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Normal basis problem for torsors
under a finite flat group scheme

By

YuJi TSUNO*

Abstract

Serre [12] mentions a remarkable observation that, for a finite group I' and a field k,
a universal Galois extension with group I' over k is constructed by the unit group of the
group algebra k[I']. We formulate this argument for finite flat group schemes, paraphrasing
the reformulation in the framework of group schemes by Suwa [14]. Some examples are given
concerning the argument.

Introduction

Let k be a field and I' a finite group. Serre [12, Ch.IV, 8] observes that the unit
group of the group algebra k[I'] has a structure of algebraic group over k, which we shall
denote by U(I")g, and verifies that any Galois extension of k£ with group I" is obtained

by a cartesian diagram
Spec K —— U(I)g

l l

Speck —— U(D)/I
as a consequence of the normal basis theorem. Moreover Serre verifies the Kummer
theory, constructing a commutative diagram of algebraic groups with exact rows

0O —— ' — Uy — U/ —— 0

L l l

0 ? /J’n,k ? Gm,K = ? Gm,k ? 07

Received June 29, 2010. Revised November 18, 2010.

2000 Mathematics Subject Classification(s): Primary 13B05; Secondary 14L15, 12G05, 57T05.
Key Words: Galois Theory, Group schemes, Galois cohomology, Hopf algebras.

This research is partially supported by JSPS core-to-core program 18005.
*Department of Mathematics, Chuo University, 1-13-27 Kasuga,

Bunkyo-ku, Tokyo 112-8551, JAPAN.

e-mail: s18001@@gug.math.chuo-u.ac.jp

(© 2011 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



54 YuJsi TSUNO

when I is a cyclic group of order n, invertible in k, and k contains all the n-th roots
of unity. He verifies also the Artin-Schreier-Witt theory, constructing a commutative
diagram of algebraic groups with exact rows

0O —— I' —UD)y — U/ —— 0

| I I
0 —— Z/p"Z ——— Wpp — Wpx — 0,
when I is a cyclic group of order p™ and k is of characteristic p > 0. Here W), ;, denotes

the additive group over k of Witt vectors of length n. Serre suggests even to twist the
Kummer theory.

This argument can be generalized in the framework of group schemes over a ring
as is done by Suwa [14]. For example, we have a following fact ([14, Prop.1.6]):
— Let R be a ring and I' a finite group. Then any unramified Galois extension S/R
with group I' and with a normal basis is obtained by a cartesian diagram

SpecS —— U(I")

l l

SpecR —— U(I")/I.

Moreover two problems are raised in [14]: for a given embedding i : I' — G of affine
group schemes over R,

(1) if there exists a commutative diagram

r —— U(D)x

L l
r— G,
(2) if there exists a commutative diagram

r—*, @

L |
r —— U
If both the problem are affimative, we obtain the following assertion ([14, Cor.1.7]):

— Let R be a ring and I' a finite group. Then any unramified Galois extension S/R
with group I' and with a normal basis is obtained by a cartesian diagram

SpecS —— @G

l l

SpecR —— G/I.
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It would be interesting to consider such problems for a finite flat commutative group

scheme I" over R. In this article, we develop our argument, repalcing the embedding
I' - U(I')g by the embedding

I'= Homg_g(I'Y,Gp.s) — [] Gmrv = Homg(I'Y,Gp.s),
I'V/R

constructed by Grothendieck. It should be noted that the embedding I" — HFV/RGm, rv

is nothing but I' — U(I")g when I is a finite commutative group. We need also employ
the notion of cleft Hopf-Galois extensions. (For the definition, see Section 2.)

The main result is stated as follows (Theorem 3.5 and Corollary 3.6):
— Let S be a scheme, I' an affine commutative group scheme over S and X a I'-torsor
over S. Assume that Or is a locally free Og-module of finite rank. Then X is cleft if
and only if [X] € Ker[H(S,I") — Pic(I"V)]. Here the map H(S,I") — Pic(I'V) is the
composite

1S, 1) — H'(S, [ Gm.rv) = H(IY, G pv) = Pic(I).
I'V/R

This implies a remarkable consequence (Corollary 3.8):
— Under the assumption stated above, let G be a flat affine group scheme over S.
Assume that e : I' — G is a closed subgroup scheme of G and there exist commutative

diagrams
I % H Gm,pv
rv/s
| |
r —— G
and
r —— G

I l
r —— ][ Gur-
rv/s

Then any cleft I'-torsor X over S is obtained by a cartesian diagram
X — G

! !

