Ramification of local fields and Fontaine's property (P$_m$) : a resume (Algebraic Number Theory and Related Topics 2009)

YOSHIDA, MANABU

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2011), B25: 255-258

2011-04

http://hdl.handle.net/2433/187866

Kyoto University
Ramification of local fields and Fontaine’s property (\(P_m\)): a résumé

By

MANABU YOSHIDA*

Abstract

This is a résumé of our results ([7], [9]) on Fontaine’s property (\(P\)) which is an effective tool for estimating the ramification of torsion Galois representations.

\section{Fontaine’s property (\(P_m\))}

Let \(K\) be a complete discrete valuation field with perfect residue field \(k\) of characteristic \(p > 0\), \(K^{\text{alg}}\) a fixed algebraic closure of \(K\), \(K\) the separable closure of \(K\) in \(K^{\text{alg}}\) and \(v_K\) the valuation on \(K^{\text{alg}}\) normalized by \(v_K(K^\times) = \mathbb{Z}\). We denote by \(G_K\) the absolute Galois group of \(K\). Let \(G^{(m)}_K\) be the \(m\)th upper numbering ramification group in the sense of [3]. Namely, we put \(G^{(m)}_K = G^{m-1}_K\), where the latter is the upper numbering ramification group defined in [6].

One of the classical problems in ramification theory is to obtain a ramification bound of torsion geometric Galois representations. Assume \(\text{char}(K) = 0\) for the moment. Let \(e\) be the absolute ramification index of \(K\). Consider a proper smooth variety \(X_K\) over \(K\) and put \(X_{\bar{K}} = X_K \times_K \bar{K}\). In [3], Fontaine conjectured the upper numbering ramification group \(G^{(m)}_K\) acts trivially on the \(r\)th étale cohomology group \(V = H^r_{\text{ét}}(X_{\bar{K}}, \mathbb{Z}/p^n\mathbb{Z})\) for \(m > e(n + r/(p-1))\) if \(X_K\) has good reduction. This is equivalent to the inequality \(u_{L/K} \leq e(n + r/(p-1))\), where \(L\) is defined by \(G_L = \text{Ker}(G_K \to \text{Aut}(V))\) and \(u_{L/K}\) is the infimum of the real numbers \(m\) such that \(G^{(m)}_K \subset G_L\). For \(e = 1\) and \(r < p - 1\), this conjecture was proved independently by himself ([4], for \(n = 1\)) and Abrashkin ([1], for any \(n\)). There are also similar ramification bounds if \(X_K\) has semi-stable reduction by

Received March 30, 2010.
2000 Mathematics Subject Classification(s): 11S15 Ramification and extension theory:
Key Words: Galois representation, Local field, Ramification:
Supported by JSPS Core-to-Core Program 18005
*Graduate School of Mathematics, Kyushu University, Fukuoka 819-0395, Japan.
e-mail: m-yoshida@kyushu-u.ac.jp
© 2011 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
Caruso-Liu ([2]) and Hattori ([5]). All of them used Fontaine’s property \((P_m) \) studied in [3] to obtain each ramification bound.

Now, let us go back to the general case where \(K \) is of either characteristic. For an algebraic extension \(E/K \), we denote by \(\mathcal{O}_E \) the integral closure of \(\mathcal{O}_K \) in \(E \). Fontaine’s property \((P_m) \) is the following condition for a finite Galois extension \(L \) of \(K \) and a real number \(m \):

\[
(P_m) \quad \text{For any algebraic extension } E/K, \text{ if there exists an } \mathcal{O}_K\text{-algebra homomorphism } \mathcal{O}_L \to \mathcal{O}_E/a_{E/K}^m, \text{ then there exists a } K\text{-embedding } L \hookrightarrow E,
\]

where \(a_{E/K}^m = \{ x \in \mathcal{O}_E \mid v_K(x) \geq m \} \). We define the greatest upper numbering ramification break \(u_{L/K} \) as above. Fontaine proved the following:

Proposition 1.1 ([3], Prop. 1.5). Let \(L \) be a finite Galois extension of \(K \), \(m \) a real number and \(e_{L/K} \) the ramification index of \(L/K \). Then there are following relations:

(i) If we have \(m > u_{L/K} \), then \((P_m) \) is true.

