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Homogeneous locally nilpotent derivations of \mathbb{C}[x, y, z]
and pencils of rational plane curves

By
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Abstract

In this article, we shall investigate a relation between kernels of weighted homogeneous
locally nilpotent derivations (wh‐LND, for short) on the polynomial ring \mathbb{C}[x, y, z] in three

variables and pencils of rational curves on weighted projective planes. We give a geometric proof
to the result about generators of kernels of wh‐LND�s on \mathbb{C}[x, y, z] due to Daigle [Da98, Da00].
This allows us to reduce the consideration about wh‐LND�s with respect to a given weight \mathrm{w} to

a two‐dimensional projective geometry, more precisely, resolutions of certain kinds of pencils
\mathscr{L} composed of rational curves on weighted projective planes \mathbb{P}_{\mathrm{w}} . Then we shall observe

automorphisms on \mathrm{A}^{3} arising from various \mathrm{G}_{a} ‐actions according to the number of non‐reduced

members in \mathscr{L}.

§1. Introduction

All varieties in this paper are defined over the field of complex numbers \mathbb{C} . In

affine algebraic geometry, one of the important problems is the comprehension of groups

G_{n}:= Aut (\mathrm{A}^{n}) of automorphisms on the affine spaces \mathrm{A}^{n} (or equivalently, those on the

polynomial rings \mathbb{C}[x_{1}, \cdots, x] ) for n\in \mathbb{N}^{1} In the case of n=1
,

the consideration is

very simple so that there is nothing to do. Meanwhile, the situation becomes drastically

complicated for n\geqq 2 . In order to state adequately, before refering to the case of n=2

in an explicit manner, we shall prepare the notation which is used throughout in this

article. Let A_{n} (resp. J_{n} ) be the subgroup of G_{n} consisting of affine transformations

(resp. de Jonquière transformations) on \mathrm{A}^{n}
,

that is, an element  $\xi$\in A_{n} (resp.  $\eta$\in
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J_{n}) is of the form  $\xi$(x_{i})=\displaystyle \sum_{j=1}^{n}a_{ij}x_{j}+b_{i}(1\leqq i\leqq n) with \det(a_{ij})\neq 0 (resp.
 $\eta$(x_{i})=a_{i}x_{i}+f_{i}(x_{i+1}, \cdots, x_{n})(1\leqq i\leqq n) ,

where a_{i}\in \mathbb{C} with \displaystyle \prod_{i=1}^{n}a_{i}\neq 0 and

f_{i}\in \mathbb{C}[x_{i+1}, \cdots, x_{n} An automorphism  $\tau$\in G_{n} is said to be tame if  $\tau$ is contained in

the subgroup  T_{n} :=A_{n}\vee J_{n} generated by these two subgroups. Conversely,  $\tau$ is called

non‐tame or wild in case of  $\tau$\in G_{n}\backslash T_{n}.
We come back to state the situation for the case n=2 . Then, due to Jung

[Ju42], the structure of G_{2} is well understood, in fact, G_{2}=T_{2} holds true, i.e., every

automorphism on \mathrm{A}^{2} is tame. In consideration of this fact in dimension two, it seems

to be natural to guess that the phenomenon result follows for higher‐dimensional case

also, namely, G_{n}=T_{n} for n\geqq 3 . However, as far as we are concerned at least with

the case of n=3 ,
it is surprisingly known that G_{3} is strictly greater than T_{3} by the

remarkable work of Shestakov and Umirbaev (cf. [SU04, SU04]). More precisely to

say, for a long time, though the tameness of the Nagata automorphism, say $\sigma$_{\mathrm{N}\mathrm{a}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{a}}\in G_{3}
(see [Na72] for example for the concrete form of  $\sigma$Nagata, see Example 1.1 also), which

is a complicated looking automorphism on \mathrm{A}^{3} constructed by Nagata around early
1970 �s (cf. [Na78]), and the wildness of which remained unknown for the past three

decades, they at last showed $\sigma$_{\mathrm{N}\mathrm{a}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{a}}\in G_{3}\backslash T_{3} . Thus  $\sigma$Nagata is the first example of wild

automorphisms on \mathrm{A}^{3} . Nevertheless we know very little about G_{3} itself, for instance,
we do not know how many generators outside of T_{3} are necessary to generate G_{3} whole.

Certainly  $\sigma$Nagata must be one of such generators, but it is important to enumerate the

other wild automorphisms on \mathrm{A}^{3} as possible candidates of generators. Here, we note

that  $\sigma$Nagata is obtained from the point of view of \mathrm{G}_{a} ‐actions on \mathrm{A}^{3}= Spec ( \mathbb{C}[x, y, z])
as follows (see [Mi78, \mathrm{A}\mathrm{v}\mathrm{d}\mathrm{E}00 , Fr06] or §2 for the interpretation between \mathrm{G}_{a} ‐actions

and locally nilpotent derivations), where we shall use the notation \mathbb{C}[x, y, z] instead of

\mathbb{C}[x_{1}, x_{2}, x_{3}] :

Example 1.1. Let \triangle be a homogeneous locally nilpotent derivation on \mathbb{C}[x, y, z]
(cf. Definition 2.1) defined as in the following fashion:

\displaystyle \triangle:=2y(xz-y^{2})\frac{\partial}{\partial x}+z(xz-y^{2})^{2}\frac{\partial}{\partial y}
Then it is easily seen that \mathrm{K}\mathrm{e}\mathrm{r} () =\mathbb{C}[xz-y^{2}, z] . The corresponding co‐action  $\varphi$\triangle :

\mathbb{C}[x, y, z]\rightarrow \mathbb{C}[x, y, z]\otimes_{\mathbb{C}}\mathbb{C}[t] is written as:

$\varphi$_{\triangle}:\left\{\begin{array}{l}
x\mapsto x+2y (xz-- y2) t+z (xz-- y2)2 t^{2}\\
y\mapsto y+z (xz-- y2) t\\
z\mapsto
\end{array}\right.z,

where t is the coordinate of \mathrm{G}_{a}= Spec ( \mathbb{C}[t]) . Putting t=1 in the above equation, we

obtain the Nagata automorphism  $\sigma$Nagata, which is indeed wild by [SU04, SU04].
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This example indicates a chance to produce the other examples of wild automor‐

phisms on \mathrm{A}^{3} by making use of homogeneous \mathrm{G}_{a} ‐actions.

This article is mainly devoted to two affairs. At first, we shall give an alternative

proof for the result due to Daigle (cf. [Da98, Da00], see Theorem 2.2 in §2) concerning
a characterization of generators of kernels of (weighted) homogeneous locally nilpotent
derivations (wh‐LND, for short) on \mathbb{C}[x, y, z] . Indeed, his original proof [Da98] is rather

algebraic.2 Meanwhile we shall here work with the two dimensional projective geometry

admitting quotient singularities and a general theory on \mathbb{P}^{1} ‐fibrations to obtain a new

proof taking the general weights cases into account. In our strategy, it is essential

to look at the structure of a certain linear pencil \mathscr{L} on \mathbb{P}_{\mathrm{w}} corresponding to a given
wh‐LND on \mathbb{C}[x, y, z] with respect to a weight \mathrm{w}

,
which is a slight generalization of

the result due to Miyanishi‐Sugie [MS81], in particular, we see that \mathscr{L} has at most two

multiple members and we are able to restrict the position of singularities on \mathbb{P}_{\mathrm{w}} in terms

of multiple members of \mathscr{L} (cf. Theorem 2.7). In the second stage, according to the

number of multiple members in \mathscr{L} ,
we shall decide when the corresponding weighted

homogeneous \mathrm{G}_{a} ‐action on \mathrm{A}^{3} produces a family of wild automorphisms with the aids

of techniques due to Kuroda (cf. [Ku11]). Moreover, we propose a question about the

wildness of automorphisms on \mathrm{A}^{n} for n\geqq 4 (see Conjecture 4.1). Taking the situations

in dimensions n=2 and n=3 simultaneously into account as mentioned in §4, this

question seems to be reasonable.

Acknowledgements: We would like to thank Shigeru Kuroda, who participated
in discussions on an early stage of this work, for his useful comments. Moreover, we

would like to thank the referee for the careful reading, pointing out several inaccuracies

and giving the very significant and constructive advices to improve the description.

§2. Preliminaries and Main Theorems

In this section, first of all we shall prepare terminologies and general facts which

are used consistently in this article. Then we state the main results (Theorems 2.2, 2.7

and 2.10), which are proved in this article. In what follows, we denote by \mathbb{C}[x, y, z] the

polynomial ring in three variables instead of \mathbb{C}[x_{1}, x_{2}, x_{3}].

Denition 2.1. Let \triangle\in \mathrm{D}\mathrm{e}\mathrm{r}_{\mathbb{C}}(\mathbb{C}[x, y, z]) be a \mathbb{C}‐derivation.

(1) \triangle is said to be a locally nilpotent derivation (an LND, for short) if for \forall a\in

\mathbb{C}[x, y, z] ,
there exists \exists N(a)\in \mathbb{N} such that \triangle^{N(a)}(a)=0 . We denote by LND (\mathbb{C}[x, y, z])

the set of all LND�s on \mathbb{C}[x, y, z].