S —— G/I
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Now we explain the organization of the article. In Section 1 and Section 2, we
recall the definition of affine group schemes used in the sequel and some fundamental
terminologies in the Hopf-Galois theory, respectively. In Section 3, we state and prove
the main theorem, after recalling the embedding of a finite flat commutative group
scheme into a smooth affine commutative group schemes, constructed by Grothendieck.
In Section 4, we give three examples for the argument in Section 3.

List of group schemes
Gaq,r: the additive group scheme over R
Gy, r: the multiplicative group scheme over R
K, g Ker[n: Gy r — G Rl
ap r: Ker[F: G, p = G4 g] when R is of characteristic p
Qg‘) :recalled in 1.2
GR, /R : defined in 1.3
U(I') : defined in 1.4

Acknowledgement. I would like to express my hearty thanks to Professor Noriyuki
Suwa, my supervisor, for valuable advices and his patience. I cannot get any results
in this paper without his support. Also I would like to express my thanks to Professor
Akira Masuoka for his useful suggestion. In particular, he taught me the concept of
normal bases in the framework of the Hopf-Galois theory. I am grateful to Professors
Tsutomu Sekiguchi and Fumiyuki Momose for their warm advices. Finally he is very
grateful to the referee for useful remarks.

8§1. Group schemes

Definition 1.1. Let R be a ring. The additive group scheme G, g over R is defined by
Ga.r = Spec R[T]

with

(a) the multiplication: T— T ®1+1® T,
(b) the unit: 7"+ 0,

(c) the inverse: T — —T.

On the other hand, the multiplicative group scheme G,, r over R is defined by

1
Gum.r = Spec R[T, T]
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with

(a) the multiplication: T'— T ® T,
(b) the unit: T — 1,

(¢) the inverse: T +— 1/T.

Definition 1.2. Let R be a ring and A € R. A commutative group scheme GV over

R is defined by
1

) _
g Spec R[T, T )\T]

with
(a) the multiplication: T— T 1+1QT+ AT QR T,
(b) the unit: 7'~ 0,
(c) the inverse: T'— —T'/(1 4+ AT).
A homomorphism o™ : g — Gy, r of group schemes over R is defined by
U AT +1: RIU, -] — RIT, ——.
U 14 AT

If \ is invertible in R, then a®) is an isomorphism. On the other hand, if A = 0, GV
is nothing but the additive group scheme G, g.

Definition 1.3. (Waterhouse-Weisfeiler [17, Th.3.1]) Let R be a ring and A € R. Put
Ry = R[VA] = R[t]/(t* = \). A group scheme G, /g over R is defined by
Gr,/r = Spec R[U,V]/(U? = AV? - V)

with
(a) the multiplication:

U—U®1+1U+2UQV +2U U,V -V R1+1V +2A\VeV +2U @ U,
(b) the unit:
X—=0,Y —0;

(c) the inverse:
U— -UV —V.

If 2 is invertible in R, then T+ 2(U + v/AV) defines an isomorphism over R;

1

1+¢XT]'

0:Gpr,r ®r R1 = Spec Ry [U,V]/(U? = A\V? - V) 5 Q](%\I/X) = Spec Ry [T,

The inverse of ¢ is given by

2T + VT2 T2
— 4(—, _»—.

1+ VAT) 4(1 4+ V/AT)
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Definition 1.4. Let I" be a finite group. The functor R +— R[I'] is represented by the
ring scheme A(I") defined by

A(I') = SpecZ[Ty;vy € I

with
(a) the addition: T, = T, ® 1 + 1 ® T%;
(b) the multiplication: T7, — Z T, T
vy =
Put now

1
U(I) = SpecZ[Ly, 7~y € I,
r

where Ap = det(1, ) denotes the determinant of the matrix (T./.~), .»cp (the

group determinant of I"). Then U(I") is an open subscheme of A(I"), and the functer
I' — R[I']* is represented by the group scheme U (I").

We denote also by I', for the abbreviation, the constant group scheme defined

by I'. Moreprecisely, I' = SpecZ! and the law of multiplication is defined by ey —

Z e, ®e, . Here Z* denotes the functions from I to Z, and (e )~er is a basis of

o

v =y
75 over Z defined by

()= (v =)
! 0 (v #).

The canonical injection I' — R[I']* is represented by the homomorphism of group
schemes i : I' — U(I") defined by

1
T, +— e~ : Spec Z[T, A—F] — zr.

It is readily seen that I' — U(I) is a closed immersion. If I" is commutative, then U(I")

is isomorphic to the Weil restriction H Gm,rv.
rv/z
Let R be a ring. Then the exact sequence

l—I—UI) — U/ I —1
yields an exact sequence of pointed sets
U(I)(R) — (U(I)/T)(R) — HY(R,I') — H'(R,U(I)).

