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p-adic Beilinson conjecture for ordinary Hecke
motives associated to imaginary quadratic fields

By

Kenichi BANNAT* and GUIDO KINGS**

Abstract

The purpose of this article is to show that the result of [BK] may be used to prove the
p-adic Beilinson conjecture at non-critical points of motives associated to Hecke characters of
an imaginary quadratic field K, for a prime p which splits in K. For simplicity, we assume
in this article that the imaginary quadratic field K has class number one and that the Hecke
character v we consider corresponds to an elliptic curve with complex multiplication defined
over Q.

§1. Introduction

The purpose of this article is to show that the result of [BK] may be used to
prove the p-adic Beilinson conjecture of motives associated to Hecke characters of an
imaginary quadratic field K, for a prime p which splits in K. The p-adic L-function
for such p interpolating critical values of L-functions of Hecke characters associated
to imaginary quadratic fields was first constructed by Vishik and Manin [VM], and a
different construction using p-adic Eisenstein series was given by Katz [Katz]. The p-adic
Beilinson conjecture, as formulated by Perrin-Riou in [PR], gives a precise conjecture
concerning the non-critical values of p-adic L-functions associated to general motives.
The purpose of our research is to investigate the interpolation property at non-critical
points of the p-adic L-function constructed by Vishik-Manin and Katz.

For simplicity, we assume in this article that the imaginary quadratic field K has
class number one and that the Hecke character i) we consider corresponds to an elliptic
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curve with complex multiplication defined over Q. Let a be an integer > 0. The
main theorem of this article (Theorem 6.8) is a proof of the p-adic Beilinson conjecture
for 1® (see Conjecture 2.2), when the prime p > 5 is an ordinary prime. A more
general case will be treated in a future article. The authors would like to thank the
organizers Takashi Ichikawa, Masanari Kida and Takao Yamazaki for the opportunity
to present our research at the RIMS “Algebraic Number Theory and Related Topics
2009” conference.

§2. The p-adic Beilinson conjecture

Assume that K is an imaginary quadratic field of class number one. Let E be an
elliptic curve defined over Q. We assume in addition that E has complex multiplication
by the ring of integers Ok of K. We let ¢ := 9,k be the Grossencharacter of K
associated to Fx := E ®g K by the theory of complex multiplication, and we denote
by f the conductor of ).

We let M (¢)) be the motive over K with coefficients in K associated to the Grossen-
character 1. Then we have M (¢) = H'(Ef), where H'(FEf) is the motive associated
to Fx. The Hasse-Weil L-function of M () is a function with values in K ®¢g C given
by

L(M(w)a S) = (L(’%, S))TIK‘—)(C)

where 7 : K < C are the embeddings of the coefficient K of M(v) into C and L(%;, s)
is the Hecke L-function

L= I] (1-%9)

(9.f)=1

associated to the character ¢, : A% Yk S Here, the product is over the prime
ideals q of K which are prime to f.

For integers a > 0 and n, we let M* = M (%) := M ()®%% which is a motive
over K with coefficients in K. Then the Hasse-Weil L-function L(M%,s) is given by the
Hecke L-function

L(Maas) = (L( ?,3))T:K<—>C

with values in K ®g C. We let M3 be the Betti realization of M, which is a K-vector
space of dimension one. We fix a K-basis w§, of Mp. The de Rham realization M{y (n)
of M“(n) is the rank one K ®g K-module

Mg (n) = Kw"™*" P K™=,
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with Hodge filtration given by

Mig(n) m<-n
F"Mir(n) =< Kw™"* —n<m<a—n

0 otherwise.

In what follows, we consider the case when n > a, which implies in particular that
our motive is non-critical. We have in this case FOMSg(n) = 0. The tangent space of
our motive is given by

ty = MélR(”)/FOMgR(n) = Mir(n),

which is again a K ®g K-module of rank one. Note that wi, , = w"™*" +w™" ™% gives
a basis of t¢ as a K ®g K-module.

We denote by V& (n) the R-Hodge realization of M%(n). The Beilinson-Deligne
cohomology HL (K ®g R, V2 (n)) is given as the cokernel of the natural inclusion

Mz (n) @R — t; ®q R.
The Beilinson regulator map gives a homomorphism

(2.1) oo : H}

mot

(K, M*(n)) — Hy(K ®g R, VZ(n)),

(K, M®*(n)) of K with coefficients in M%(n) to
HL(K ®g R,V%(n)). Then ro ®g R is known to be surjective and is conjectured
to be an isomorphism. We let ¢ be an element of HL _ (K, M%(n)) such that r..(c%)

generates H} (K, V% (n)) as a Koo := K ®g R-module. We define the complex period
Qo (n) of M*(n) to be the determinant of the exact sequence

from the motivic cohomology H} .