2However [Da98] deals additionally with cases where some of (p, q, r) in the statement of Theorem

2.2 is equal to zero. Hence, he treates more general cases.
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(2) Let \mathrm{w}=(p, q, r) be a triple of pairwisely coprime positive integers and  f(x, y, z)\in
\mathbb{C}[x, y, z] . Let

f(x, y, z)=\displaystyle \sum_{i,j,k}a_{i,j,k}x^{i}y^{j}z^{k}
be a decomposition of f into monomial parts. Then f is said to be \mathrm{w}‐homogene
ous if ip+jq+kr is constant whenever a_{i,j,k}\neq 0 . We denote this constant value

by \deg_{\mathrm{w}}(f) .

(3) Let A=\mathbb{C}[x, y, z]=\oplus_{n\geqq 0}A_{n}^{\mathrm{w}} be a decomposition of A=\mathbb{C}[x, y, z] into w‐

homogeneous pieces, i.e., A_{n}^{\mathrm{w}} is a \mathbb{C}‐vector space composed of all \mathrm{w}‐homogeneous

polynomials f of \deg_{\mathrm{w}}(f)=n . An LND \triangle on  A is called \mathrm{w}‐homogeneous (\mathrm{w}-
\mathrm{h}‐LND, for short) in the case of \triangle(A_{n}^{\mathrm{w}})\subseteq A_{n+d}^{\mathrm{w}} for \forall n\geqq 0 ,

where d is an integer
that is independent of n . We denote by LNDw (A) the set of all w‐h‐LND�s on A.

(4) With the notation in (3), we write \mathbb{P}_{\mathrm{w}}:= Proj (\oplus_{n\geqq 0}A_{n}^{\mathrm{w}}) ,
which is a weighted

projective plane associated with \mathrm{w} . For a given h\in A ,
which is \mathrm{w}‐homogeneous,

we denote by \mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(h) the curve in \mathbb{P}_{\mathrm{w}} defined by h.

By the work of Miyanishi (cf. [Mi85]), for any \triangle\in LND (\mathbb{C}[x, y, z])\backslash \{0\} ,
which is

not necessarily \mathrm{w}‐homogeneous, its kernel \mathrm{K}\mathrm{e}\mathrm{r} () is a polynomial ring in two variables,
that is, there exist mutually algebraically independent polynomials f, g\in \mathbb{C}[x, y, z] such

that \mathrm{K}\mathrm{e}\mathrm{r} () =\mathbb{C}[f, g] . Note that f and g are not always variables of \mathbb{C}[x, y, z] (cf.
Remark 2.5). This result plays an essential role in a lot of places of affine algebraic

geometry when we consider quotients of algebraic \mathrm{G}_{a} ‐actions. On the other hand, this

does not yield an information about the candidates for generators of \mathrm{K}\mathrm{e}\mathrm{r} However,
whenever we are concerned with w‐h‐LND�s, there exists a nice interpretation in terms

of projective geometry as follows:

Theorem 2.2. (cf. [Da98, Da00]) Let \mathrm{w}=(p, q, r) be a triple of pairwisely co‐

prime positive integers. For given two irreducible \mathrm{w} ‐homogeneous polynomials f,  g\in

\mathbb{C}[x, y, z] such that \mathrm{g}\mathrm{c}\mathrm{d}(\deg_{\mathrm{w}}(f), \deg_{\mathrm{w}}(g))=1 ,
the following two conditions are equiva‐

lent:

(A) \mathrm{K}\mathrm{e}\mathrm{r}(\triangle)=\mathbb{C}[f, g] for some \triangle\in \mathrm{L}\mathrm{N}\mathrm{D}^{\mathrm{w}}(\mathbb{C}[x, y, z

(B) \mathbb{P}_{\mathrm{w}}\backslash (\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f)\cup \mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(g))\cong \mathbb{C}^{*}\times \mathrm{A}^{1}.

Remark 2.3. The implication (\mathrm{A})_{\mathrm{w}}\Rightarrow(\mathrm{B})_{\mathrm{w}} can be true even if we do not sup‐

pose that p, q and r are not pairwisely coprime (cf. [Da98, Corollary 3.10]). Moreover,
under the hypothesis that p, q and r are pairwisely coprime, if f and g satisfy (A),
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then we have \mathrm{g}\mathrm{c}\mathrm{d}(\deg_{\mathrm{w}}(f), \deg_{\mathrm{w}}(g))=1 (cf. [Da00, 1.9.]). On the other hand, without

the condition that p, q and r are pairwisely coprime, the implication (\mathrm{B})_{\mathrm{w}}\Rightarrow(\mathrm{A})_{\mathrm{w}} does

not hold true in general. For instance, let us consider the case \mathrm{w}=(2,3,6) and f=z,

g=x^{3}+y^{2} . Then f and g are \mathrm{w}‐homogeneous, furthermore, they satisfy (B). But

it follows in fact that there does not exist a locally nilpotent derivation of \mathbb{C}[x, y, z]
whose kernel coincides with \mathbb{C}[f, g] . Indeed, assuming to the contrary that we have

\triangle\in LNDw (\mathbb{C}[x, y, z]) such that \mathrm{K}\mathrm{e}\mathrm{r} () =\mathbb{C}[f, g]=\mathbb{C}[z, x^{3}+y^{2}] ,
then \triangle is extended

to a locally nilpotent derivation on \mathbb{C}(z)[x, y] , say \triangle-
,

in a natural way such that:

\mathrm{K}\mathrm{e}\mathrm{r}(\triangle)-=\mathrm{K}\mathrm{e}\mathrm{r}(\triangle)\otimes_{\mathbb{C}[z]}\mathbb{C}(z)=\mathbb{C}[z, x^{3}+y^{2}]\otimes_{\mathbb{C}[z]}\mathbb{C}(z)=\mathbb{C}(z)[x^{3}+y^{2}].
On the other hand, note that a kernel of any locally nilpotent derivation on the poly‐
nomial ring over the field of characteristic zero is generated by a single variable (cf.
[Ren68]). But, \mathrm{K}\mathrm{e}\mathrm{r}(\triangle)- is generated by x^{3}+y^{2} over the field \mathbb{C}(z) as seen just above,
which is not a variable of \mathbb{C}(z)[x, y] . This is a contradiction.

Remark 2.4. From the viewpoint of geometry, it is natural to assume that p,

q and r are pairwisely coprime. In fact, letting c:=\mathrm{g}\mathrm{c}\mathrm{d}(p, q, r) and p=cp', q=cq',
r=cr', we have \mathbb{P}(p, q, r)\cong \mathbb{P}(p', q', r') , Furthermore, even in the case c=1

, letting

d:=\mathrm{g}\mathrm{c}\mathrm{d}(p, q) and p=dp q=dq it follows that \mathbb{P}(p, q, r)\cong \mathbb{P}(p'', q r) (cf. [IF]).

Remark 2.5. A locally nilpotent derivation \triangle\in LNDw (\mathbb{C}[x, y, z]) as in (\mathrm{A})_{\mathrm{w}}
and \mathrm{w}‐homogeneous polynomials f, g\in \mathbb{C}[x, y, z] as in (\mathrm{B})_{\mathrm{w}} are related to each other

as in the following manner:

(2.1) \displaystyle \triangle(*)=h(f, g)\frac{\partial(f,g,*)}{\partial(x,y,z)},
where h(f, g)\in \mathbb{C}[f, g]\backslash \{0\} is \mathrm{w}‐homogeneous. Indeed, this fact is obtained by Daigle

[Da97]. Note that as far as h(f, g) is \mathrm{w}‐homogeneous and contained in \mathbb{C}[f, g]\backslash \{0\} ,
the

resulting \triangle obtained as in (2.1) is a w‐h‐LND with a kernel \mathbb{C}[f, g] . But, the choice of

such an h becomes often crucial in order to produce a family of wild automorphisms
on \mathrm{A}^{3} (cf. [Ku11]). For instance, let us consider the case of the standard weight

\mathrm{w}=(1,1,1) ,
and two homogeneous polynomials f:=z, g:=xz —y2. Then it is not

difficult to verify \mathbb{P}^{2}\backslash (\mathrm{V}_{\mathbb{P}^{2}}(f)\cup \mathrm{V}_{\mathbb{P}^{2}}(g))\cong \mathbb{C}^{*}\times \mathrm{A}^{1} . According to (2.1), the corresponding

\triangle\in \mathrm{L}\mathrm{N}\mathrm{D}^{\mathrm{w}}(\mathbb{C}[x, y, z]) is obtained as:

\displaystyle \triangle=h(2y\frac{\partial}{\partial x}+z\frac{\partial}{\partial y}) ,

where h\in \mathbb{C}[z, xz-y^{2}]\backslash \{0\} is homogeneous. In the case of h\in \mathbb{C}[z]\backslash \{0\} ,
the resulting

co‐action produces a family of tame automorphisms on \mathrm{A}^{3} . Meanwhile, if we choose as

h=xz-y^{2} for instance, then \triangle coincides with the one in Example 1.1, hence it yields
a family of wild automorphisms on \mathrm{A}^{3}.
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Remark 2.6. In the assertion of Theorem 2.2, the irreducibility of f and g is

necessary. For example, let us consider the case of f=x and g=xy with the ordinary

weight \mathrm{w}=(1,1,1) . This pair satisfies (\mathrm{B})_{\mathrm{w}} except for the irreducibility. If a suitable

\triangle\in \mathrm{L}\mathrm{N}\mathrm{D}^{\mathrm{w}}(\mathbb{C}[x, y, z]) has a kernel \mathrm{K}\mathrm{e}\mathrm{r}(\triangle)=\mathbb{C}[f, g] ,
then y also must be contained in

\mathrm{K}\mathrm{e}\mathrm{r} () because it is an inert sub‐algebra of \mathbb{C}[x, y, z] (cf. [Mi78]), which is absurd.