An unramified Galois extension S/R with group I has a normal basis if and only if
[S] € Ker[HY(R, ") — HY(R,U(I"))] (Suwa [14, Sect.1]).
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§ 2. Hopf-Galois theory

We recall some terminologies of the Hopf-Galois theory. For details we refer to [§],
31, 2]
Definition 2.1. Let R be a commutative ring and C' an R-bialgebra (necessarily neither
commutative nor cocommutative). An R-algebra B (not necessarily commutative) is

called a right C-comodule algebra over R if B is a right C-comodule and the comodule
structure map pp : B — B ®p C is a homomorphism of R-algebras.

Definition 2.2. Let R be a commutative ring and C' an R-bialgebra. An C-comodule
algebra B over R is called an C-extension of a subalgebra of Bif A = {a € B; pp(a) =
a®1}.

Notation 2.3. Let R be a commutative ring, C' an R-bialgebra and B/A an C-extension
of R-algebras. Then a homomorphism of left B-modules r : B&4 B — BRrC is defined
by a ® b (a® 1)pg(b). If B and C' are commutative, then r is a homomorphism of
B-algebras.

Definition 2.4. Let R be a commutative ring and C' an R-bialgebra. An C-extension
B/A of R-algebras is called Galois if the homomorphism r : B®4 B — B ®g C is
bijective.

Example 2.5. Let R be a commutative ring, B a commutative R-algebra and C a
commutative Hopf R-algebra. Put S = Spec R, Y = Spec B and G = SpecC. Then a
right C-comodule algebra structure map p: B — B®pr C over R corresponds to a right
action “p : Y xg G — Y of the group scheme G on Y over S. Put A = {a € B; p(a) =
a® 1} and X = Spec A. Assume that B is faithfully flat of finite presentation as an
A-algebra. Then the C-extension B/A is Galois if and only if Y is a G-torsor over X.

Theorem 2.6.(Doi-Takeuchi [3, Th.9]) Let R be a commutative ring, C' an R-bialgebra
and B/A an C-extension of R-algebras. Then the following conditions are equivalent.
(a) There exists a homomorphism of R-modules ¢ : C — B which is also a homomor-
phism of right C-comodules and invertible for the convolution product in Hompg(C, B).
(b) B/A is a Galois C-extension and there exists an isomorphism of left A-modules
A®gr C — B which is also a homomorphism of right C-comodules.

We recall that the convolution product in Hompg (C, B) is defined by ¢ = ppo(¢o®
) o A for v, € Hompg(C, B). Here A¢ : C — C ®pg C denotes the comultiplication
of C, and up : B®r B — B the multiplication of B.

Definition 2.7. Let R be a commutative ring and C' an R-bialgebra. An C-extension
B/A of R-algebras is called cleft if the equivalent conditions in Theorem 1.6 are satisfied.
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Example 2.8.(Kreimer-Takeuchi [8, Example 1]) Let R be a commutative ring, B an
R-algebra and I' a finite group of R-algebra automorphisms of B. Let C = R[I']Y
denote the dual Hopf algebra of the group ring R[I'] and {e,},er the dual basis for
{7}yer. Then a right C-comodule algebra structure map pp : B - B ®g C over R is
defined by

pB(b) = Z V(b) ® ey,

yerl’

Then we have
Bl' ={beB;~yb)=bforallye '} ={be B; ppd) =bx1}.

Put A = BT, Then:
(a) B/A is a Galois C-extension if and only if there exist ay,aq9,...,an,b1,b2,...,b, € B
such that

- 1 ify=e
Z a;y (bz) = .
i—1 0 ify#e.
(b) B/A is a cleft C-extension if and only if there exists b € B such that {y(b)},er is
a basis of the left A-module B.

If B is commutative, then Spec B is finite over Spec A. The C-extension B/A is
Galois if and only if Spec B is an étale covering of Spec A with Galois group I, that is
to say, B/A is an unramified Galois extension with group I'. The C-extension B/A is
cleft if and only if the unramified Galois extension B/A has a normal basis.

Now we shall add the following definition.

Definition 2.9. Let S be a scheme, G an affine group S-scheme and X is a right
G-torsor over S. We shall say that a right G-torsor X over S is cleft if there exists
an isomomorphism of Og-modules O — Ox which is also a homomorphism of right
O¢g-comodule.

§3. The main result

3.1. First we recall a resolution of a finite flat commutative group scheme by smooth
affine commutative group schemes, constructed by Grothendieck (cf. [9. Sec 6]).

