called �stringy non‐standard

point counting�([T]). Since there is a natural ordering for such invariants, the question
of DCC will look more natural to the reader than in the case of orderings introduced

above, which might have been somewhat artificial. In §3, we look at two toric cases.

In the first, we allow only standard coefficients, and the result follows immediately
from Ambro�s boundedness of index([Am2]). The second is the case of 2‐dimensional

cyclic quotients, where the coefficients of the boundary are taken from a fixed set of

real numbers satisfying DCC. In §4, we ask a few bold questions, and give a couple of

remarks.
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§2. Non‐standard point counting

As explained in Introduction, \mathrm{E}‐polynomials can be considered as a kind of measure.

Over a finite field, counting the number of rational points gives a similar measure, and

over a field of characteristic 0 ,
we choose reductions to finite fields and take certain

limit to obtain a measure N. Then we replace \mathrm{E}‐polynomials by \mathfrak{N} in the definition of

stringy \mathrm{E}‐functions to obtain the stringy version \mathrm{N}_{st}.
We have a natural (partial) ordering for this invariant, so the question of descending

chain condition is more natural here. In fact, it was for this invariant that the author

originally posed the problem of \mathrm{D}\mathrm{C}\mathrm{C} ( [\mathrm{T} , Problem 2.15]). Below we summarize relevant

definitions and results from [T].

Definition 2.1. Let k be a field, \mathfrak{B} $\alpha$ \mathfrak{r}_{k} the category of varieties over k, \overline{\mathfrak{B} $\alpha$ \mathfrak{r}_{k}} the

set of isomorphism classes in \mathrm{V}\mathrm{a}\mathrm{r} . A map  $\mu$ : \overline{\mathfrak{B} $\alpha$ \mathfrak{r}_{k}}\rightarrow R to a ring R is called a motivic

measure if the following conditions hold:

(i)  $\mu$(X)= $\mu$(X\backslash Y)+ $\mu$(Y) for any variety X and its closed subvariety Y.

(ii)  $\mu$(X\times Y)= $\mu$(X) $\mu$(Y) for any varieties X and Y.

In particular, the assignment X\mapsto E(X;u, v) is a motivic measure.

For a motivic measure  $\mu$ ,
we would like to define its stringy version  $\mu$_{st} . The

following gives a condition for this to be possible.

Proposition‐Definition 2.2. Assume that k is of characteristic 0 . Let  $\mu$ be a

motivic measure with values in a ring  R and p:\mathbb{R}\rightarrow R^{\times} a group homomorphism with

p(1)= $\mu$(\mathrm{A}^{1}) . Write  $\mu$(\mathrm{A}^{1})^{s} for p(s) and assume that  $\mu$(\mathrm{A}^{1})^{s}-1 is invertible for any

s>0.

Let (X, B) be a Kawamata log terminal pair over k . Ta ke a log resolution  $\rho$ :

 Y\rightarrow X
,

denote the exceptional divisors and proper transfO rms of components of B by

(D_{i})_{i\in I} ,
and the discrepancies by a(D_{i};X, B) . For J\subseteq I , write D_{J}:=\displaystyle \bigcap_{j\in J}D_{j} and

D_{J}^{\mathrm{o}}:=D_{J}\displaystyle \backslash \bigcup_{i\not\in J}D_{i} . Then

$\mu$_{st}(X, B):=\displaystyle \sum_{J\subseteq I} $\mu$(D_{J}^{\mathrm{o}})\prod_{j\in J}\frac{ $\mu$(\mathrm{A}^{1})-1}{ $\mu$(\mathrm{A}^{1})^{a(D_{j};X,B)+1}-1}
is independent of the log resolution.
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Proof. Proposition 2.3 and Remark 2.8 of [V] can be extended to allow \mathbb{R}‐divisors

as boundaries. Since our assumption implies that  $\mu$ factors through the ring \mathcal{R} of [V,
§1.8(1)], with exponents extended to \mathbb{R}

,
our proposition follows. \square 

As such a measure, we define the �non‐standard point counting measure� N. Let

k be a field and

\mathcal{R}:= { A\subseteq k : subring which is finitely generated over the smallest subring},
S:= { R\subseteq k|R=A_{\mathfrak{m}} for some A\in \mathcal{R} and a maximal ideal \mathfrak{m} }.