Theorem 2.2 is originally due to Daigle (cf. [Da98, Da00]), where his approach for

the proof is rather algebraic. The main part of this article is devoted to an alternative

proof for Theorem 2.2 by an algebro‐geometric one, more precisely, algebraic \mathrm{G}_{a} ‐actions,
resolution of base points of pencils of rational curves on weighted projective planes, \mathrm{a}

general theory of singular fibers of \mathbb{P}^{1} ‐fibrations and so on. Especially, the investigation
of a certain linear pencil \mathscr{L} occuring in our consideration is indispensable. This should

be important not only for an alternative proof but also for formulating the criteria for

a family of automorphisms on \mathrm{A}^{3} arising from \triangle\in LNDw (\mathbb{C}[x, y, z]) (or equivalently,
from a pencil \mathscr{L} on \mathbb{P}_{\mathrm{w}} ) to be wild in terms of the types of \mathscr{L} . Indeed, the article

due to Kuroda [Ku11], which summarizes results about the criteria of the wildness,
seems to show its validity.3 Besides that, this observation of the pencil \mathscr{L} is a slight

generalization of [MS81], hence it is worthwhile to mention it as a theorem as follows.

Theorem 2.7. Let \mathrm{w}=(p, q, r) be a triple of pairwisely coprime positive inte‐

gers such that p\leqq q\leqq r ,
and f, g\in \mathbb{C}[x, y, z] two irreducible \mathrm{w} ‐homogeneous poly‐

nomials of a :=\deg_{\mathrm{w}}(f) ,
b :=\deg_{\mathrm{w}}(g) satisfy ing (\mathrm{A})_{\mathrm{w}} as in Theorem 2.2.4 Let

c:=\mathrm{g}\mathrm{c}\mathrm{d}(a, b) and let us write a=ca' and b=cb'. Let \mathscr{L} be a linear pencil on

\mathbb{P}(p, q, r)=\mathbb{P}_{\mathrm{w}} spanned by f^{b'} and g^{a'} , namely,

\mathscr{L}:=\{B_{[ $\alpha$: $\beta$]} [ $\alpha$: $\beta$]\in \mathbb{P}(a, b)\},

where B_{[ $\alpha$: $\beta$]} is a curve on \mathbb{P}_{\mathrm{w}} dened by ( $\alpha$ f)^{b'}+( $\beta$ g)^{a'}=0 . Then the following holds

true:

(1) All members of \mathscr{L} except for B_{[1:0]} and B_{[0:1]} are irreducible and reduced.

(2) B_{[1:0]} and B_{[0:1]} are irreducible. Furthermore, B_{[1:0]} (resp. B_{[0:1]} ) is reduced if and

only if b'=1 (resp. a'=1).

3However, the type of \mathscr{L} defined in Remark 2.8 below has some obstacles to formulate a criterion

of the wildness. For instance, in the case of f=y and g=z ,
if we take \mathrm{w} as \mathrm{w}=(1,1,1) (resp.

\mathrm{w}=(1,1,2) , resp. \mathrm{w}=(1,2,3 then the pencil \mathscr{L} spanned by y and z (resp. y^{2} and z
, resp. y^{3}

and z^{2}) are of Type (0) (resp. Type (I), resp. Type (II)). Thus the pair only (f, g) of polynomials
does not determine the type.

4In fact \mathrm{g}\mathrm{c}\mathrm{d}(a, b)=1 holds true (cf. Remark 2.3). However, we shall proceed to see Theorem 2.7

without supposing that \mathrm{g}\mathrm{c}\mathrm{d}(a, b)=1.
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(3) \mathrm{B}\mathrm{s}\mathscr{L} consists of exactly one point, say P. For any member B_{[ $\alpha$: $\beta$]}\in \mathscr{L} we have

(B_{[ $\alpha$: $\beta$]})_{\mathrm{r}\mathrm{e}\mathrm{d}}\backslash \{P\}\cong \mathrm{A}^{1}.

(4) If there is no multiple member in \mathscr{L} , then p=q=1 , i.e., \mathbb{P}_{\mathrm{w}}=\mathbb{P}(1,1, r) .

(5) If there exists exactly one multiple member B_{[1:0]} (resp. B_{[0:1]} ) in \mathscr{L} , then p=1
and \deg_{\mathrm{w}}(f) (resp. \deg(\mathrm{g})) is equal to 1.

Remark 2.8. The behaviour of the pencil \mathscr{L} changes drastically according to

the number of multiple members. Let us say that \mathscr{L} is of Type (k) (0\leqq k\leqq 2) if \mathscr{L}

possesses k multiple members. Concerning the explicit description of \mathscr{L} in the sense

of defining equations of general members of \mathscr{L} , there is almost nothing to consider

other than Theorem 2.7, (4) and Theorem 2.10 for Type (0). On the other hand, for

the remaining Type(I) and Type(II), it is difficult to determine concretely defining

equations although there are such examples as in Example 2.9. Meanwhile, even under

the condition that \mathrm{g}\mathrm{c}\mathrm{d}(\deg_{\mathrm{w}}(f), \deg_{\mathrm{w}}(g))=1 ,
it seems not to be effective to use types

just defined in order to formulate a criterion with respect to the wildness as stated before

Theorem 2.7 especially for Type (I) and Type (II). Instead of it, the paper [Ku11] by
Kuroda deals with a lot of topics about explicit criteria of wildness, hence we recommend

to refer to [Ku11].

Example 2.9. We shall mention examples for Types (I) and (II) respectively,
where we adopt the standard weight \mathrm{w}=(1,1,1) :

(1) Let us put f:=x and g:=x^{b-1}z+a_{b}y^{b}+a_{b-1}y^{b-1}x+\cdots+a_{1}yx^{b-1}+a_{0}x^{b} with

b\geqq 2 and a_{b}\neq 0 . Then (f, g) satisfies (B). In the case of b=2 and a_{2}=-1,
the pair (f, g) gives rise to an LND of Nagata type (cf. Remark 2.5). Hence this

example is considered as a generalisation of the Nagata automorphism.

(2) Let us put f:=xz-y^{2} and g:=f(xz^{2}-y^{2}z-2x^{2}y)+x^{5} (Yoshihara�s quintic,

[Yo79]). In this case also, (f, g) satisfies (\mathrm{B})_{\mathrm{w}} (cf. [MS81]).

In any case (1) and (2) above, it follows that \mathrm{G}_{a} ‐actions arising from \triangle in the formula

(2.1) in Remark 2.5 yield families of wild automorphisms on \mathrm{A}^{3} after choosing h(f, g)
there suitably (cf. [Ku11]).

As remarked in Remark 2.8, Type (0) is not difficult to manipulate to decide the

forms of f and g ,
in addition to this, to see the corresponding \mathrm{G}_{a} ‐action produces a

family of tame automorphisms on \mathrm{A}^{3} as follows:

Theorem 2.10. Let \mathrm{w}=(p, q, r) be a triple of pairwisely coprime positive inte‐

gers with p\leqq q\leqq r ,
and let f, g\in \mathbb{C}[x, y, z] be \mathrm{w} ‐homogeneous polynomials of respective
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degrees a :=\deg_{\mathrm{w}}(f)=ca', b:=\deg_{\mathrm{w}}(g)=cb' with c=\mathrm{g}\mathrm{c}\mathrm{d}(a, b) satisfy ing (\mathrm{A})_{\mathrm{w}} as

in Theorem 2.2. Let \mathscr{L} be the linear pencil on \mathbb{P}_{\mathrm{w}}=\mathbb{P}(p, q, r) spanned by f^{b'} and g^{a'}
Suppose that \mathscr{L} is of Type (0). Then f and g are transfO rmed to x and y by a suitable

linear automorphism and any derivation \triangle obtained as in (2.1) of Remark 2.5 becomes

an LND yielding a family of tame automorphisms on \mathrm{A}^{3}.

Remark 2.11. By Theorem 2.10, we know that there is no chance to produce
a family of wild automorphisms on \mathrm{A}^{3} as far as we make use of a pencil \mathscr{L} of Type (0).
Meanwhile, for pencils of Type (I) and Type (II), we are often able to construct families

of wild automorphisms by choosing the polynomial h(f, g) in the formula (2.1) of Remark

2.5 adequately. For instance, in the case of \mathrm{w}=(1,2,3) ,
let us choose f and g as

f=x\in A_{1}^{\mathrm{w}} and g=z^{2}-x^{4}y\in A_{6}^{\mathrm{w}} . Then it is easy to verify that the pair (f, g)
satisfies (\mathrm{A})_{\mathrm{w}} in Theorem 2.2, and that the linear pencil \mathscr{L} on \mathbb{P}_{\mathrm{w}}=\mathbb{P}(1,2,3) spanned

by f^{6}=x^{6} and g is of Type (I). As the corresponding \mathrm{w}‐homogeneous locally nilpotent
derivation \triangle via the formula (2.1) in Remark 2.5, let us choose for instance:

\displaystyle \triangle(*)=-(z^{2}-x^{4}y)\frac{\partial(x,z^{2}-x^{4}y,*)}{\partial(x,y,z)}=(z^{2}-x^{4}y)(2z\frac{\partial}{\partial y}+x^{4}\frac{\partial}{\partial z}) .