Let S be a scheme and I" a finite commutative S-group scheme such that Op is a
locally free Og-module of finite rank. Then the functor Homg_g (I, Gy, s) is represented
by a commutative group scheme I'Y, called the Cartier dual of I". The Og-module Opv
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is also locally free of finite rank. The Cartier duality asserts that Homg_g (I v, Gm,s)
is isomorphic to I'.

Furthermore the functor Homg(I'Y, G, g) is nothing but the Weil restriction H Gm,rv,
rv/s
which is representable since Opv is a locally free Og-module of finite rank (cf. [1, Ch.I,
Sec.1, 6.6]). Then we obtain an exact sequence of commutative group schemes

0—I -5 [[ Gurw — ( I1 Gm’pv)/r—m
rv/s rv/s

(cf. [9, (5.1)]).
The Weil restriction H G, rv is smooth over S since Gy, pv is smooth over 1"V,
rv/s
and therefore the quotient ( H Gm, ['\/> /T is also smooth over S.
rv/s
Moreover, in the case where I is finite commutative group, the exact sequence

0— I —UI)—UI/T —0
coincides with the exact sequence induced by the Grothendieck resolution of I

0— I H Gum.rv —>(H Gm’pv)/F—>0.
rv)z rv)z

Definition 3.2. Let S be a scheme and I" a finite commutative group scheme over S.
Assume that Or is a locally free Og-module of finite rank.

Let X be a right I'-torsor over S. Then there is defined an Og-homomorphism
p: Ox = Ox ®os Or, which makes Ox an Op-comodule algebra. Passing to the
dual, we obtain an Og-homomorphism p¥ : Opv ®p, O% — O%, which makes Oy an
Orv-module.

By definition, there exists a faithfully flat morphism 7" — S such that the I'-torsor
Xpr =T xg X over T is isomorphic to I'r =T xg I'. That is to say, the Op-algebra
Ox, is isomorphic to Or, as Op,-comodule algebra. Hence the O% _ is isomorphic to
Ory as Ory-module. It follows that O% is an invertible Opv-module. Furthermore,
the I'-torsor X is cleft if and only if (’)}/( is isomorphic to Opv as Opv-module. This
follows from the argument developed by Kreimer and Takeuchi ([8, Sect. 1]).

On the other hand, the canonical map

HY(S, I[ Gum.rv)— HHIY,Gprv) = Pic(I)
rvy/s

is an isomorphism by the following lemma.
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Lemma 3.3. Let f: T — S be a finite morphism and G a commutative group scheme
over T'. Assume that O is locally free Og-module of finite ranks and that G is smooth
and quasi-projective over T'. Then the canonical homomorphism

HY(S, [ &) = HY(T,G)

T/S

1s bijective for q > 0.

Proof. The assertion seems to be a folklore for experts. This follows from the following
three facts:

(a) Let f:Y — X be a finite morphism of schemes and F' an abelian sheaf on Y.
Then we have R/ f,F =0 for j > 0 ([5, exp 8. Cor.5.6]);

(b) Let X be a scheme and G be a commutative group scheme over X. Let € : Xg — Xt
denote the canonical morphism of sites. If G is smooth and quasi-projective, then we
have Rie,G =0 for j > 0 ([4, Th.11.7.));

(c) Let f:T — S be a finite morphism and G a commutative group scheme over T'. If
Or is a locally free Og-module of finite ranks and G is quasi-projective over 7', then
HT/SG = fy+G is representable by a quasi-projective commutative group scheme over

S. Moreover, if G is smooth over 7', then HT/SG is smooth over S (cf. [1, Ch.I, 1.6.6]).

We recall the definition of the contracted product for sheaves with group actions,
before mentioning and proving our main result.

Notation 3.4. Let S be a scheme, and let G be a sheaf of groups on Sg, X a right
G-sheaf and Y a left G-sheaf on Sg. Then a left action of G on the product X x Y is
defined by g(z,y) = (zg~!, gy). We denote the quotient X xY /G by X VEY, called the
contracted product of X and Y. (For details we refer to Demazure-Gabriel [1, Ch.III,
4.3.1].)

Theorem 3.5. Let S be a scheme and I' an affine commutative group scheme over S
such that Or is a locally free Og-module of finite rank. Then the composite

HY(S,.I) = HY(S, ] Gm,rv) - Pic(I™)
rv/s

coincides with the map defined by [X] — [O¥], up to an automorphism of Pic(I"V). Here
the map i : HY(S,I") — H(S, H G, rv) is induced by the Grothendieck resolution
rvys

i1 = HOmS_gr(Fv,Gm’S) — H Gm’pv = Homg(Fv,Gm,g).
rvy/s
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Proof. It is known that the canonical homomorphism

H'(S, I] Gmrv) = H' (I, G rv)
rv/s

is the composite of the homomorphism

7S, I] Gmrv) = H TV, T[ Gmrv)
rv/s rv/s

induced by the structure morphism I'V — S and the homomorphism

}Il(lﬂv7 H Gm’[‘v) — HI(FV,Gm’[‘v)
rvy/s

induced by the adjunction morphism I'V xg ( H G, pv) — Gy,,rv, up to an auto-
rvys
morphism of HY(I'V,G,,, rv) (cf. [6, Ch.O, 12.1.7]).