We want to take reductions to finite fields. A variety over k lifts to a scheme over some

A\in \mathcal{R} and hence gives rise to schemes over elements of a certain subset of S ,
which

is not necessarily the whole S . Also the schemes obtained in this way depend on the

choice of the lifting. To obtain something well‐defined, we take the quotient by a filter

on S. (See [CK, Ch. 4 and Ch. 6 §2] for generalities on filters, reduced products and

ultraproducts.)
A filter \mathcal{F} on S is a nonempty subset of 2^{\mathcal{S}} satisfying

(i) \emptyset\not\in \mathcal{F},

(ii) U, V\in \mathcal{F}\Rightarrow U\cap V\in \mathcal{F},

(iii) U\in \mathcal{F}, V\supseteq U\Rightarrow V\in \mathcal{F}.

A maximal filter is called an ultrafilter.

Let (A_{R})_{R\in S} be a family of sets indexed by S . The reduced product \displaystyle \prod A_{R}/\mathcal{F} is

defined as the quotient of \displaystyle \prod A_{R} by the equivalence relation (a_{R})\sim(b_{R})\Leftrightarrow\{R|a_{R}=
b_{R}\}\in \mathcal{F}.

Proposition 2.3. (1) For any filter \mathcal{F} on S ,
there exists an ultrafilter \tilde{\mathcal{F}} con‐

taining \mathcal{F}.

(2) If each A_{R} is a ring, then \displaystyle \prod A_{R}/\mathcal{F} is a ring in a natural way. If each A_{R} is

partially ordered, then [(a_{R})]\geq[(b_{R})]\Leftrightarrow\{R|a_{R}\geq b_{R}\}\in \mathcal{F} gives a partial order.

(3) If each A_{R} is a field and \mathcal{F} is an ultrafilter, then \displaystyle \prod A_{R}/\mathcal{F} is a field. If each

A_{R} is totally ordered and \mathcal{F} is an ultrafilter, then \displaystyle \prod A_{R}/\mathcal{F} is totally ordered.

Proof. (1) [CK, Corollary 4.1.4].
(2), (3) These are consequences of general principles on reduced products. The

operators \{+, \cdot, 0, 1\} and the relation \geq are defined in a natural way by [CK, 4.1.6,

Proposition 4.1.7]. Since the axioms of fields, ordered sets and ordered fields are given by
first‐order formulas, the Fundamental Theorem of Ultraproducts([CK, Theorem 4.1.9])
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shows (3). Since the axioms of (unital commutative) rings, partially‐ordered sets and

partially‐ordered rings are given by Horn sentences, Proposition 6.2.2 of [CK] shows (2).
For the statements about the ring structure, a more down‐to‐earth explanation can

be found in [\mathrm{S} , 2.3.4, 2.3.5]. \square 

For A\in \mathcal{R} ,
write F_{A}=\{R\in S|R\supseteq A\} . Define

\mathcal{F}_{0}:= { U\in 2^{\mathcal{S}}|U\supseteq F_{A} for some A\in \mathcal{R}}.

This is a filter. If X is a variety over k
,

then there exist a ring A\in \mathcal{R} and an algebraic
scheme X_{A} over A such that X_{A}\otimes_{A}k\cong X . Let us fix them. For each R\in F_{A} ,

let

 $\kappa$(R) be the residue field and count the number of points n_{R}:=\#(X_{A}\otimes_{A} $\kappa$(R)) . For

R\not\in F_{A} ,
set n_{R} to an arbitrary value, say 0 . Then the class of (n_{R})_{R\in S} modulo \mathcal{F}_{0} is

independent of the choices, and this defines a motivic measure \mathfrak{N} : \overline{\mathfrak{B} $\alpha$ \mathfrak{r}_{k}}\rightarrow \mathbb{Z}^{\mathcal{S}}/\mathcal{F}_{0} . If

\mathcal{F} is any ultrafilter containing \mathcal{F}_{0} ,
we have \mathrm{N}_{\mathcal{F}} : \overline{\mathfrak{B} $\alpha$ \mathfrak{r}_{k}}\rightarrow \mathbb{Z}^{\mathcal{S}}/\mathcal{F}.