Then the co‐action  $\varphi$\triangle is written as follows:

$\varphi$_{\triangle}:\left\{\begin{array}{l}
x\mapsto x\\
y\mapsto y+2(z^{2}-x^{4}y)zt+(z^{2}-x^{4}y)^{2}x^{4}t^{2}\\
z\mapsto
\end{array}\right.z+(z^{2}-x^{4}y)x^{4}t,

and we know in fact that  $\varphi$\triangle produces a family of wild automorphisms on \mathrm{A}^{3} . Moreover,
as far as h(x, g) is \mathrm{w}‐homogeneous and is taken from \mathbb{C}[x, g]\backslash \mathbb{C}[x] ,

it follows that the

corresponding LND via (2.1) of Remark 2.5 yields wild automorphisms. More precisely
to say, as seen in [Ku11, Theorem 5.1], for an LND \triangle on \mathbb{C}[x, y, z] ,

which is not nec‐

essarily homogeneous, under the condition that \mathrm{K}\mathrm{e}\mathrm{r} () contains a tame coordinate of

\mathbb{C}[x, y, z] ,
the co‐action  $\varphi$\triangle produces a family of tame automorphisms on \mathrm{A}^{3} if and only

if  $\tau$^{-1}\circ\triangle\circ $\tau$ becomes triangular for a suitable tame automorphism  $\tau$ of \mathbb{C}[x, y, z] . Note

that this result due to Kuroda is applicable for Type (I) in consideration of Theorem

2.7, (5). We hope that the readers refer to the article [Ku11] by Kuroda, where he

summarizes several criteria of wildness of automorphisms on \mathrm{A}^{3} arising from various

LND�s on \mathbb{C}[x, y, z] by the different notion. For Type (II) also, [Ku11] contains some

useful criteria.

In the next §3, we shall prove at first Theorem 2.2 in terms of homogeneous \mathrm{G}_{a^{-}}

actions, and we see simultaneously Theorem 2.7 (1) and (2). According to the number

of non‐reduced members in \mathscr{L} (cf. Theorem 2.7), we shall divide the property on \mathscr{L}

into three types Type (k) (0\leqq k\leqq 2) (see Remark 2.8). Certainly, this division is
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appropriate and natural from the viewpoint of geometry, however this is not so effective

for the purpose to obtain a criterion of wildness. Indeed, for Type (0) only, we are able

to state in an explicit manner as in Theorem 2.10 and we shall prove it in §3. For

the remaining Type (I) and Type (II), the corresponding LND�s can produce very often

families of wild automorphisms on \mathrm{A}^{3} (cf. [Ku11]). In consideration of this fact, we shall

mention a problem concerning wild automorphisms on the affine space \mathrm{A}^{n} for n\geqq 4

arising from homogeneous locally nilpotent derivations.

§3. Proofs of Theorems 2.2, 2.7 and 2.10

In this section, we shall prove Theorems 2.2 and 2.7 whose proofs proceed algebro‐

geometrically. Indeed, in our argument to confirm the implication (\mathrm{A})_{\mathrm{w}}\Rightarrow(\mathrm{B})_{\mathrm{w}} ,
the

observation of the linear pencil \mathscr{L} as in Theorem 2.7 is indispensable. We consider then

the cases Type (0) (see Remark 2.8) especially and show Theorem 2.10.

§3.1.

We shall prepare the notation used in what follows of this section. Let \mathrm{w}=(p, q, r)
be a triple of pairwisely coprime positive integers such that p\leqq q\leqq r . Let A=\mathbb{C}[x, y, z]
be a polynomial ring in three variables x, y and z

,
and let us assign weights p, q, r to

variables x, y, z
, respectively. Let A=\oplus_{n\geqq 0}A_{n}^{\mathrm{w}} be a decomposition of A into w‐

homogeneous pieces as in Definition 2.1. According to this grading on A
,

we have a

\mathrm{G}_{m} ‐action on X:= Spec ( \mathbb{C}[x, y, z]) :

t\cdot(x, y, z)=(t^{p}x, t^{q}y ,
trz ) , t\in \mathrm{G}_{m}

with the quotient \mathbb{P}_{\mathrm{w}}:=\mathbb{P}(p, q, r) . Since the closures of \mathrm{G}_{m} ‐orbits intersect each other

at only the origin 0:=(0,0,0)\in X ,
we have the quotient morphism:

 $\pi$:X\backslash \{0\}\rightarrow \mathbb{P}_{\mathrm{w}}.

Though  $\pi$ can not be defined at  0
,

after the weighted blow‐up at 0 with respect to

\mathrm{w}=(p, q, r) , say:

 $\sigma$:\overline{X}\supseteq\overline{E}\rightarrow 0\in X,

the composite  $\pi$:= $\pi$\circ $\sigma$ yields an \mathrm{A}^{1} ‐bundle over \mathbb{P}_{\mathrm{w}} ,
where \overline{E}\cong \mathbb{P}_{\mathrm{w}} is the exceptional

divisor of  $\sigma$.

§3.2.

At first, we shall prove an implication (\mathrm{B})_{\mathrm{w}}\Rightarrow(\mathrm{A})_{\mathrm{w}} . Hence, let us suppose that

f, g\in A are \mathrm{w}‐homogeneous such that the affine surface U :=\mathbb{P}_{\mathrm{w}}\backslash (\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f)\cup \mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(g)) is
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isomorphic to \mathbb{C}^{*}\times \mathrm{A}^{1} ,
and we denote by  $\rho$ :  U\rightarrow Z:=\mathbb{C}^{*} an \mathrm{A}^{1} ‐bundle, which is just

the projection to the first factor. We often use the same notation Z to denote a section

of  $\rho$ even if we do not mention it explicitly. Let us set \overline{U}:=\overline{ $\pi$}^{-1}(U) ,
and \overline{Z}:=\overline{ $\pi$}^{-1}(Z) .

Lemma 3.1. \overline{U}\cong U\times \mathrm{A}^{1} and \overline{Z}\cong Z\times \mathrm{A}^{1}
,

where \mathrm{A}^{1} corresponds to the direction

of fibers of \overline{ $\pi$} . Furthermore, \overline{U}\cap\overline{E}\cong U\times\{0\} and \overline{Z}\cap\overline{E}\cong Z\times\{0\} under these

isomorphisms.

Proof. Note that Pic (U)=(0) ,
which implies that \overline{ $\pi$}|_{\overline{U}}:\overline{U}\rightarrow U gives rise to a

trivial \mathrm{A}^{1} ‐bundle. Thus the first assertion are obtained. Then the second assertion is

obvious. \square 

By Lemma 3.1, the image Û: = $\sigma$ (U‐)o} of \overline{U} with 0 deleted off has an \mathrm{A}^{1} ‐bundle

structure over \hat{Z}:= $\sigma$(\overline{Z})\backslash \{0\} arising from  $\rho$ , say:

\hat{ $\rho$} : Û \rightarrow z\hat{}\cong \mathbb{C}* \times \mathbb{C}^{*},

which is, in fact, trivial, i.e., Û = Z\hat{}\times Al as Pic (\hat{Z})=(0) . Let  $\delta$ be a locally nilpotent
derivation corresponding to \hat{ $\rho$} on the coordinate ring \mathbb{C} [Û] of Û.5

Lemma 3.2. By multiplying  $\delta$ with (fg)^{N} for a suitable N\geqq 0 ,
the resulting

(fg)^{N} $\delta$ becomes a derivation on  A.

Proof. Since U=\mathbb{P}_{\mathrm{w}}\backslash (\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f)\mathrm{U}\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(g)) ,
we have \hat{U}=X\backslash (\mathrm{V}_{X}(f)\cup \mathrm{V}_{X}(g)) , i.e.,

\mathbb{C}[[Ucirc]]=A[f^{-1}, g^{-1}] . By noting that A is finitely generated, it follows that (fg)^{N} $\delta$\in
\mathrm{D}\mathrm{e}\mathrm{r}_{\mathbb{C}}(A) for a suitable N\geqq 0 (cf. [Mi84, Lemma, p.1471], [KPZ]). \square 

Now we decompose (fg)^{N} $\delta$ into homogeneous parts with respect to \mathrm{w} as follows:

(fg)^{N} $\delta$=$\delta$_{d}+$\delta$_{d+1}+\cdots+$\delta$_{e}, $\delta$_{j}(A_{n}^{\mathrm{w}})\subseteq A_{n+j}^{\mathrm{w}} (\forall n\geqq 0, d\leqq j\leqq e) , $\delta$_{d}, $\delta$_{e}\neq 0.

Lemma 3.3. $\delta$_{d} and $\delta$_{e} are locally nilpotent derivations on A such that \mathrm{K}\mathrm{e}\mathrm{r}($\delta$_{d})=
\mathrm{K}\mathrm{e}\mathrm{r}($\delta$_{e})=\mathbb{C}[f, g].