(ii) If \((P_m) \) is true, then we have \(m > u_{L/K} - e_{L/K}^{-1} \).

Remark. The above (i) can be generalized to the imperfect residue field case by Abbes-Saito’s ramification theory ([9], Prop. 4.3).

Given a torsion Galois representation \(V \) of \(G_K \), we can use the above proposition to bound its ramification as follows: Let \(L/K \) be the finite Galois extension defined by \(G_L = \text{Ker}(G_K \to \text{Aut}(V)) \). If \(V \) is of some geometric origin, it is often possible to verify \((P_m) \) for \(L/K \) and a suitable \(m \). Then the above inequality of (ii) gives the upper bound \(u_{L/K} < m + e_{L/K}^{-1} \). Thus it will be useful to sharpen the inequality. Indeed, our first main theorem below shows that we can improve the bound to \(u_{L/K} \leq m \). This result is actually used in [5], Section 5, Proposition 5.6.

For a finite Galois extension \(L \) of \(K \), we put

\[
m_{L/K} = \inf \{ m \in \mathbb{R} \mid (P_m) \text{ is true for } L/K \}
\]

By the above proposition, we have the inequalities

\[
u_{L/K} - e_{L/K}^{-1} \leq m_{L/K} \leq u_{L/K}.
\]

More precisely, we have the following equality:

Theorem 1.2 ([9], Prop. 3.3). We have \(u_{L/K} = m_{L/K} \).

An outline of the proof: We can prove easily that \((P_m) \) is not true if \(m = u_{L/K} \) (hence \(u_{L/K} = m_{L/K} \)) in the case where \(L/K \) is at most tamely ramified. Hence we may assume \(L/K \) is wildly ramified. It suffices to show the inequality \(u_{L/K} - (e')^{-1} \leq m_{L/K} \) with an
arbitrarily large integer e'. Take an arbitrary finite tamely ramified Galois extension K' of K and put $L' = LK'$. Then we have $u_{L'/K} = u_{L/K}$ since L/K is wildly ramified. If we apply (ii) of Proposition 1.1 to L'/K, and (i) of Proposition 1.1 to K'/K respectively, then we can prove the inequality $u_{L/K} - e_{L/K}^{-1} \leq m_{L/K}$.

§ 2. (P_m) at the ramification break

Let L be a finite Galois extension of K and e its ramification index. Assume L/K to be totally and wildly ramified for simplicity. In this section, we completely determine the truth of (P_m)\(^1\). The equality $u_{L/K} = m_{L/K}$ in Theorem 1.2 gives no information about the truth of (P_m) at the break $m = u_{L/K}$. The behavior of (P_m) at the break depends on the residue field:

Theorem 2.1 ([7], Thm. 1.1). The property (P_m) is true for $m = u_{L/K}$ if and only if the residue field k has no Galois extension whose degree is divisible by p.

This theorem can be proved by using the local class field theory of Serre and Hazewinkel. On the other hand, we consider a weaker property (P_m^e) as follows:

(P_m^e) For any totally ramified extension E/K of degree e, if there exists an O_K-algebra homomorphism $O_L \to O_E/a_{E/K}^m$, then there exists a K-embedding $L \hookrightarrow E$.

Then we have the following theorem, which is a similar result as Theorem 2.1. The proof employs the notion of a non-Archimedean metric on the set of all Eisenstein polynomials over K.

Theorem 2.2 ([8], Thm. A, Prop. 5.1). The property (P_m^e) is true for $m = u_{L/K}$ if and only if the residue field k has no Galois extension of degree p.

Remark. Both (i) and (ii) of Proposition 1.1 remain true for a finite totally and wildly ramified Galois extension L of K if we consider (P_m^e) instead of (P_m). However, (P_m^e) does not satisfy the equality in Proposition 1.2 in general. In fact, we can check that (P_m^e) is true for $m = u_{L/K}$ if and only if (P_m^e) is true for $m > u_{L/K} - e_{L/K}^{-1}$.

\(^1\)The results in this section were obtained by joint work with Takashi Suzuki after the talk in “Algebraic Number Theory and Related Topics 2009”.

References

[7] Suzuki, T. and Yoshida, M., Fontaine’s property (\(P_m \)) at the maximal ramification break, *preprint*