If k is of characteristic 0 ,
define p : \mathbb{R}\rightarrow \mathbb{R}^{\mathcal{S}}/\mathcal{F}_{0} by p(s)=(\# $\kappa$(R)^{s})_{R\in S} . This

function satisfies the assumption of Proposition 2.2, and we can define \mathrm{N}_{st}(X, B)\in
\mathbb{R}^{\mathcal{S}}/\mathcal{F}_{0} (resp. \mathrm{N}_{st,\mathcal{F}}(X, B)\in \mathbb{R}^{\mathcal{S}}/\mathcal{F}) for any Kawamata \log terminal pair (X, B) . The

target ring is a partially ordered ring (resp. a totally ordered field).
We see the following, as in the case of E_{st}.

\bullet \mathfrak{N}_{st} decreases after each MMP step.

\bullet Minimality can be be expressed in terms of \mathrm{N}_{st}.

\bullet The minimal \log discrepancy can be recovered from \mathrm{N}_{st}(P;X, B) :=\mathfrak{N}_{st}(X, B)-

\mathfrak{N}_{st}(X\backslash P, B|_{X\backslash P}) .

Here the value rings are naturally ordered. If one considers the set of the (usual)
number of points of all varieties over a fixed finite field, they of course satisfy the

DCC, since the number of points is a natural number. Thus it is tempting to imagine
that DCC holds for \mathfrak{N} and \mathrm{N}_{st} in a vast generality. We will see certain examples and

counterexamples in the remaining sections.

§3. Toric cases

Let�s look at the case of toric varieties with toric divisors. There is no H^{p,q}

for p\neq q in this case, so we don�t have to care about which ordering to choose for

E_{st} . Let us write W(P;X, B;w)=E_{st}(P;X, B;w^{1/2}, w^{1/2}) . We have \mathrm{N}_{st}(P;X, B)=
W(P;X, B;\mathfrak{N}_{st}(\mathrm{A}^{1})) ,

and DCC for \mathrm{N}_{st,\mathcal{F}} is equivalent to that for E_{st} if \mathcal{F} is a filter

containing \mathcal{F}_{0}.
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§3.1. The case of boundaries with standard coefficients

Let N be a lattice of rank d, M its dual, and  $\sigma$\subset N\otimes \mathbb{R} a rational, strictly convex

cone of dimension d . Let v_{i} be the primitive generators of the 1‐dimensional faces of  $\sigma$.

We denote the affine toric variety SpecC [M\cap$\sigma$^{\vee}] by X
,
the unique closed torus orbit by

0 and the divisor corresponding to v_{i} by B_{i} . For any cone  $\tau$
,

let  $\tau$^{\mathrm{o}} denote its relative

interior, i.e.  $\tau$\backslash \cup (lower dimensional face of  $\tau$ ).

Proposition 3.1. (1) For  B=\displaystyle \sum b_{i}B_{i}, K_{X}+B is \mathbb{Q} ‐Cartier if and only if there

exists a linear function  $\varphi$ :  N\otimes \mathbb{R}\rightarrow \mathbb{R} such that  $\varphi$(v_{i})=1-b_{i} for any i.

(2) The series W(0;X, B;w) is calculated as

(w-1)^{d}\displaystyle \sum_{n\in $\sigma$\mathring{\cap}N}w^{- $\varphi$(n)}.
Proof. Similar to the proof of Theorem 4.3, [Ba1]. \square 

Now assume that B has standard coefficients, i.e., b_{i}=1-1/n_{i} for some positive

integer n_{i} . We will use the following theorem.

Theorem 3.2 ([Am2], Theorem 1.1). Let q be the denominator of \mathrm{m}\mathrm{l}\mathrm{d}(0;X, B) .

Then the Cartier index of K_{X}+B is at most c_{d}q^{d} ,
where c_{d} is a positive constant

depending on d only.
In particular, if q is fixed then the coefficients of B belong to a finite set.

Theorem 3.3. For d‐dimensional affine toric log pairs (X, B) with standard

coefficients, the set of W(0;X, B;w) satisfies the descending chain condition.

Proof. First note that we have only to consider the case of constant minimal \log

discrepancy  m
, by the ACC of minimal \log discrepancies([Am1]).

The previous theorem tells that there exists a positive integer  R such that R(K_{X}+
B) is Cartier whenever \mathrm{m}\mathrm{l}\mathrm{d}(0;X, B)=m . This is equivalent to saying R $\varphi$(N)\subseteq \mathbb{Z}.