Proof. Since f and g are units in \mathbb{C}[[Ucirc]]=A[f^{-1}, g^{-1}] , f | Û and g | Û do not vanish

anywhere, in particular, they are constants along general orbits of a \mathrm{G}_{a} ‐action induced

by  $\delta$ . Thus  f and g are contained in \mathrm{K}\mathrm{e}\mathrm{r}( $\delta$)=\mathbb{C}[\hat{Z}] ,
thence the derivation (fg)^{N} $\delta$ as

in Lemma 3.2 is in fact locally nilpotent. Then it is easy to confirm that  $\delta$_{d} and $\delta$_{e} are

also locally nilpotent derivations. On the other hand, as f, g\in \mathrm{K}\mathrm{e}\mathrm{r}( $\delta$) and they are w‐

homogeneous, we see that $\delta$_{d}(f)=$\delta$_{e}(f)=$\delta$_{d}(g)=$\delta$_{e}(g)=0 ,
so that \mathbb{C}[f, g] is contained

5Note that such a  $\delta$ is unique up to the multiplication of elements from the sub‐algebra \mathbb{C}[\hat{Z}] of

\mathbb{C} [Û], which is the coordinate ring of the base variety \hat{Z}.
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in \mathrm{K}\mathrm{e}\mathrm{r}($\delta$_{d}) and \mathrm{K}\mathrm{e}\mathrm{r}($\delta$_{e}) . The remaining is to verify \mathrm{K}\mathrm{e}\mathrm{r}($\delta$_{d})=\mathbb{C}[f, g]=\mathrm{K}\mathrm{e}\mathrm{r}($\delta$_{e}) . Since

$\delta$_{d} is a \mathrm{w}‐homogeneous locally nilpotent derivation on A=\mathbb{C}[x, y, z] ,
its kernel \mathrm{K}\mathrm{e}\mathrm{r}($\delta$_{d})

is a polynomial ring in two variables generated by two \mathrm{w}‐homogeneous polynomials, say

F and G by [Mi85], [Zur]. If \mathbb{C}[F, G] is strictly larger than \mathbb{C}[f, g] ,
then at least one of

f and g is not linear with respect to F and G , say:

(3.1) f=$\mu$_{i}\displaystyle \sum_{\deg_{\mathrm{w}}(F)+$\nu$_{i}\deg_{\mathrm{w}}(G)=\deg_{\mathrm{w}}(f)}a_{i}F^{$\mu$_{i}}G^{$\nu$_{i}},
for some a_{i}\in \mathbb{C} . Since (3.1) is not linear and \mathrm{w}‐homogeneous, it can be decomposed
into several \mathrm{w}‐homogeneous factors, in particular, f can not be irreducible. This is a

contradiction. Hence, it follows that \mathbb{C}[F, G]=\mathbb{C}[f, g] as desired. As for $\delta$_{e} also, the

argument is same. Thus we complete the proof. \square 

Thus we obtain the direction (\mathrm{B})_{\mathrm{w}}\Rightarrow(\mathrm{A})_{\mathrm{w}}.

§3.3.

We shall prove the other direction (\mathrm{A})_{\mathrm{w}}\Rightarrow(\mathrm{B})_{\mathrm{w}} . Let f\in A_{a}^{\mathrm{w}} and g\in A_{b}^{\mathrm{w}} be w‐

homogeneous irreducible polynomials of A=\mathbb{C}[x, y, z] satisfying (A), i.e., \mathrm{K}\mathrm{e}\mathrm{r} () =

\mathbb{C}[f, g] for a suitable \triangle\in \mathrm{L}\mathrm{N}\mathrm{D}^{\mathrm{w}}(A) . We denote by

v:X\rightarrow Z:= Spec ( \mathbb{C}[f, g])\cong \mathrm{A}^{2}

the morphism induced by the inclusion A\supseteq \mathbb{C}[f, g] . Let us put c:=\mathrm{g}\mathrm{c}\mathrm{d}(a, b) and write

a=ca', b=cb^{\prime.6} Then we investigate the linear pencil \mathscr{L} on \mathbb{P}_{\mathrm{w}} generated by f^{b'} and

g^{a'} , namely:

(3.2) \mathscr{L} :=\{B_{[ $\alpha$: $\beta$]} [ $\alpha$ :  $\beta$]\in \mathbb{P}(a, b)\}\subseteq|\mathscr{O}_{\mathbb{P}_{\mathrm{w}}} (a�b�c) |,

where B_{[ $\alpha$: $\beta$]} is the projective curve on \mathbb{P}_{\mathrm{w}} defined by

(3.3) ( $\alpha$ f)^{b'}+( $\beta$ g)^{a'}=0.

On the other hand, let C_{[ $\alpha$: $\beta$]} be the affine curve on Z defined by the same equation as

(3.3), and let us denote by  $\Lambda$ the linear pencil on  Z consisting of C_{[ $\alpha$: $\beta$]}' \mathrm{s} , where [ $\alpha$ :  $\beta$]
ranges over \mathbb{P}(a, b) . Then we have the following:

Lemma 3.4.

(1) Any member of  $\Lambda$\backslash \{C_{[1:0]}, C_{[0:1]}\} is irreducible and reduced.

6As remarked in Remark 2.3, it follows in fact that c=1 . But, in the argument of 3.3, we do not

assume that c=1.
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(2) C_{[1:0]} and C_{[0:1]} are irreducible. (Even so, they are not necessarily reduced.)

(3) Any member of v^{*} $\Lambda$\backslash \{v^{*}C_{[1:0]}, v^{*}C_{[0:1]}\} is irreducible and reduced.

(4) v^{*}C_{[1:0]} and v^{*}C_{[0:1]} are irreducible. (Even so, they are not necessarily reduced.)

Proof. Note that \mathrm{K}\mathrm{e}\mathrm{r} () is an inert sub‐algebra of A (cf. [Mi78]), thence we

have only to confirm (1) in order to obtain (3) also. Assume to the contrary that some

member C_{[ $\alpha$: $\beta$]} except for C_{[1:0]} and C_{[0:1]} is not scheme‐theoretically irreducible, which

means that ( $\alpha$ f)^{b'}+( $\beta$ g)^{a'} can be decomposed in \mathrm{K}\mathrm{e}\mathrm{r} () =\mathbb{C}[f, g] as follows:

( $\alpha$ f)^{b'}+( $\beta$ g)^{a'}=\displaystyle \prod_{k=1}^{N}P_{k}^{$\mu$_{k}}, P_{k}\in \mathbb{C}[f, g], $\mu$_{k}\in \mathbb{N} (1\leqq k\leqq N) ,

where N\geqq 2 or N=1 with $\mu$_{1}\geqq 2 holds for some [ $\alpha$ :  $\beta$]\in \mathbb{P}(a, b)[1 : 0], [0 : 1].
Note that in this decomposition each irreducible factor P_{k} ,

which is different from f and

g ,
in the right hand side is \mathrm{w}‐homogeneous, thus P_{k} is actually contained in \mathbb{C}[f^{b'}, g^{a'}].

Then we can see the contradiction by taking \mathrm{w}‐degrees of the both sides into account.

Thus we obtain (1). Since f, g\in A are irreducible, the remaing assertions (2) and (4)
are obvious. \square 

Before looking at Bs \mathscr{L} , we shall observe the linear pencil  v^{*} $\Lambda$ on  X . By the

construction, we see:

(3.4) Bs (v^{*} $\Lambda$)=\mathrm{V}_{X}(f)\cap \mathrm{V}_{X}(g)=v^{-1}(\overline{o}) ,

where \overline{o} is the origin of the affine plane Z with a system of coordinates (f, g) .

Lemma 3.5. \dim Bs (v^{*} $\Lambda$)=1 and it is composed of the image by  $\sigma$ : \overline{X}\rightarrow X

of some fibers of \overline{ $\pi$}:\overline{X}\rightarrow \mathbb{P}_{\mathrm{w}}.

Proof. At first, we shall verify \dim Bs (v^{*} $\Lambda$)=1 . Since A is factorial, it is easy to

see that \dim Bs (v^{*} $\Lambda$)\leqq 1 . Furthermore, by noting that Bs (v^{*} $\Lambda$)=v^{-1}(0) is defined by
the ideal (f, g)\subseteq A generated by two elements in A

,
it follows that \dim Bs (v^{*} $\Lambda$)=1

unless v^{-1}(\mathrm{O}) is empty. The fact that v^{-1}(\mathrm{O}) is non‐empty follows from [Bo02], but

we are able to see it by the elementary argument as follows. Indeed, assuming to the

contrary that \mathrm{V}_{X}(f)\cap \mathrm{V}_{X}(g)=\emptyset ,
this implies that \mathrm{V}_{X}(g) is contained in a fiber of the

polynomial map defined by f :

f:X\ni(s, t, u)\mapsto f(s, t, u)\in \mathrm{A}^{1}= Spec ( \mathbb{C}[f]) .

Thus  f=gh+ $\gamma$ for suitable  h\in A and  $\gamma$\in \mathbb{C} . If necessary, by interchanging the

role of f and g ,
we may and shall assume that \deg(f)\leqq\deg(g) ,

where \deg means



Homogeneous locally nilpotent derivations 0F \mathbb{C}[x, y, z] 13

the ordinary degree. The comparison of degree says that h must be a constant. Then

\mathbb{C}[f, g] can not be a polynomial ring of dimension 2, which is a contradiction. Thus

\dim v^{-1}(\overline{o})=1 as desired. Since v^{-1}(0) is invariant under the \mathrm{G}_{m} ‐action on X
,

the

second assertion is then obtained. \square 

By Lemma 3.5, we have Bs (v^{*} $\Lambda$)=\displaystyle \bigcup_{j=1}^{s}l_{j} ,
where l_{j}=$\sigma$_{*}(\overline{ $\pi$}^{-1}(P)) and P_{j} is a

point on \mathbb{P}_{\mathrm{w}}(1\leqq j\leqq s) . Then it is not difficult to see that Bs \mathscr{L}=\{P_{1}, \cdots, P_{s}\} . In

fact, we have furthermore the following result:

Lemma 3.6.