Moreover we have a commutative diagram

HY(S, 1) —— HYS, [] Gm.rv)
rv/s

! l

Hl(r\/)r) BN Hl([‘\/7 H Gm,rv) —— Hl(Fv,Gm’[‘v).
rv/s

Hence the composite

HY(S, 1) = HY(S, [ Gmrv) = H(IY, G rv)
rv/s

is given by [X] — [va VAbat Gm,pv].
We remark here that the compsoite

X:va =T XSF—i)Fv Xs(H Gm’pv)—>Gm’pv
rvy/s

is the scalar extension of the Cartier paring
r v Xg I — Gm’g

by the structure morphism I'V — S.
On the other hand, the sheaf Isomo ., (Orv,0%) on I'V for the fppf-topology is
a Gy, pv-torsor over I'V. Moreover the correspondence £ — Isomo,., (Opv, L) gives
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rise to an isomorphism Pic(I"Y) = HY(I'Y,G,, rv) (cf. Demazure-Gabriel [1, Ch.III,
4.4.4)).

Now we verify that, for a I'-torsor X over S, the contracted product Xpv vIrv
Gy, rv is isomorphic to Isomo ., (Opv, 0% ) as Gy, pv-torsors over I'V, which implies
the assertion by the above argument.

Let X be a right I'-torsor over S and T a scheme affine over I'V. Then the
right I'(T)-set X(T') = Homg(T,X) = Homp(T,T xg X) is identified to the set of
I-equivariant T-isomorphisms I'r — X7. Take ¢ € X(T'). We denote by & : I'r = X
also the corresponding I'-equivariant T-isomorphism. Moreover let £ : O x; — Or,. de-
note the isomorphism of Op.-comodule algebras, which defines ¢ : I'r = Xp. Passing
to the dual, we obtain an Ory-isomorphism fv : Ory 5 O)ch- Moreover we consider
the composite of Op-homomorphisms

n(€Y) : Op SN Or ®os Orv = Or ®o,. (Orv ®og Orv)
£ 01 805 0% = Or ®0,., (Orv ®0s 0%) "X 01 @0, O%

Here i : Or — Or®p4 Orv is locally defined by a — a®1, and p : Opv @0, O% — O
by a ® b+ ab. Then n(£Y) is an isomorphism since O ®p, Opv is faithfully flat over
Or.

On the other hand, the sheaf Auto,., (Orv) is represented by G,, rv. Take h €
G (T). We denote by h : Or = O also the corresponding Op-automorphism. Then
(& h) — n(gv) o h defines a morphism of right G,,, pv-sheaves v : Xpv xpv Gy v —
Isomo,., (Orv,0%).

Furthermore the left action by I'rv on Xpv Xpv Gy, v is defined by

(& h) = (v, x(7)h).

for v € I'pv (T).

Note now that the Cartier duality asserts the equality n(7") = x(v) : Or = Or.
It follows that the morphism p : Xpv X pv Gy, pv — Isomo,., (Orv, O%) is compatible
with the left action by I'rv on Xpv Xpv Gy, pv. Therefore p defines a morphism of
right G, rv-sheaves Xpv virv G, rv — Isomo ., (Orv, O ), which is an isomorphism
of right G, rv-torsors.

Corollary 3.6. Under the assumption of Theorem 3.5, let X be a I torsor over S.
Then the I'-torsor X is cleft if and only if [X] € Ker[H*(S,T") — Pic(I'V)].

Corollary 3.7. Under the assumption of Theorem 3.5, let G be a flat affine group
scheme over S.
(1) Assume that e : I' — G is a closed subgroup scheme of G and there exists a commu-
tative diagram
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r ;> H Gm,rv
rv/s

L |

I —— G.
Then, if a I'-torsor X over S is cleft, there exists morphisms X — G and S — G /I’
such that the diagram

X — (G

l !

S —— G/T

18 cartesian.
(2) Assume that e : I' — G is a closed subgroup scheme of G and there exists a commu-

tative diagram

r —— G

| |
r —— ][ Gur-
rv/s

Then, if a I'-torsor X over S is defined by a cartesian diagram

X — d

! |

S —— G/I,
X is a cleft I'-torsor.