One can decompose  $\sigma$ into simplicial cones which are generated by subsets of {vi}:
There is a fan  $\Sigma$=\{$\sigma$_{k}\}_{k\in K} with | $\Sigma$|= $\sigma$, \dim$\sigma$_{k}=d_{k} and $\sigma$_{k}=\displaystyle \sum_{l=1}^{d_{k}}\mathbb{R}_{\geq 0}v_{i_{kl}} for some

sequence i_{k1} ,
. . .

, i_{kd_{k}} . Let P_{k}=\displaystyle \{\sum a_{l}v_{i_{kl}}|0<a_{l}\leq 1\} . Write K^{\mathrm{o}} for the set of indices

k such that $\sigma$_{k}^{\mathrm{o}}\subset$\sigma$^{\mathrm{o}} . Then W(0;X, B;w) can be written as

(w-1)^{d}\displaystyle \sum_{k\in K^{\circ}}(\prod_{l=1}^{d_{k}}\frac{1}{1-w^{-(1-b_{i_{kl}})}}\sum_{n\in P_{k}\cap N}w^{- $\varphi$(n)})
Let \{$\beta$_{i}|i\in I\} be the set of possible values of coefficients in Theorem 3.2. Then

each summand in this expression belongs to

S_{f}:=\displaystyle \{\prod_{j=1}^{d'}\frac{1}{1-w^{-(1-$\beta$_{f(j)})}}\sum_{d\in\frac{1}{R}\mathbb{Z},0<d\leq$\Sigma$_{j=1}^{d'}(1-$\beta$_{f(j)})}c_{d}w^{-d}|c_{d}\in \mathbb{Z}_{\geq 0}\}
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for some d'\leq d and f : \{ 1, 2, . . .

, d'\}\rightarrow I . There might be multiple (or no) k\in K^{\mathrm{o}}

for a given f ,
but they add up to an element of S_{f} . For each f ,

the set S_{f} satisfies

DCC, since its elements are \displaystyle \prod_{j=1}^{d'}(1-w^{-(1-$\beta$_{f(j)})})^{-1} times polynomials of w^{-1/R} whose

degrees are bounded and whose coefficients are nonnegative integers. It is easy to see

that if S and T satisfy DCC then so does \{s+t|s\in S, t\in T\} ,
and we are done. \square 

§3.2. 2‐dimensional case

Let (0\displaystyle \in S_{n,q})=(0\in \mathbb{C}^{2})/\langle\frac{1}{n}(q, 1)\rangle be a cyclic quotient singularity of dimension

2, and  E and F the images of 0\times \mathbb{C} and \mathbb{C}\times 0 . This is the toric surface associated to

N=\displaystyle \mathbb{Z}^{2}+\mathbb{Z}\cdot\frac{1}{n}(q, 1) and  $\sigma$=\mathbb{R}_{\geq 0}(1,0)+\mathbb{R}_{\geq 0}(0,1) ,
and E and F are the toric divisors

corresponding to ( 1, 0) and (0,1) .

Theorem 3.4. Assume that B\subset(0,1) satisfies the descending chain condition.

Then the set

\{W(0;S_{n,q}, bE+cF;w)|n\geq q>0, \mathrm{g}\mathrm{c}\mathrm{d}(n, q)=1, b, c\in B\}

satisfies the descending chain condition.

Again the question is whether there can be an infinite descending sequence with the

same degree, since ACC for minimal \log discrepancies is already known([Al]). In the case

of toric varieties with standard coefficients, the result followed from the boundedness

of Cartier indices for a fixed value of minimal \log discrepancy. We have the following

analogue for toric surfaces with \mathbb{R}‐coefficients, from which we deduce the above theorem.

Theorem 3.5. Let the notations be as above, and let \mathrm{D}\mathrm{i}\mathrm{v}^{+} denote the semigroup

of effective Cartier divisors. For any real number m
,

there exists a finite set C of

positive real numbers satisfy ing the following: For any (n, q, b, c) with b, c\in B and

\mathrm{m}\mathrm{l}\mathrm{d}(0;S_{n,q}, bE+cF)=m ,
the log anti‐canonical divisor (1-b)E+(1-c)F is contained

in C\displaystyle \cdot \mathrm{D}\mathrm{i}\mathrm{v}^{+}:=\{\sum c_{i}D_{i}|c_{i}\in C, D_{i}\in \mathrm{D}\mathrm{i}\mathrm{v}^{+}\}.