(1) s=1
, i.e., Bs \mathscr{L} consists of only one point, say Bs \mathscr{L}=\{P\}.

(2) B_{[ $\alpha$: $\beta$]}\backslash \{P\}\cong \mathrm{A}^{1} for general [ $\alpha$ :  $\beta$]\in \mathbb{P}(a, b) .

Proof. Let us put S_{[ $\alpha$: $\beta$]}:=v^{*}C_{[ $\alpha$: $\beta$]}\displaystyle \backslash (\bigcup_{j=1}^{s}l_{j}) . As \triangle is a \mathrm{w}‐homogeneous locally

nilpotent derivation, there exists q\in \mathrm{K}\mathrm{e}\mathrm{r} () =\mathbb{C}[f, g] ,
which is \mathrm{w}‐homogeneous, such

that A[q^{-1}]=\mathbb{C}[f, g, q^{-1}][u] ,
where  u\in Frac (A) is algebraically independent over

\mathbb{C}(f, g) (cf. [Mi78]). Since q\in \mathbb{C}[f, g] is \mathrm{w}‐homogeneous, we know that \mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(q) is

composed of several members of  $\Lambda$ . Hence  v|_{S_{[ $\alpha$: $\beta$]}} : S_{[ $\alpha$: $\beta$]}\rightarrow C_{[ $\alpha$: $\beta$]}\backslash \{\overline{o}\} yields an \mathrm{A}^{1}-

bundle structure for a general [ $\alpha$ :  $\beta$]\in \mathbb{P}(a, b) . Meanwhile S_{[ $\alpha$: $\beta$]} is invariant under the

\mathrm{G}_{m} ‐action on X and its quotient coincides with B_{[ $\alpha$: $\beta$]}\backslash \{P_{1}, \cdots, P_{s}\} . Thus S_{[ $\alpha$: $\beta$]} has

two morphisms:

(3.5) B_{[ $\alpha$: $\beta$]}\backslash \{P_{1}, \cdots, P_{s}\}\leftarrow^{ $\pi$}S_{[ $\alpha$: $\beta$]}\rightarrow^{ $\nu$}C_{[ $\alpha$: $\beta$]}\backslash \{\mathrm{O}\}

depending on a \mathrm{G}_{m} ‐action and a \mathrm{G}_{a} ‐action on it. The fiber of v in (3.5) is isomor‐

phic to \mathrm{A}^{1} which is mapped to a curve in B_{[ $\alpha$: $\beta$]}\backslash \{P_{1}, \cdots, P_{s}\} . This is possible only
if B_{[ $\alpha$: $\beta$]}\backslash \{P_{1}, \cdots, P_{s}\} is a rational curve with only one‐place at infinity, therefore it

follows that s=1
, i.e., Bs \mathscr{L} is composed of only one point. Thus we confirm the first

assertion. The second one is then easy to see by Bertini�s Theorem. \square 

In particular, \mathscr{L} is a linear pencil on \mathbb{P}_{\mathrm{w}} consisting of rational curves with only one

base point Bs \mathscr{L}=\{P\} . Moreover, we have the following:

Lemma 3.7.

(1) Any member of \mathscr{L}\backslash \{B_{[1:0]}, B_{[0:1]}\} is irreducible and reduced.

(2) If a member of \mathscr{L} is irreducible and reduced, then it does not contain the point from

Sing (\mathbb{P}_{\mathrm{w}})\backslash \{P\}.

(3) B_{[ $\alpha$: $\beta$]}\backslash \{P\}\cong \mathrm{A}^{1} if B_{[ $\alpha$: $\beta$]} is irreducible and reduced.
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(4) If B_{[ $\alpha$: $\beta$]} is not reduced,then it contains at most one point from Sing (\mathbb{P}_{\mathrm{w}})\backslash \{P\}.

Proof. By taking Lemma 3.4 into account, any member B_{[ $\alpha$: $\beta$]} of \mathscr{L} except for

B_{[1:0]} and B_{[0:1]} is irreducible and reduced, moreover, B_{[1:0]} and B_{[0:1]} are irreducible

(but not necessarily reduced). Thus we see (1). Now let  $\mu$ :  V\rightarrow \mathbb{P}_{\mathrm{w}} be the composition
of the resolution of Sing () and the shortest succession of blow‐ups at Bs \mathscr{L}=\{P\}
including infinitely near points such that the proper transform \overline{\mathscr{L}}\mathrm{o}\mathrm{n} V of \mathscr{L} is free of

base points. Then \mathscr{L}—yields a \mathbb{P}^{1} ‐fibration $\Phi$_{\overline{\mathscr{L}}}:V\rightarrow \mathbb{P}(a, b)=\mathbb{P}(\overline{\mathscr{L})}=\mathbb{P}(\mathscr{L})\cong \mathbb{P}^{1} and

there exists exactly one component, say E
,

contained in $\mu$^{-1}(P)\subseteq V which is projected
onto \mathbb{P}^{1} via $\Phi$_{\overline{\mathscr{L}}}. Furthermore, E is a section of $\Phi$_{\overline{\mathscr{L}}} by virtue of Lemma 3.6, (2). Note

that any exceptional component in Exc() other than E has a self‐intersection number

less than or equal to -2 . Let

(3.6) \displaystyle \overline{B_{[ $\alpha$: $\beta$]}}+\sum a_{i}E_{i}, E_{i}\subseteq \mathrm{E}\mathrm{x}\mathrm{c}()

be the member of \mathscr{L}—corresponding to B_{[ $\alpha$: $\beta$]} ,
where B_{[ $\alpha$: $\beta$]} is the proper transform on V

of B_{[ $\alpha$: $\beta$]} . If B_{[ $\alpha$: $\beta$]} is irreducible and reduced (this is the case if [ $\alpha$ :  $\beta$]\neq[1: 0], [0 : 1

then the multiplicity in the fiber (3.6) of the component (B_{[ $\alpha$: $\beta$]})_{\mathrm{r}\mathrm{e}\mathrm{d}} is equal to 1. Hence

by supposing that the fiber (3.6) is not irreducible, there must exist a component from

\{E_{i}\} whose self‐intersection number is -1 (cf. [Mi78, 2.2. Lemma, p.115]). This is

absurd. Thus \{E_{i}\}=\emptyset ,
which implies that  B_{[ $\alpha$: $\beta$]} does not pass through any point in

Sing (\mathbb{P}_{\mathrm{w}})\backslash \{P\} and B_{[ $\alpha$: $\beta$]}\backslash \{P\}\cong B_{[ $\alpha$: $\beta$]}\backslash (B_{[ $\alpha$: $\beta$]}\cap E)\cong \mathrm{A}^{1} as desired in (2) and (3).
As for (4), assume to the contrary that for example B_{[1:0]} passes at least two points in

Sing (\mathbb{P}_{\mathrm{w}})\backslash \{P\} , say P_{1}, P_{2} ,
the corresponding member of \mathscr{L} is written as follows:

(3.7) \displaystyle \overline{B_{[1:0]}}+\sum a_{i}E_{i}^{(1)}+\sum b_{j}E_{j}^{(2)}+\sum c_{k}F_{k},

\cup E_{i}^{(1)}\subseteq$\mu$^{-1}(P_{1}) , \cup E_{j}^{(2)}\subseteq$\mu$^{-1} (P2), \cup F_{k}\subseteq$\mu$^{-1}(( Sing ( \mathbb{P}_{\mathrm{w}})\cup\{P\})\backslash \{P_{1}, P_{2}\}) .

By assumption, \{E_{i}^{(1)}\}\neq\emptyset and \{E_{j}^{(2)}\}\neq\emptyset . Furthermore, note that \{F_{k}\}\neq\emptyset . In fact,

otherwise  B_{[1:0]} meets the section E of $\Phi$_{\overline{\mathscr{L}}}, hence the multiplicity of this component

in the fiber (3.7) must be equal to 1. Then there must exist \mathrm{a}(1) ‐curve in the fiber

(3.7) except for B_{[1:0]} ,
which is absurd (cf. [Mi78, 2.2. Lemma Thus \{F_{k}\}\neq\emptyset . As

 B_{[1:0]} must be a unique (1)‐curve in the fiber (3.7), the contraction of it yields anew a

fiber of a \mathbb{P}^{1} ‐fibration in which the proper transforms of components E_{i}^{(1)}, E_{j}^{(2)} and F_{k}

meeting \overline{B_{[1:0]}} intersect each other in a common point, which is a contradiction bacause

of the fact that the different three components can not meet in a common point in a

fiber of a \mathbb{P}^{1} ‐fibration (cf. [Mi78, 2.2. Lemma]). Thus we complete the proof. \square 

7Note that this can occur only for [ $\alpha$ :  $\beta$]=[1 : 0] or [0:1] by (1).
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When we restrict the rational map $\Phi$_{\mathscr{L}} : \mathbb{P}_{\mathrm{w}}--\mathrm{K}\mathbb{P}^{1} defined by \mathscr{L} to the affine

surface S:=\mathbb{P}_{\mathrm{w}}\backslash (B_{[1:0]}\cup B_{[0:1]}) ,
this gives rise to an \mathrm{A}^{1} ‐bundle:

 $\varphi$:=$\Phi$_{\mathscr{L}}|s : S\rightarrow \mathbb{P}(a, b [ 1 : 0], [0 : 1]\}\cong \mathbb{C}^{*},

by Lemma 3.7. Because of Pic (\mathbb{C}^{*})=0 ,
it follows that  $\varphi$ is in fact trivial to deduce

 S\cong \mathbb{C}^{*}\times \mathrm{A}^{1} . Thus we see the direction (\mathrm{A})_{\mathrm{w}}\Rightarrow(\mathrm{B})_{\mathrm{w}} . Hence we complete the proof
for Theorem 2.2. Moreover, we obtain the assertions (1), (2) and (3) in Theorem 2.7

also.