Proof. Under the assumption of (1) we obtain

Ker[H'(S,I") — Pic(I'V)] c Ker[H*(S, ") — H'(S,Q)],
and under the assumption of (2) we obtain

Ker[H'(S, ") — H(S,G)] € Ker[H*(S,I") — Pic(I"V)].
There imply the assertions.

Corollary 3.8. Under the assumption of Theorem 3.5, let G be a flat affine group
scheme over S. Assume that e : I' — G is a closed subgroup scheme of G and there
exist commutative diagrams
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I % H Gm’['v

rv/s
| |
I —— G
and
I —— G

I l
r—— ][ Gur.
rv/s

Then, a I'-torsor X over S is cleft if and only if X is defined by a cartesian diagram

X — G

! |

S —— G/I.

§4. Examples

Example 4.1. Let p be a prime number, R an F,-algebra and 4 € R. Put
N =Ker[F — ul : Go.p — Gg R)-
Then there exist commutative diagrams of group schemes

N —— H Gm’Nv
NV/R

| J#

N —— GaR

and
N —— Ga,r

H I

N —— H Gm’Nv
NV/R
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([16, Th.3.3]). Therefore we obtain
Ker[H'(R,N) — Pic(NV)] = Ker[H*(R, N) — H'(R, G, r)].

Moreover it is known that H! (R,Gq,r) = 0. It follows that all the N-torsor X over
Spec R is cleft.

More precisely, we have N = Spec R[T|/(T? — uT) equipped with the addition
defined by T'— T ® 1 + 1 ® T. There exists a € A such that X is isomorphic to
Spec R[X]/(X? — uX — a) and the action of N on X over R is defined by

R[X]/(X? — uX —a) = R[X]/(X? —uX —a) Qg R[T)/(T? —puT) : X = X @1+1T.

We can verify directly that R[X|/(X?P—uX —a) with the coaction X — X®1+1T
is a cleft Hopf comodule algebra. Put C' = R[T]/(T?—uT) and B = R[X]/(XP—uX —a).
Define a homomorphism of R-modules ¢ : C' — B by

T — X' (0 <i<p).

Then ¢ is bijective and a homomorphism of right C-comodules. Furthermore ¢ is
invertible for the convolution product in Hompg(C, B). Indeed, the convolution inverse
of ¢ is given by

T — (=X)" (0<i<p).

Example 4.2. Let p be a prime number, R an [Fj-algebra and A € R. The Frobenius

morphism

1
1+

1

e — [
F:g Spec R[T, T

]

is defined by T + T?. Put G = Ker[F : G» — GA]. Then G = Spec R[T]/(T?) is
equipped with the multiplication defined by T— T 1+ 1T + AT ®T.
Moreover there exist commutative diagrams of group schemes

7] = G = SpecRIT

G —— H Gm’Gv

GY/R
| |
G —— G
and
G — G

H l

G —— H Gm’Gv
GV/R
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([16], Th.3.12). This implies
Ker[H'(R,G) — Pic(GY)] = Ker[H (R, G) — HY(R,GM)].
Furthemore, we obtain the following corollaries.

Corollary 4.3. Under the notations of Example 4.2, let S/R be an extension of
ring. Then Spec S is a cleft G-torsor over Spec R if and only if there exist morphisms
Spec S — G and Spec R — G such that the diagram

SpecS — GgW

J v

SpecR —— GW)
18 cartesian.

Corollary 4.4. Under the notations of Example 4.2, the following conditions are equiv-
alent:

(a) Any G-torsor over R is cleft ;

(b) The homomorphism GX)(R) — HY(R, G) induced by the exact sequence

0= G—=¢WLgh 9

18 surjective ;
(¢) The homomorphism H*(R,GN) — HY(R,GXN")) induced by the Frobenius morphism
F: 6™ — g s injective.

Remark 4.5. Assume that R is a local ring or A is nilpotent. Then we have H*(R,G™) =
0 ([11], Cor 1.3]). It follows that all the G-torsor over Spec R is cleft.

Example 4.6. There exists an [F-algebra R and A € R such that the homomorphism
HY(R,6WM) = HY(R,G*")) induced by the Frobenius morphism is not injective. Here
is an example. Let p be a prime number, and put

1
R=F,X,Y
plX ’Yp+(X+1)PY+XP]

and A = X + 1. Then H'(R,GW) is a cyclic group of order p, and F : H'(R,GWN) —
HY(R,GW")) is trivial. Moreover, we have H'(R, G) = H'(R,GM).
In fact, we have an exact sequence of abelian sheaves on the étale site of Spec R

o) o) )
0 — G — Gp,r — Gy r, — 0

([11, Theorem.1.2]) since A = X + 1 is a non zero divisor of R. Here Ry = R/()), and
1 : Spec Rg — Spec R denotes the canonical closed immersion. Therefore we obtain a
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long exact sequence of cohomology groups
0— GW(R) — R* — Ry — H'(R,G™) — Pic(R).