Proof of �Theorem  3.5\Rightarrow Theorem 3.4�. We have only to show that the set

{  W ( 0;S_{n,q}, bE+cF ; w)mld(0; S_{n,q}, bE+cF)=m} satisfies DCC. Take C as in Theorem

3.5.

The function  $\varphi$ in Proposition 3.1 is given by  $\varphi$(n_{1}, n_{2})=(1-b)n_{1}+(1-c)n_{2} ,
and

our function W(0;S_{n,q}, bE+cF;w) is

(w-1)^{2}\displaystyle \sum_{(n_{1},n_{2})\in$\sigma$^{\circ}\cap N}w^{-((1-b)n_{1}+(1-c)n_{2})}
=(w-1)^{2}\displaystyle \frac{1}{(1-w^{-(1-b)})(1-w^{-(1-c)})}\sum_{(n_{1},n_{2})\in(0,1]^{2}\cap N}w^{-((1-b)n_{1}+(1-c)n_{2})}.
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From (1-b)E+(1-c)F\in C\cdot \mathrm{D}\mathrm{i}\mathrm{v}^{+} it follows that (1-b)n_{1}+(1-c)n_{2}\in C\cdot \mathbb{Z}_{\geq 0} . We

also have 0<(1-b)n_{1}+(1-c)n_{2}<2 . Thus there are only finitely many possibilities
for (1-b)n_{1}+(1-c)n_{2} , say e_{1} ,

. . .

, e_{n} . The sum \displaystyle \sum_{(n_{1},n_{2})\in(0,1]^{2}\cap N}w^{-((1-b)n_{1}+(1-c)n_{2})}
belongs to \{k_{1}w^{-e_{1}}+\cdots+k_{n}w^{-e_{n}}|k_{1}, . . . , k_{n}\in \mathbb{Z}_{\geq 0}\} ,

and we see that for a fixed

(b, c) the set of W(0;S_{n,q}, bE+cF;w) satisfies DCC. Since 1-b and 1-c belong to

C\cdot \mathbb{Z}_{\geq 0}\cap(0,1) ,
there are only finitely many possibilities for b and c. \square 

Proof of Theorem 3.5. The proof presented here depends on [Al].
First of all, one can always discard finite possibilities for (n, q) . In fact, for a fixed

(n, q) ,
the minimal \log discrepancy at  0\in(S_{n,q}, bE+cF) is a piecewise linear function

of (b, c) . Since B is assumed to satisfy DCC, there are only finitely many possibilities
for (b, c) .

To use the calculation of [Al], let us give another characterization of S_{n,q} : A normal

surface singularity is isomorphic to S_{n,q} for some (n, q) if and only if the exceptional
curve of its minimal resolution is a chain of smooth rational curves. To be more precise,
let r and f_{1} ,

. . .

, f_{r} be the integers determined by f_{i}>1 and

n/q=f_{1}-\displaystyle \frac{1}{f_{2}-\frac{1}{f_{3--\frac{1}{f_{r}}}}}.
This is called the Hirzebruch‐Jung continued fraction([BPV, Ch. III, §5]). Let C_{0} and

C_{r+1} be the strict transforms of E and F . Then the exceptional curves of the minimal

resolution of S_{n,q} can be labelled C_{1} ,
. . .

, C_{r} so that C_{0}, C_{1} ,
. . .

, C_{r}, C_{r+1} form a chain

in this order, and the self intersection of C_{i} is -f_{i} . By the following lemma, n and q

can written as (-1)^{r} det(C.C)í,j=1 and (-1)^{r-1}\det(C_{i}.C_{j})_{i,j=2}^{r}.
Lemma 3.6. Let f_{1}, f_{2} ,

. . .

, f_{r} be positive integers and assume that f_{i}>1 for
either i=1

,
. . .

,
r-1 or i=2

,
. . .

,
r . Let n_{i} and q_{i} be the coprime positive integers

such that

n_{i}/q_{i}=f_{i}-\displaystyle \frac{1}{f_{i+1}-\frac{1}{f_{i+2--\frac{1}{f_{r}}}}}.
(1) One has recursive relations

n_{i}=f_{i}n_{i+1}-q_{i+1},

q_{i}=n_{i+1}.