§3.4.

As verified in Lemma 3.7, all members contained in \mathscr{L}\backslash \{B_{[1:0]}, B_{[0:1]}\} are irre‐

ducible and reduced, in other words, B_{[1:0]} and B_{[0:1]} are the only possibilities as mem‐

bers of \mathscr{L} to be non‐reduced. As already defined in Remark 2.8, we shall divide \mathscr{L} into

three types Type (k) (0\leqq k\leqq 2) according to the number k of non‐reduced members

in \mathscr{L}.

3.4.1. Type (0) is not difficult to analyse. Thus let us suppose for a while that all

members of \mathscr{L} are irreducible and reduced. Then, in fact, the possibility of the weight
is fairly restricted as follows:

Lemma 3.8. The weight \mathrm{w}=(p, q, r) satises p=q=1.

Proof. By the same reason as in the proof of Lemma 3.7, any member of \mathscr{L} does

not contain points from Sing (\mathbb{P}_{\mathrm{w}})\backslash \{P\} ,
where we recall that P is the base point of

\mathscr{L} (see Lemma 3.7). This implies that Sing () \subseteq\{P\} . Therefore we may and shall

assume that the weight \mathrm{w}=(p, q, r) satisfies p=q=1 as desired. \square 

Lemma 3.9. Aft er an application of a suitable linear automorphism on \mathrm{A}^{3}, f
and g are transfO rmed to coordinates x and y.

Proof. In the case of r=1
, namely, the case of \mathbb{P}_{\mathrm{w}}=\mathbb{P}^{2} ,

it is easy to see that \mathscr{L}

is composed of lines passing through P
,

hence the assertion is obvious to see. In what

follows, we consider the case of r\geqq 2 . Since every member of the pencil \mathscr{L} spanned

by f^{b'} and g^{a'} is irreducible and reduced, it must be that a'=b'=1
, i.e., a=b,

where a=\deg_{\mathrm{w}}(f) and b=\deg_{\mathrm{w}}(g) . We shall show in fact that a=b=1 . Taking the

argument to prove Lemma 3.7 into account, the minimal resolution  $\mu$ :  $\Sigma$_{r}\cong V\rightarrow \mathbb{P}_{\mathrm{w}} of

the singularity on \mathbb{P}_{\mathrm{w}}=\mathbb{P}(1,1, r) ,
which is just the weighted blow‐up at P=[0: 0: 1]

with respect to the weight \displaystyle \frac{1}{r}(1,1) ,
coincides with the resolution of Bs \mathscr{L}=\{P\} . Thus

the proper transform $\mu$_{*}^{-1}\mathscr{L} consists of rulings on V\cong$\Sigma$_{r} . Therefore we see that \mathscr{L} is
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spanned by x and y to deduce that a=b=1 . Hence f and g are transformed to x and

y by making use of a linear automorphism on \mathrm{A}^{3} as desired. \square 

Let us consider a locally nilpotent derivation \triangle corresponding to \mathscr{L} via the for‐

mula (2.1) in Remark 2.5. In order to show the fact that  $\varphi$\triangle yields a family of tame

automorphisms on \mathrm{A}^{3}
,

we may assume that f=x and g=y since f and g are brought
to x and y by an appropriate linear automorphism by virtue of Lemma 3.9. Then \triangle is

of the form \displaystyle \triangle=h(x, y)\frac{\partial}{\partial z} ,
where h(x, y) is a homogeneous polynomial of x and y in a

usual sense. Thus it is easy to confirm that  $\varphi$\triangle gives rise to tame automorphisms on

\mathrm{A}^{3} actually. Summarizing arguments performed above, we obtain Theorem 2.7, (4) and

Theorem 2.10.

3.4.2. We shall here consider the case of Type (I) for the assertion Theorem 2.7,

(5), namely, \mathscr{L} contains only one non‐reduced member B_{[1:0]}=b'\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f) with b'\geqq 2,
and all other members of \mathscr{L} are scheme‐theoretically irreducible. Indeed, we have the

following:
Lemma 3.10.

(1) #Sing () \leqq 2.

(2) Sing () \subseteq B_{[1:0]}.

(3) In case of #Sing () =2
,

one of singularities must coincide with P (recall that

Bs \mathscr{L}=\{P\}) ,
and the other is located on B_{[1:0]}.

Proof. All the assertions can be confirmed by virtue of Lemma 3.7. \square 

In particular, by Lemma 3.10, we may assume that p=1 . Since any member

B_{[ $\alpha$: $\beta$]}\in \mathscr{L} except for B_{[1:0]}=b'\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f) satisfies B_{[ $\alpha$: $\beta$]}\backslash \{P\}\cong \mathrm{A}^{1} ,
it follows that

\mathbb{P}_{\mathrm{w}}\backslash B_{[1:0]}\cong \mathrm{A}^{2} . Concerning the \mathrm{w}‐degree a=\deg_{\mathrm{w}}(f) of f\in A_{a}^{\mathrm{w}} ,
we can see in fact

the following:

Lemma 3.11. a=1.

Proof. Let us consider the divisor D:=\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(x)\subseteq \mathbb{P}_{\mathrm{w}} . If \deg_{\mathrm{w}}(f)=a\geqq 2 ,
then

 D\neq Supp (  B_{[1:0]}) . In consideration of the fact \mathbb{P}_{\mathrm{w}}\backslash Supp ( B_{[1:0]})\cong \mathrm{A}^{2} ,
the restriction

D\backslash (D\cap B_{[1:0]}) is a principal divisor. Hence there exists a suitable rational function

h\in \mathbb{C}(\mathbb{P}_{\mathrm{w}}) such that \mathrm{d}\mathrm{i}\mathrm{v}_{\mathbb{P}_{\mathrm{w}}}(h)=D-n(B_{[1:0]})_{\mathrm{r}\mathrm{e}\mathrm{d}} for some n\geqq 1 . This is absurd to see

a=1
,

which completes the proof. \square 

Thus we finish the proof of Theorem 2.7.
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§4. Problems for polynomial rings of dimension \geqq 4

In this section, we shall review the situation in dimension 2 and that in dimension

3 just investigated in §3 about generators of kernels of weighted homogeneous locally

nilpotent derivations. This observation seems to be something in order that we would be

able to list the candidates for wild automorphisms on the affine spaces \mathrm{A}^{n} with n\geqq 4.

§4.1.

Let us begin with the review in the case of dimension 2, so let \triangle be an LND

on \mathbb{C}[x, y] ,
which is homogeneous with respect to \mathrm{w}=(p, q) with \mathrm{g}\mathrm{c}\mathrm{d}(p, q)=1.

Then \mathrm{K}\mathrm{e}\mathrm{r} () is generated by a single \mathrm{w}‐homogeneous polynomial (cf. [Ren68]), say

\mathrm{K}\mathrm{e}\mathrm{r}(\triangle)=\mathbb{C}[f] such that the inclusion \mathrm{K}\mathrm{e}\mathrm{r} () \subseteq \mathbb{C}[x, y] gives rise to the morphism:

 $\rho$ : \mathrm{A}^{2}= Spec ( \mathbb{C}[x, y])\rightarrow \mathrm{A}^{1}= Spec ( \mathbb{C}[f]) , (a, b)\mapsto f(a, b) ,

which is in fact an \mathrm{A}^{1} ‐bundle (cf. [Mi78]). Therefore this generator f of \mathrm{K}\mathrm{e}\mathrm{r} () must

be a coordinate of \mathbb{C}[x, y] . Furthermore, \triangle is described as

\displaystyle \triangle=cf^{N}(f_{x}\frac{\partial}{\partial y}-f_{y}\frac{\partial}{\partial x}) ,

for some N\geqq 0 and c\in \mathbb{C}^{*} ,
and it yields a family of tame automorphisms on \mathrm{A}^{2}.

Moreover it follows that \mathbb{P}_{\mathrm{w}}\backslash \mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f)\cong \mathbb{P}^{1}\backslash \{1pt\}\cong \mathrm{A}^{1}.

§4.2.

