<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>非存在の特定のガロア表現:まとめ (数論関連テーマ2009)</td>
</tr>
<tr>
<td>著者</td>
<td>OZEKI, Yoshiyasu</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録別冊 2011-04 収録</td>
</tr>
<tr>
<td>提出日</td>
<td>2011-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/187873</td>
</tr>
<tr>
<td>型式</td>
<td>部門報告論文</td>
</tr>
<tr>
<td>独占権</td>
<td>出版権</td>
</tr>
<tr>
<td>出版元</td>
<td>京都大学</td>
</tr>
</tbody>
</table>

Non-existence of certain Galois representations with a uniform tame inertia weight: A resume

By

Yoshiyasu OZEKI*

Abstract

In this paper, we announce some results on the non-existence of certain semistable Galois representations. We apply them to a conjecture of Rasmussen and Tamagawa.

§1. Main results

Our main concern in this paper is the non-existence of certain semistable Galois representations of a number field. Let ℓ be a prime number and K a number field of degree d and discriminant d_K. Choose an algebraic closure \overline{K} of K. Fix non-negative integers n, r and w, and a prime number $\ell_0 \neq \ell$. Put $\bullet := (n, \ell_0, r, w)$. Let $\Rep_{\overline{\Q}}(G_K)^\bullet$ be the set of isomorphism classes of n-dimensional ℓ-adic representations V of the absolute Galois group $G_K = \text{Gal}(\overline{K}/K)$ of K which satisfy the following four conditions:

(A) For any place λ of K above ℓ, the restriction of V to the decomposition group of (an extension to \overline{K} of) λ is semistable and has Hodge-Tate weights in $[0, r]$.

(B) For some place λ_0 of K above ℓ_0, the representation V is unramified at λ_0 and the characteristic polynomial $\det(T - \text{Fr}_{\lambda_0}|V)$ has rational integer coefficients. Furthermore, the roots of the above characteristic polynomial have complex absolute value $q_{\lambda_0}^{w/2}$ for every embedding $\overline{\Q}_\ell$ into \mathbb{C}. Here Fr_{λ_0} and q_{λ_0} are the arithmetic Frobenius and the order of the residue field of λ_0, respectively.

2000 Mathematics Subject Classification(s): 11G10, 11S99.

Key Words: abelian variety, semistable Galois representation, tame inertia weight.

Supported by the JSPS Fellowships for Young Scientists.

*Graduate School of Mathematics, Kyushu University, Fukuoka 812-8581, Japan.

e-mail: y-ozeki@math.kyushu-u.ac.jp

© 2011 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
(C) For any finite place v of K not above ℓ, the action of the inertia group at v on \bar{V} is unipotent. Here \bar{V} is a residual representation of V^1.

(D) The representation \bar{V} has a filtration of G_K-modules

$$\{0\} = \bar{V}_0 \subset \bar{V}_1 \subset \cdots \subset \bar{V}_{n-1} \subset \bar{V}_n = \bar{V}$$

such that \bar{V}_k has dimension k for each $0 \leq k \leq n$.

Furthermore, we denote by $\text{Rep}_{\mathbb{Q}_\ell}(G_K)_{\text{cyc1}}$ the subset of $\text{Rep}_{\mathbb{Q}_\ell}(G_K)$ whose elements V satisfy the additional property (E) below:

(E) For each $1 \leq k \leq n$, the G_K-action on the quotient \bar{V}_k/\bar{V}_{k-1} is given by a power of the mod ℓ cyclotomic character χ_ℓ.

Example 1.1. Let X be a proper smooth scheme over K which has semistable reduction everywhere and has good reduction at some place of K above ℓ_0. Let n be the w-th Betti number of $X(\mathbb{C})$ and $w \leq r$. Then the dual of $H^w_{\text{et}}(X_K, \mathbb{Q}_\ell)$ satisfies the conditions (A), (B) and (C).

Our main results are the following:

Theorem 1.2 ([O], Theorem 3.10). Suppose that w is odd or $w > 2r$. Then there exists an explicit constant C depending only on d_K, n, ℓ_0, r and w such that $\text{Rep}_{\mathbb{Q}_\ell}(G_K)_{\text{cyc1}}$ is empty for any prime number $\ell > C$.

Theorem 1.3 ([O], Theorem 3.11). Suppose that w is odd or $w > 2r$. Then there exists an explicit constant C' depending only on K, n, ℓ_0, r and w such that $\text{Rep}_{\mathbb{Q}_\ell}(G_K)$ is empty for any prime number $\ell > C'$ which does not split in K.