(2)

n_{i}=\det\left(\begin{array}{lllll}
f_{i} & -1 & \cdots & 0 & 0\\
-1f_{i+1} & \cdots & \cdots & 0 & 0\\
\vdots\vdots &  &  & \vdots & \vdots\\
 00 & \cdots & \cdots & f_{r-1} & -1\\
00 & \cdots & \cdots & -1 & f_{r}
\end{array}\right)
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Proof. (1) is straightforward. For (2), expand the determinant along the first

column. \square 

Lemma 3.7. Let  $\epsilon$ be a positive real number.

(1) There exist finite sets \{(n_{k}, q_{k})\} and \{(f_{k1}, \ldots, f_{kr_{k}}, f_{k1}', \ldots, f_{kr_{k}}', )\} such that

the following holds: One has \mathrm{m}\mathrm{l}\mathrm{d}(S_{n,q})> $\epsilon$ if and only if

(i) (n, q)=(n_{k}, q_{k}) for some k
,

or

(ii) The integers f_{i} determined as above are given by

f_{1}=f_{k1} ,
. . .

, f_{r_{k}}=f_{kr_{k}},

f_{r_{k}+1}=\cdots=f_{r_{k}+A}=2,

f_{r_{k}+A+1}=f_{k1}' ,
. . .

, f_{r_{k}+A+r_{k}'}=f_{kr_{k}'}'

for some k and A=r-r_{k}-r_{k}'.

(2) In (ii), fix k . Let m_{1}, q_{1}, m_{2} and q_{2} be determined by

m_{1}/q_{1}=f_{kr_{k}}-\displaystyle \frac{1}{f_{k,r_{k}-1-\frac{1}{f_{k,r_{k}-2--\frac{1}{f_{k1}}}}}}, m_{2}/q_{2}=f_{k1}'-\displaystyle \frac{1}{f_{k2}'-\frac{1}{f_{k3}'-\cdots-\frac{1}{f_{kr_{k}'}'}}}.
If b,  c> $\epsilon$ and  A is sufficiently large, then the minimal log discrepancy of (S_{n,q}, bE+cF)
is the minimum of

(3.1) a_{1}=\displaystyle \frac{\frac{1-b}{m_{1}-q_{1}}(A+\frac{m_{2}}{m_{2}-q_{2}})+\frac{1-c}{m_{2}-q_{2}}\frac{q_{1}}{m_{1}-q_{1}}}{A+\frac{m_{2}}{m_{2}-q_{2}}+\frac{q_{1}}{m_{1}-q_{1}}}
and

(3.2) a_{2}=\underline{\frac{1-c}{m_{2}-q_{2}}(A+\frac{m_{1}}{m_{1}-q_{1}})+\frac{1-b}{m_{1}-q_{1}}\frac{q_{2}}{m_{2}-q_{2}}}.
A+\displaystyle \frac{m_{1}}{m_{1}-q_{1}}+\frac{q_{2}}{m_{2}-q_{2}}

Proof. This is in [Al], Lemma 3.3 and its proof. \square 

Since we are assuming that \mathrm{m}\mathrm{l}\mathrm{d}(S_{n,q}, bE+cF)=m ,
the minimal \log discrepancies

of  S_{n,q} are bounded below by a positive number. Thus (1) of the previous lemma can

be applied. Finite possibilities of n, q can be discarded by the remark at the beginning
of the proof, so we only consider the case (ii). The coefficients b and c are also bounded

below by a positive number, since B\subset(0,1) satisfies DCC. Again discarding finite

possibilities, we may assume that the minimal \log discrepancy is  a_{1} or a_{2} in (2).
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By symmetry we may assume \displaystyle \frac{1-b}{m_{1}-q_{1}}\leq\frac{1-c}{m_{2}-q_{2}} . Let us compare a_{1} and a_{2} . Note that

the denominators in (3.1) and (3.2) are both equal to A+m_{1}/(m_{1}-q_{1})+m_{2}/(m_{2}-q_{2})-1,
and we have

