Non-existence of certain Galois representations with a uniform tame inertia weight: A resume (Algebraic Number Theory and Related Topics 2009)

OZEKI, Yoshiyasu

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2011), B25: 89-92

2011-04

http://hdl.handle.net/2433/187873

Departmental Bulletin Paper

Kyoto University
Non-existence of certain Galois representations with a uniform tame inertia weight: A resume

By

Yoshiyasu OZEKI*

Abstract

In this paper, we announce some results on the non-existence of certain semistable Galois representations. We apply them to a conjecture of Rasmussen and Tamagawa.

§1. Main results

Our main concern in this paper is the non-existence of certain semistable Galois representations of a number field. Let \(\ell \) be a prime number and \(K \) a number field of degree \(d \) and discriminant \(d_K \). Choose an algebraic closure \(\bar{K} \) of \(K \). Fix non-negative integers \(n, r \) and \(w \), and a prime number \(\ell_0 \neq \ell \). Put \(\bullet := (n, \ell_0, r, w) \). Let \(\text{Rep}_{\mathbb{Q}_\ell}(G_K) \) be the set of isomorphism classes of \(n \)-dimensional \(\ell \)-adic representations \(V \) of the absolute Galois group \(G_K = \text{Gal}(\bar{K}/K) \) of \(K \) which satisfy the following four conditions:

(A) For any place \(\lambda \) of \(K \) above \(\ell \), the restriction of \(V \) to the decomposition group of (an extension to \(\bar{K} \) of) \(\lambda \) is semistable and has Hodge-Tate weights in \([0, r] \).

(B) For some place \(\lambda_0 \) of \(K \) above \(\ell_0 \), the representation \(V \) is unramified at \(\lambda_0 \) and the characteristic polynomial \(\det(T - \text{Fr}_{\lambda_0}|V) \) has rational integer coefficients. Furthermore, the roots of the above characteristic polynomial have complex absolute value \(q_\lambda^{w/2} \) for every embedding \(\mathbb{Q}_\ell \) into \(\mathbb{C} \). Here \(\text{Fr}_{\lambda_0} \) and \(q_{\lambda_0} \) are the arithmetic Frobenius and the order of the residue field of \(\lambda_0 \), respectively.

2000 Mathematics Subject Classification(s): 11G10, 11S99.
Key Words: abelian variety, semistable Galois representation, tame inertia weight.
Supported by the JSPS Fellowships for Young Scientists.
*Graduate School of Mathematics, Kyushu University, Fukuoka 812-8581, Japan.
e-mail: y-ozeki@math.kyushu-u.ac.jp

© 2011 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
(C) For any finite place v of K not above ℓ, the action of the inertia group at v on \bar{V} is unipotent. Here \bar{V} is a residual representation of V^1.

(D) The representation \bar{V} has a filtration of G_K-modules

$$\{0\} = \bar{V}_0 \subset \bar{V}_1 \subset \cdots \subset \bar{V}_{n-1} \subset \bar{V}_n = \bar{V}$$

such that \bar{V}_k has dimension k for each $0 \leq k \leq n$.

Furthermore, we denote by $\text{Rep}_{\mathbb{Q}_\ell}(G_K)^{\text{cyc}1}$ the subset of $\text{Rep}_{\mathbb{Q}_\ell}(G_K)$ whose elements V satisfy the additional property (E) below:

(E) For each $1 \leq k \leq n$, the G_K-action on the quotient \bar{V}_k/\bar{V}_{k-1} is given by a power of the mod ℓ cyclotomic character χ_ℓ.

Example 1.1. Let X be a proper smooth scheme over K which has semistable reduction everywhere and has good reduction at some place of K above ℓ_0. Let n be the w-th Betti number of $X(\mathbb{C})$ and $w \leq r$. Then the dual of $H^w_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_\ell)$ satisfies the conditions (A), (B) and (C).

Our main results are the following:

Theorem 1.2 ([O], Theorem 3.10). Suppose that w is odd or $w > 2r$. Then there exists an explicit constant C depending only on d_K, n, ℓ_0, r and w such that $\text{Rep}_{\mathbb{Q}_\ell}(G_K)^{\text{cyc}1}$ is empty for any prime number $\ell > C$.

Theorem 1.3 ([O], Theorem 3.11). Suppose that w is odd or $w > 2r$. Then there exists an explicit constant C' depending only on K, n, ℓ_0, r and w such that $\text{Rep}_{\mathbb{Q}_\ell}(G_K)^*$ is empty for any prime number $\ell > C'$ which does not split in K.