Again let us look at the case of dimension 3 (see §3). Assuming that \triangle is a

\mathrm{w}‐homogeneous locally nilpotent derivation on A=\mathbb{C}[x, y, z] with respect to a given

weight \mathrm{w}=(p, q, r) ,
the kernel \mathrm{K}\mathrm{e}\mathrm{r} () is generated by two \mathrm{w}‐homogeneous polynomials

f, g\in A satisfying \mathbb{P}_{\mathrm{w}}\backslash (\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f)\mathrm{U}\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(g))\cong \mathbb{C}^{*}\times \mathrm{A}^{1} (cf. Theorem 2.2). The Al‐fibration

corresponding to the inclusion \mathrm{K}\mathrm{e}\mathrm{r} () \subseteq A :

 $\rho$ : \mathrm{A}^{3}= Spec ( \mathbb{C}[x, y, z])\rightarrow \mathrm{A}^{2}= Spec ( \mathbb{C}[f, g]) , (a, b, c)\mapsto(f(a, b, c), g(a, b, c))

is not necessarily an \mathrm{A}^{1} ‐bundle. With the notation in §3, in the case of Type (0), the

polynomials f and g are transformed to x and y by an application of a suitable linear

automorphism on \mathrm{A}^{3}
,

in particular, they are coordinates on \mathrm{A}^{3} to see that  $\rho$ is an \mathrm{A}^{1}-

bundle (see Lemma 3.9). As a consequence, we see that \triangle in this case gives rise to a

family of tame automorphisms (cf. Theorem 2.10). Meanwhile, in the case of Type (I)
or Type (II), it can be that  f or g is not a coordinate of A

,
which implies that  $\rho$ is no

longer an \mathrm{A}^{1} ‐bundle. For instance, the linear pencil \mathscr{L} on \mathbb{P}^{2} generated by f^{2}=x^{2}
and g=xz-y^{2} satisfies (\mathrm{B})_{\mathrm{w}} with \mathrm{w}=(1,1,1) and it is of Type (I). Then the fiber
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$\rho$^{-1}(( $\alpha$,  $\beta$)) of  $\rho$ is isomorphic to \mathrm{A}^{1} scheme‐theoretically unless  $\alpha$=0 . On the other

hand, $\rho$^{-1}((0,  $\beta$)) is composed of two disjoint \mathrm{A}^{1\prime}\mathrm{s} unless  $\beta$=0 ,
and $\rho$^{-1}((0,0)) is a

double \mathrm{A}^{1} . Then we are able to construct, in fact, a family of wild automorphisms on

\mathrm{A}^{3} by making use of a suitable LND corresponding to \mathscr{L} (cf. [Ku11]).

§4.3.

Taking the observation just above into account, we shall think of a reasonable way

to construct the candidate of a family of wild automorphisms on \mathrm{A}^{n} for n\geqq 4 . For

instance, let us look at the action of \mathrm{G}_{a} on \mathrm{A}^{4}= Spec ( \mathbb{C}[x, y, z, w]) via the following

 $\delta$\in \mathrm{L}\mathrm{N}\mathrm{D}^{\mathrm{w}}(\mathbb{C}[x, y, z, w]) ,
where \mathrm{w}=(1,1,1, a)(a\in \mathbb{N}) is a weight attached to a system

of coordinates (x, y, z, w) on \mathrm{A}^{4} :

\displaystyle \triangle=(xz-y^{2})(x\frac{\partial}{\partial y}+2y\frac{\partial}{\partial z}) .

Then the co‐action is described as follows:

$\varphi$_{\triangle}:\left\{\begin{array}{l}
x\mapsto x\\
y\mapsto y+x (xz-- y2) t\\
z\mapsto z+2y (xz-- y2) t+x (xz-- y2)2 t^{2}\\
w\mapsto w,
\end{array}\right.
which is a straightforward extension of the family of Nagata automorphisms in dimension

4. Note that \mathrm{K}\mathrm{e}\mathrm{r} () \subseteq \mathbb{C}[x, y, z, w] is generated by x
, xz—y2 and w

,
in particular,

two of three generators of \mathrm{K}\mathrm{e}\mathrm{r} () are variables of \mathbb{C}[x, y, z, w] . Moreover, it follows

that \mathbb{P}_{\mathrm{w}}\backslash (\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(x)\mathrm{U}\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(xz-y^{2})\cup \mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(w))\cong \mathbb{C}^{*}\times \mathbb{C}^{*}\times \mathrm{A}^{1} . It is known in fact that

 $\varphi$\triangle induces a family of tame automorphisms on \mathrm{A}^{4} . In consideration of this example
and the situation of dimension \leqq 3 explained just above, it seems to be reasonable to

propose the following problem:

Problem 4.1. Let \mathrm{w}=(w_{1}, \cdots, w_{n}) be a weight attached to the variables of

the polynomial ring \mathbb{C}[x_{1}, \cdots, x_{n}] such that w_{i} �s are pairwise coprime. Suppose that

there exist (n1)‐polynomials f_{1}, \cdots, f_{n-1}\in \mathbb{C}[x_{1}, \cdots, x_{n}] ,
which are \mathrm{w}‐homogeneous,

satisfying the following conditions:

(i) \mathbb{P}_{\mathrm{w}}\backslash (\mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f_{1})\cup\cdots\cup \mathrm{V}_{\mathbb{P}_{\mathrm{w}}}(f_{n-1}))\cong(\mathbb{C}^{*})^{n-2}\times \mathrm{A}^{1} ,
and

(ii) At least (n-2) �s of f_{1}, \cdots, f_{n-1} are not variables of \mathbb{C}[x_{1}, \cdots, x_{n}].

Then is \triangle\in Der (\mathbb{C}[x_{1}, \cdots, x]) of the form:

\displaystyle \triangle(*)=h\frac{\partial(f_{1},.\cdot.\cdot.\cdot,f_{n-1},*)}{\partial(x_{1},,x_{n-1},x_{n})}
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locally nilpotent giving rise to a family of wild automorphisms on \mathrm{A}^{n} by choosing

h\in \mathbb{C}[f_{1}, \cdots, f_{n-1}] ,
which is \mathrm{w}‐homogeneous, adequately ?^{8}

Example 4.2. In the case of n=4
,

let us for example consider the following

polynomials f_{i}' \mathrm{s}(1\leqq i\leqq 3) in \mathbb{C}[x, y, z, w] :

f_{1}:=xw^{4}+2yw^{2}(xz-y^{2})+z(xz-y^{2})^{2}, f_{2}:=yw^{2}+z(xz-y^{2}) , f_{3}:=w.

It is then verified that f_{1}, f_{2} and f_{3} satisfy the conditions (i) and (ii) in Problem 4.1

with \mathrm{w}= (1,1,1,1). The corresponding \mathrm{w}‐homogeneous derivation \triangle is of the form:

(4.1) \displaystyle \triangle(*):=h\frac{\partial(f_{1},f_{2},f_{3},*)}{\partial(x,y,z,w)},
where h is \mathrm{w}‐homogeneous contained in \mathbb{C}[f_{1}, f_{2}, f_{3}]\backslash \{0\} . Note that the morphism

corresponding to the inclusion \mathbb{C}[x, y, z, w]\supseteq \mathbb{C}[f_{1}, f_{2}, f_{3}] , say

(4.2) v:X:= Spec ( \mathbb{C}[x, y, z, w])\rightarrow Z:= Spec ( \mathbb{C}[f_{1}, f_{2}, f_{3}])\cong \mathrm{A}^{3},

(a, b, c, d)\mapsto(f_{1}(a, b, c, d), f_{2}(a, b, c, d), f_{3}(a, b, c, d))

yields us an Al‐fibration. Indeed, the scheme‐theoretic fiber v^{-1}(( $\alpha$,  $\beta$,  $\gamma$)) over the

point ( $\alpha$,  $\beta$,  $\gamma$)\in Z with  $\gamma$\neq 0 is isomorphic to the curve in \mathrm{A}^{3}(x, y, z) defined by:

x+2y(\displaystyle \frac{xz-y^{2}}{$\gamma$^{4}})+z(\frac{xz-y^{2}}{$\gamma$^{4}})^{2}- $\alpha$=y+z(\frac{xz-y^{2}}{$\gamma$^{4}})- $\beta$=0,
which is isomorphic to \mathrm{A}^{1} as we can construct an automorphism on \mathrm{A}^{3} transforming

x and y to x+2y(\displaystyle \frac{xz-y^{2}}{$\gamma$^{4}})+z(\frac{xz-y^{2}}{$\gamma$^{4}})^{2} and y+z(\displaystyle \frac{xz-y^{2}}{$\gamma$^{4}}) , respectively, by imitating
the construction of the Nagata automorphism as in Remark 2.5. Thus the restriction

of v onto U:=X\backslash \mathrm{V}_{X}(w) gives rise to an \mathrm{A}^{1} ‐bundle over U_{0}:=Z\backslash \mathrm{V}_{Z}(w)\cong \mathbb{C}^{*}\times \mathrm{A}^{1},
which is actually trivial, i.e., U\cong U_{0}\times \mathrm{A}^{1} as Pic (U_{0})=0 . By the same fashion as in

Lemma 3.2, an LND on \mathbb{C}[U]=\mathbb{C}[x, y, z, w, w^{-1}] corresponding to this \mathrm{A}^{1} ‐bundle v|_{U}
can be extended to that on \mathbb{C}[x, y, z, w] , say \triangle'

,
after multiplying w^{N} by choosing N\geqq 0

appropriately. Since the difference between \triangle and \triangle' as derivations on \mathbb{C}[U] is then a

multiplication of an element from \mathbb{C}[f_{1}, f_{2}, f_{3}=w, w^{-1}] ,
it is not difficult to see that

\triangle is, in fact, locally nilpotent. By choosing  h\in \mathbb{C}[f_{1}, f_{2}, f_{3}]\backslash \{0\} in the formula (4.1)
suitably, for instance h=f_{1} ,

we expect furthermore that the co‐action  $\varphi$\triangle produces a

family of wild automorphisms on \mathrm{A}^{4}.

8If we ignore the condition that w_{i} �s are pairwise coprime, then we have an example where the

derivation of the form as in Problem 4.1 is never locally nilpotent even satisfying (i) and (ii). For

instance, the pair (z, x^{3}+y^{2}) in Remark 2.3 in the case of \mathrm{w}=(2,3,6) becomes such an example.
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