Now we have
R* :{C{Yp F(X+1PY + XP}ceFX, ne Z}

P )
since the polynomial Y? 4 (X + 1)PY + X? is irreducible in F,,[X,Y]. Moreover, under
the identification Ry = F,[Y,1/(Y — 1)], we have
RS :{C(Y —1)"eceFy, ne Z},

P

and ¢{Y? + (X + 1)?Y 4+ XP}" € R* is mapped to ¢(Y — 1)P" € R}. Hence we obtain
GM(R) = 0, and Coker[R* — R{] is a cyclic group of order p and generated by the
class of Y + X in Ry. On the other hand, we have Pic(R) = 0 since R is a unique
factorization domain. This implies that the map Coker[R* — RJ] — HY(R,G%) is
bijective.

Furthermore, we have a commutative diagram with exact rows

a™ .
0 —— 6N * + Gur —— .Gpp, — 0

r r &

(\P) )
0 —— gV =2 Gmpr — <Gy p, — 0,

where Ry = A/(AP) and i’ : Spec Ry — Spec R is the canonical closed immersions.
Therefore we obtain a commutative diagram of cohomology groups with exact rows

R* R HY(R,GW) —— 0
Pl r
RX y R » HY(R,G*)) —— 0.
Here the class of ¢(Y +X)" in Ry (c € F)5, n € Z) is mapped to the class of ¢’ (Y +XP)"

in Ry by the homomorphism p : R — Ry.
Note now [Y? + X?] € Im[R* — R{] since Y? + X? = YP + (X + 1)PY + XP?
mod (X + 1)?. Hence we can conclude that F : H'(R,G™) — HY(R,G*") is a trivial

map.

Remark 4.7. We can describe more concretely Corollary 4.3 as follows.

Let p be a prime number, R an [F,-algebra and \,a € R. Let C denote the Hopf
R-algebra R[T]/(T?) with the comultiplication T'— T ® 1 + 1 ® T + \XT' ® T. Put
B = R[X]/(X? —a). Then a structure of right C-comodule algebra is defined on B by

B—-B@rC: X—X®1+1T+AXXKXT.
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Define now a homomorphism of R-modules ¢ : C'— B by
T — X' (0 <i<p).

Then ¢ is a homomorphism of right C-comodules. Furthermore, if 1 4+ A\Pa is invertible
in R, then ¢ is invertible for the convolution product in Hompg(C, B), and therefore B
is a cleft right C-comodule algebra. The convolution inverse of ¢ is given by

(i) win

Conversely, any cleft right C'-comodule commutative algebra is isomorphic to a right
C-comodule algebra of the form B = R[X]/(X?—a) with a € R such that 1+\Pa € R*.

Remark 4.8. Under the notations of Example 4.2, taking A = 1, we obtain
Ker[H'(R, ) — Pic(py )] = Ker[H'(R, m,) — Pic(R)].

It should be mentioned that, for a scheme S, we have
Ker[H'(S, u,,) — Pic(p,, 5)] = Ker[H'(S, ,,) — Pic(S)].

which is more or less known for a long time. For the reader’s convenience, we recall an
outline of the argument given by [1, Ch.III, 4.5.6].
Let S be a scheme. For an integer n > 0, put

I'(S,05)* /n = Coker[n: I'(S,0g)* — I'(S,05)"],
nPic(S) = Ker[n : Pic(S) — Pic(9)].
Then the Kummer sequence
0— p, — G, -G, — 0
induces an exact sequence
0 — I'(S,0s)* /n — H'(S,u,,) — Pic(S) — 0.

Now let £ be an invertible Og-module. Assume that there exists an isomorphism
of Og-modules a : L& = Og. Let T denote the ideal of the symmetric algebra S (L),
generated by the local sections of the form s — a(s), where s is a local section of L&,
Put Oz o) = Sos(L)/Z. Then the Og-algebra O, o) is locally free of finite rank as an
Og-module. Moreover an action of p,, on the Og-module L is defined by ({,s) — (s
and uniquely extended to an action p,, on the Og-algebra Oz «-



NORMAL BASIS PROBLEM FOR TORSORS 71

Put X(£,a) = Spec O(£.o)- Then X, ) is a p,,-torsor over S. Moreover we have

a: L8 — Og is an isomorphism of Og-module

L is an invertible Og-module with |£] € ,,Pic(.5),
HI(S, 1) = {[Xw,a)]; s €] € nFic(S) }

It is verified also that the map H*(S, pu,,) — »Pic(S) is given by [X (£ o)] — [L].