(A+\displaystyle \frac{m_{1}}{m_{1}-q_{1}}+\frac{m_{2}}{m_{2}-q_{2}}-1)(a_{2}-a_{1})
=[\displaystyle \frac{1-c}{m_{2}-q_{2}}(A+\frac{m_{1}}{m_{1}-q_{1}})+\frac{1-b}{m_{1}-q_{1}}\frac{q_{2}}{m_{2}-q_{2}}]

-[\displaystyle \frac{1-b}{m_{1}-q_{1}}(A+\frac{m_{2}}{m_{2}-q_{2}})+\frac{1-c}{m_{2}-q_{2}}\frac{q_{1}}{m_{1}-q_{1}}]
=(\displaystyle \frac{1-c}{m_{2}-q_{2}}-\frac{1-b}{m_{1}-q_{1}})(A+1)
\geq 0.

Thus we have a_{1}\leq a_{2} and \mathrm{m}\mathrm{l}\mathrm{d}(S_{n,q}, bE+cF)=a_{1}=m . We claim that \displaystyle \frac{1-b}{m_{1}-q_{1}}=m if

A is sufficiently large. In fact, since \displaystyle \{\frac{1-b}{m_{1}-q_{1}}|b\in B\} satisfies ACC, one may take  $\epsilon$>0

such that \displaystyle \{\frac{1-b}{m_{1}-q_{1}}|b\in B\}\cap(m- $\epsilon$, m ] is empty or consists of m . Think of a_{1} as a function

of b, c and A . As A goes to infinity, it converges to \displaystyle \frac{1-b}{m_{1}-q_{1}} uniformly for b, c\in[0 ,
1 ]^{}.

Also, a_{1}\displaystyle \geq\frac{1-b}{m_{1}-q_{1}} if \displaystyle \frac{1-b}{m_{1}-q_{1}}\leq\frac{1-c}{m_{2}-q_{2}} . Thus, if A is sufficiently large, then a_{1} belongs
to [\displaystyle \frac{1-b}{m_{1}-q_{1}}, \frac{1-b}{m_{1}-q_{1}}+ $\epsilon$) . In order to have a_{1}=m ,

one must have \displaystyle \frac{1-b}{m_{1}-q_{1}}\in(m- $\epsilon$, m].
If b\in B ,

then \displaystyle \frac{1-b}{m_{1}-q_{1}}=m holds by our choice of  $\epsilon$ . From  a_{1}=m ,
it also follows that

\displaystyle \frac{1-c}{m_{2}-q_{2}}=m ,
and therefore that (1-b)E+(1-c)F=m((m_{1}-q_{1})E+(m_{2}-q_{2})F) .

It suffices to see that (m_{1}-q_{1})E+(m_{2}-q_{2})F is Cartier. By the toric description,
this is equivalent to saying that (m_{1}-q_{1})q+(m_{2}-q_{2}) is divisible by n . Let n_{i} and s_{i}

be the coprime positive integers such that

n_{i}/s_{i}=f_{i}-\displaystyle \frac{1}{f_{i+1}-\frac{1}{f_{i+2--\frac{1}{f_{r}}}}}.
Claim 3.8. (1) If r_{k}+A+1\geq i>r_{k} ,

then n_{i}=s_{i}+(m_{2}-q_{2}) .

(2) If r_{k}\geq i\geq 1 ,
then s_{i}'n_{i}=n_{i}'s_{i}+(m_{2}-q_{2}) ,

where n_{i}' and s_{i}' are defined as the

coprime positive integers such that

n_{i}'/s_{i}'=f_{i}-\displaystyle \frac{1}{f_{i+1}-\frac{1}{f_{i+2--\frac{1}{f_{r_{k}}-1}}}}.
Proof. We use descending inductions.

(1) The case i=r_{k}+A+1 is clear, since we have m_{2}=n_{r_{k}+A+1} and q_{2}=s_{r_{k}+A+1}

by definition. For i with r_{k}+A+1>i>r_{k} ,
assume that n_{i+1}=s_{i+1}+(m_{2}-q_{2})

holds. Since f_{i}=2 ,
one has n_{i}=2n_{i+1}-s_{i+1} and s_{i}=n_{i+1} ,

and therefore n_{i}-s_{i}=

n_{i+1}-s_{i+1}=m_{2}-q_{2}.
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(2) Similarly, one has n_{i}=f_{i}n_{i+1}-s_{i+1} and s_{i}=n_{i+1} . For i=r_{k} ,
we have