The key of the proofs of the above Theorems is a relation between tame inertia weights and Frobenius weights. This relation is obtained by a result of Caruso [Ca] which gives an upper bound of tame inertia weights of semistable Galois representations.

§ 2. Rasmussen-Tamagawa Conjecture

We describe an application, which is a special case of the Rasmussen-Tamagawa conjecture ([RT]) related with the finiteness of the set of isomorphism classes of abelian varieties with constrained prime power torsion. Our work is motivated by this conjecture. We denote by \overline{K}_ℓ the maximal pro-ℓ extension of $K(\mu_\ell)$ which is unramified away from ℓ.

1A residual representation \bar{V} is not uniquely defined (it depends on the choice of a G_K-stable lattice), but the validity of conditions (C), (D) or (E) does not depend on the choice of V.
Definition 2.1. Let \(g \geq 0 \) be an integer. We denote by \(\mathcal{A}(K, g, \ell) \) the set of \(K \)-isomorphism classes of abelian varieties \(A \) over \(K \), of dimension \(g \), which satisfy the following equivalent conditions:

1. \(K(A[\ell^\infty]) \subset \bar{K}_\ell \);
2. The abelian variety \(A \) has good reduction outside \(\ell \) and \(A[\ell] \) admits a filtration

\[
\{0\} = \bar{V}_0 \subset \bar{V}_1 \subset \cdots \subset \bar{V}_{2g-1} \subset \bar{V}_{2g} = A[\ell]
\]
such that \(\bar{V}_k \) has dimension \(k \) for each \(0 \leq k \leq 2g \). Furthermore, for each \(1 \leq k \leq 2g \), the \(G_K \)-action on the space \(\bar{V}_k/\bar{V}_{k-1} \) is given by a power of the mod \(\ell \) cyclotomic character \(\chi_\ell \).

The equivalence of (1) and (2) follows from the criterion of Néron-Ogg-Shafarevich and Lemma 3 of [RT]². The set \(\mathcal{A}(K, g, \ell) \) is a finite set because of the Shafarevich conjecture proved by Faltings. Rasmussen and Tamagawa conjectured that this set is in fact empty for any \(\ell \) large enough:

Conjecture 2.2 ([RT], Conjecture 1). The set \(\mathcal{A}(K, g, \ell) \) is empty for any prime \(\ell \) large enough.

It is known that this conjecture holds under the following conditions:

(i) \(K = \mathbb{Q} \) and \(g = 1 \) ([RT], Theorem 2);
(ii) \(K \) is a quadratic number field other than the imaginary quadratic fields of class number one and \(g = 1 \) ([RT], Theorem 4).

We consider the semistable reduction case of Conjecture 2.2.

Definition 2.3. (1) We denote by \(\mathcal{A}(K, g, \ell)_{st} \) the set of \(K \)-isomorphism classes of abelian varieties in \(\mathcal{A}(K, g, \ell) \) with everywhere semistable reduction.

(2) We denote by \(\mathcal{A}(K, g, \ell_0, \ell)_{st} \) the set of \(K \)-isomorphism classes of abelian varieties \(A \) over \(K \) with everywhere semistable reduction, of dimension \(g \), which satisfy the following condition: The abelian variety \(A \) has good reduction at some place of \(K \) above \(\ell_0 \) and \(A[\ell] \) admits a filtration of \(G_K \)-modules

\[
\{0\} = \bar{V}_0 \subset \bar{V}_1 \subset \cdots \subset \bar{V}_{2g-1} \subset \bar{V}_{2g} = A[\ell]
\]
such that \(\bar{V}_k \) has dimension \(k \) for each \(0 \leq k \leq 2g \).

We have \(\mathcal{A}(K, g, \ell)_{st} \subset \mathcal{A}(K, g, \ell_0, \ell)_{st} \). We can show the following easily as corollaries of Theorems 1 and 2³:

²Lemma 3 of [RT] is stated in the setting \(K = \mathbb{Q} \). However, an easy argument allows us to extend this setting to any number field \(K \).

³Rasmussen and Tamagawa have shown the emptiness of the set \(\mathcal{A}(K, g, \ell)_{st} \) for \(\ell \) large enough by using the result of [Ra] instead of [Ca] (unpublished).
Corollary 2.4 ([O], Corollary 4.5). There exists an explicit constant D depending only on d_K and g such that the set $\mathcal{A}(K, g, \ell)_{st}$ is empty for any prime number $\ell > D$.

Corollary 2.5 ([O], Corollary 4.6). There exists an explicit constant D' depending only on K, g and ℓ_0 such that the set $\mathcal{A}(K, g, \ell_0, \ell)_{st}$ is empty for any prime number $\ell > D'$ which does not split in K.

References