Example 4.9. Let p be a prime number > 2, R an F,-algebra, and A € R. Put
R, = RV = R[t]/(t* — X) and R, = R[V\?] = R[t]/(t> — A\P). The Frobenius
morphism

F:Gp,/r =SpecRIU,V]/(U* = AV? V) — Gy, /g = Spec R[U, V]/(U* = XPVZ V)
is defined by (U, V) = (U?,V?). Put G = Ker[F : Gg,/r — Gél/R]' Then
Spec R[U, V]/(U? = \V? —V,UP, VP)
is equipped with the multiplication defined by
U UQL1+1QU 42UV 22V U, V=V e1+1V +22VeV +2U @ U.
Moreover there exist commutative diagrams of group schemes

G —— ][] Gmo
GV /R

lz square J{)Z

G —— GRl/R

and
G —— GRl/R

l? square l&

G —— ]] Gmuw
GV /R

([16, Th.3.18]). This implies

Ker[H'(R,G) — Pic(GY)] = Ker[H'(R,G) — H'(R,GRr, /R))-

Furthemore, we obtain the following corollaries.

Corollary 4.10. Under the notations of Example 4.9, let S/R be an extension of
ring. Then Spec S is a cleft G-torsor over Spec R if and only if there exist morphisms
Spec S — Gg,/r and Spec R — GR~1/R such that the diagram
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SpecS — GRr,/r

l r

SpecR —— GR'l/R

18 cartesian.

Corollary 4.11. Under the notations of Fxample 4.9, the following are equivalent:
(a) Any G-torsor over R is cleft;
(b) The homomorphism G ,p(R) — HY(R,G) induced by the exact sequence

0—>G—>GRI/RL>GR~1/R—>0.

18 surjective;
(¢c) The homomorphism H'(R,Gg, r) = H'(R, Gy, /r) induced by the Frobenius map
F:Gpr,/r— GPZ1/R s injective.

Remark 4.12. Assume that R is a local ring or A is nilpotent, Then H!(R, G Ri/R)
is annihilated by 2 (Suwa [13, Prop 4.3]). Moreover H'(R,G) is annihilated by p. It
follows that all the G-torsor over Spec R is cleft.

Lemma 4.13. We can describe more concretely Corollary 4.10 as follows.
Let p be a prime number > 2, R an F,-algebra and A € R. Let C' denote the Hopf
R-algebra R[U,V]/(U? — \V? — V,UP,VP) with the comultiplication

U—UQLI+1Q0U +2UQV +2AVeU, V=V @1+1V +2XVeV 42U @ U.

Note that {1,U,U?,...,UP71} is a basis of R-module C.
In fact, an isomorphism of R;-algebra

Ri[U,V]/(U? = \VZ = V,U?,V?) 55 Ry [T)(T?)

is induced by

2T + VT2 T2
— 4(—, - —

1+ VAT) 4(1 4+ VAT

It follows that {1,U,U?,...,UP71} is a basis of By ®g C = R1[U,V]/(U? — \V? —
V,UP, VP) over Ry. Hence we obtain the conclusion since R; is faithfully flat over R.
It is verified also that U*VJ = 0 for i + 2j > p.

Take now a,b € R, and put B = R[X,Y]/(X? - \Y?-Y,X? —qa,YP? —b). Then a
structure of right C-comodule algebra is defined on B by

X = XQ1+1QU 422 XQV L2\ Y QU, ¥V = YRI1+1QVF2\YQV 42 Y @V 42X ®U.
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Furthermore a homomorphism of R-modules ¢ : C — B is defined by

U X" (0<i<p).

Then ¢ is a homomorphism of right C-comodules. Furthermore, if a? —A\Pb%—b = 0,
then ¢ is invertible for the convolution product in Hompg(C, B), and therefore B is a
cleft right C'-comodule algebra. The convolution inverse of ¢ is given by

U= (=X)* (0< i< p).

Conversely, any cleft right C-comodule commutative algebra is isomorphic to a
right C-comodule algebra of the form B = R[X,Y]/(X?—AY2—Y, X? —a,Y? —b) with
a,b € R such that a®> — \Pb> — b = 0.

Remark 4.14. It should be mentioned that Kreimer [7] proves the following assertion.

Let R be a local ring, C' a Hopf R-algebra (not necessarily commutative) and B
a right C-comodule algebra. Assume that (1) C' is a free R-module of finite rank, (2)
B/R is a Galois extension and R is contained in the center of B. Then B is a cleft right
C-comodule algebra.
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