n_{i}'=f_{r_{k}}-1, s_{i}'=1 and

s_{i}'n_{i}-n_{i}'s_{i}=(f_{r_{k}}n_{r_{k}+1}-s_{r_{k}+1})-(f_{r_{k}}-1)n_{r_{k}+1}=m_{2}-q_{2}

by (1). For 1\leq i<r_{k} ,
we have n_{i}'=f_{i}n_{i+1}'-s_{i+1}', s_{i}'=n_{i+1}' and

s_{i}'n_{i}-n_{i}'s_{i}

=n_{i+1}'(f_{i}n_{i+1}-s_{i+1})-(f_{i}n_{i+1}'-s_{i+1}')n_{i+1}

=s_{i+1}'n_{i+1}-n_{i+1}'s_{i+1}
=m_{2}-q_{2},

assuming the equality for i+1. \square 

We have n_{1}=n and s_{1}=q by definition. By Lemma 3.6, ní is equal to the

numerator of the reversed continued fraction

1-\displaystyle \frac{1}{f_{r_{k}}-\frac{1}{f_{r_{k}-1--\frac{1}{f_{1}}}}},
which is m_{1}-q_{1} . Therefore

(m_{1}-q_{1})q+(m_{2}-q_{2})=n_{1}'s_{1}+(m_{2}-q_{2})=s_{1}'n_{1}=s_{1}'n,

concluding the proof of the theorem. \square 

Remark 3.9. The proof actually shows that m^{-1}((1-b)E+(1-c)F) is Cartier

except for finitely many (n, q, b, c) .

§4. Questions

In what generality does the descending chain condition hold? I will mention several

cases that occur to mind.

Question 4.1. Let  $\mu$ be either  E or N. In the case of E
,

choose an ordering
from Definition 1.1. Does the descending chain condition hold for the following sets?

(1) For a positive integer d
,

the set

\{$\mu$_{st}(X)- $\mu$(X\backslash P)|P\in X is a d‐dimensional isolated \log terminal singularity.

(2) For a terminal projective variety  X
,

the set

\{$\mu$_{st}(Y)|_{g^{*}K_{X}\geq hK_{Y}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}gW\rightarrow Xh:W}^{Y\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{r}\min \mathrm{a}1\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e},X\mathrm{a}\mathrm{n}\mathrm{d}Y\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{b}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1\mathrm{a}\mathrm{n}\mathrm{d}}\rightarrow Y\}
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(3) \{ $\mu$(X)X is a smooth proper variety.

(4) \{$\mu$_{st}(X)X is a \log terminal proper variety.

(5) For a fixed proper variety  Y and a fixed real number b\in(0,1) ,
the set

\{$\mu$_{st}(X, bB)X is proper, B\cong Y and (X, bB) is (Kawamata) \log terminal.

Let us consider the set (3).
For the measure  E and the order >0 or the preorder \sim>_{1} , DCC is trivial since

the Hodge numbers are nonnegative integers for a smooth proper variety. On the

other hand, DCC fails for the preorder \sim^{-1}> ,
since a smooth projective curve C gives

E(C;-w, -w)=w^{2}-2g(C)\cdot w+1 . When T is sufficiently large, e.g. T=S^{1} ,
the

question of DCC with respect to \sim^{ $\tau$}> seems interesting.
Over a field of positive characteristic, one can consider the set (3) with  $\mu$=\mathfrak{N} . The

following example shows that DCC does not hold here.

Example 4.2. Let p be a prime number, and k a field containing \overline{\mathrm{F}}_{p} . By [GV],
there exists an infinite sequence C_{i} of supersingular curves with g(C) strictly increas‐

ing. The supersingularness means that the jacobian of C_{i} is isogenous to a product of

supersingular elliptic curves. Therefore, for a sufficiently divisible n_{0}, C_{i} has a model

over \mathrm{F}_{p^{n}0} and its zeta function is (1-p^{n_{0}/2}t)^{2g(C_{i})}/(1-t)(1-p^{n_{0}}t) . Thus \#(C_{i}(\mathrm{F}_{p^{n}}))=
p^{n}+1-2g(C_{i})p^{n/2} when n is a multiple of n_{0} ,

and \mathfrak{N}(C_{1})>\mathfrak{N}(C_{2})>\mathfrak{N}(C_{3})>\ldots
holds.
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