The key of the proofs of the above Theorems is a relation between tame inertia weights and Frobenius weights. This relation is obtained by a result of Caruso [Ca] which gives an upper bound of tame inertia weights of semistable Galois representations.

§ 2. Rasmussen-Tamagawa Conjecture

We describe an application, which is a special case of the Rasmussen-Tamagawa conjecture ([RT]) related with the finiteness of the set of isomorphism classes of abelian varieties with constrained prime power torsion. Our work is motivated by this conjecture. We denote by \bar{K}_{ℓ} the maximal pro-ℓ extension of $K(\mu\ell)$ which is unramified away from ℓ.

1A residual representation \bar{V} is not uniquely defined (it depends on the choice of a G_K-stable lattice), but the validity of conditions (C), (D) or (E) does not depend on the choice of V.
Definition 2.1. Let $g \geq 0$ be an integer. We denote by $\mathcal{A}(K, g, \ell)$ the set of K-isomorphism classes of abelian varieties A over K, of dimension g, which satisfy the following equivalent conditions:
(1) $K(A[\ell^\infty]) \subset \tilde{K}_\ell$;
(2) The abelian variety A has good reduction outside ℓ and $A[\ell]$ admits a filtration
\[
\{0\} = \overline{V}_0 \subset \overline{V}_1 \subset \cdots \subset \overline{V}_{2g-1} \subset \overline{V}_{2g} = A[\ell]
\]
such that \overline{V}_k has dimension k for each $0 \leq k \leq 2g$. Furthermore, for each $1 \leq k \leq 2g$, the G_K-action on the space $\overline{V}_k/\overline{V}_{k-1}$ is given by a power of the mod ℓ cyclotomic character χ_ℓ.

The equivalence of (1) and (2) follows from the criterion of Néron-Ogg-Shafarevich and Lemma 3 of [RT]. The set $\mathcal{A}(K, g, \ell)$ is a finite set because of the Shafarevich conjecture proved by Faltings. Rasmussen and Tamagawa conjectured that this set is in fact empty for any ℓ large enough:

Conjecture 2.2 (RT, Conjecture 1). The set $\mathcal{A}(K, g, \ell)$ is empty for any prime ℓ large enough.

It is known that this conjecture holds under the following conditions:
(i) $K = \mathbb{Q}$ and $g = 1$ ([RT], Theorem 2);
(ii) K is a quadratic number field other than the imaginary quadratic fields of class number one and $g = 1$ ([RT], Theorem 4).

We consider the semistable reduction case of Conjecture 2.2.

Definition 2.3. (1) We denote by $\mathcal{A}(K, g, \ell)_{st}$ the set of K-isomorphism classes of abelian varieties in $\mathcal{A}(K, g, \ell)$ with everywhere semistable reduction.
(2) We denote by $\mathcal{A}(K, g, \ell_0, \ell)_{st}$ the set of K-isomorphism classes of abelian varieties A over K with everywhere semistable reduction, of dimension g, which satisfy the following condition: The abelian variety A has good reduction at some place of K above ℓ_0 and $A[\ell]$ admits a filtration of G_K-modules
\[
\{0\} = \overline{V}_0 \subset \overline{V}_1 \subset \cdots \subset \overline{V}_{2g-1} \subset \overline{V}_{2g} = A[\ell]
\]
such that \overline{V}_k has dimension k for each $0 \leq k \leq 2g$.

We have $\mathcal{A}(K, g, \ell)_{st} \subset \mathcal{A}(K, g, \ell_0, \ell)_{st}$. We can show the following easily as corollaries of Theorems 1 and 2:

\[\text{Lemma 3 of [RT] is stated in the setting } K = \mathbb{Q}. \text{ However, an easy argument allows us to extend this setting to any number field } K.\]

\[\text{Rasmussen and Tamagawa have shown the emptiness of the set } \mathcal{A}(K, g, \ell)_{st} \text{ for } \ell \text{ large enough by using the result of [Ra] instead of [Ca] (unpublished).}\]
Corollary 2.4 ([O], Corollary 4.5). There exists an explicit constant D depending only on d_K and g such that the set $\mathcal{A}(K, g, \ell)_{\text{st}}$ is empty for any prime number $\ell > D$.

Corollary 2.5 ([O], Corollary 4.6). There exists an explicit constant D' depending only on K, g and ℓ_0 such that the set $\mathcal{A}(K, g, \ell_0, \ell)_{\text{st}}$ is empty for any prime number $\ell > D'$ which does not split in K.

References