(2.2) 0— ME(n) @R =t @gR — HL (K ®g R,V (n)) — 0

for the basis roo(c?), Wiy s and wp. The complex period is an element in Ko and is
independent of the choice of the basis up to multiplication by an element in K*. The
value L(M*,n) is in K ®g R, and the weak Beilinson conjecture for M“(n) as proved
by Deninger [Del] gives the following (see Theorem 6.2 and Corollary 6.4 for the precise
statement. )

Theorem 2.1.  For any integer n > a, the value

L(M®, n)
Qo (n)

is an element in K.



12 KENICHI BANNAI AND GUIDO KINGS

For any prime p, the étale realization Vp“(n) of our motive is a K ®g Q,-vector
space with continuous action of Gal(K/K). We fix a prime p > 5 relatively prime to
f such that E has good ordinary reduction at p. In this case, the ideal generated by p
splits as (p) = pp* in K. We fix a prime ideal p of K above p. Then the Bloch-Kato
exponential map gives an isomorphism

(2.3) exp, : 1% @ Ky = HH Ky, VE(n)),

and the inverse of this isomorphism is denoted by log,. The p-adic étale regulator map

gives a homomorphism

(2.4) Ty HY

mot

(K, M“(n)) = Hy(K,, Vy'(n)),

and the map r, ® Q), is conjectured to be an isomorphism. We define the p-adic period
Qp(n) of M*(n) to be an element in K, := K ®q K, = K, @ K, satisfying

(25) logp ° Tp(Cg) = Qp(n) wgg,n'

The p-adic period Q,(n) is independent of the choice of basis up to multiplication by an
element in K*. If we assume that the p-adic regulator map r, is injective, then r,(c%)
is non-zero, hence the p-adic period may be interpreted in this case as the determinant
of the map log,, for the basis r,(c};) and wi, ,,.

Remark. It is conjectured that the p-adic regulator r, is injective, which would
imply that the p-adic period Q,(n) is non-zero. Kato has proved in [Kato] 15.15 the
weak Leopoldt conjecture for any Hecke character of K. Hence by a result of Jannsen
([Jan], Lemma 8), we may then conclude that

HQ(OK[l/pfa]a Vpa(n)) =0

for almost all n. This implies that for such n, the map from global to local étale
cohomology groups is injective, hence that ,(n) is non-zero.

The p-adic Beilinson conjecture as formulated by Perrin-Riou (see [Col] Conjecture
2.7) specialized to our setting is given as follows.

Conjecture 2.2.  Let a be an integer > 0. Then there exists a p-adic pseudo-
measure (1 on Z, with values in K, such that the value

Lp(* ® Xéye) = /Z _w'pt(w)

P

in K, for any integer n > a satisfies
Lp(4® ® Xéye) ( 3 ¢(P)“> (1 3 E(W“) L'(n)L(y*,n)
2p(n) p" petion Qos(n)

where p is a fixed prime in K above p.
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If f, # (1) for the conductor f, of %, then u* should in fact be a p-adic measure.
Note that the dependence of the pseudo-measure on the choices of the basis wf, ,, and cj;
cancel, where as the pseudo-measure depends on the choice of the basis w%. The main
goal of our research is to prove that the p-adic measure constructed by Vishik-Manin
and Katz gives the pseudo-measure of the above conjecture when the prime p is split in
K.

The main theorem of this article (Theorem 6.8) is the proof of the above conjecture
for integers n > a such that the corresponding p-adic period €2,(n) is non-zero.

§ 3. Construction of the Eisenstein class

The main difficulty in the proof of the Beilinson and p-adic Beilinson conjectures is
(K, M®*(n)) for M* := M (¢*) and to calculate the
) with respect to the Beilinson-Deligne and p-adic regulator

to construct the element ¢ € H}

a

images 7o (c%) and r,(c

maps. We will use the Eisenstein symbol as constructed by Beilinson.

We fix an integer N > 3, and let M () be the modular curve defined over Z[1/N]
parameterizing for any scheme S over Z[1/N] the pair (F,v), where E is an elliptic
curve over S and

v:(Z/NZ)* =5 E|N)]

is a full level N-structure on E, where F[N] is the group of N-torsion points of E. We
let pr: E — M be the universal elliptic curve over M with universal level N-structure
v:(Z/NZ)* = E[N], and consider the motivic sheaf Q(1) on E. We let

(3.1) A = R'pr,Q(1),

and we denote by Sym” .7 the k-th symmetric product of . Let ¢ = 3 peBIN]\ {0} %P (]

be a Q-linear sum of non-zero elements in E [N]. For any integer k > 0, the Eisenstein

class Eis®2(¢) is an element

(3.2) EisFt2(p) € H}

mot mot

(M, Symk,%”(l)).

Although the formalism of mixed motivic sheaves or motivic cohomology with coeffi-
cients have not yet been fully developed, one can give meaning to the above sheaves
and cohomology (see [BL], [BK] for details).

Then the class ¢? may be constructed from the Eisesntein class as follows. Let
K be an imaginary quadratic field of class number one, and let E be an elliptic curve
defined over Q with complex multiplication by the ring of integers O of K. We denote
again by 1 the Hecke character of K corresponding to Ex with conductor §. We take
N > 3 such that N is divisible by §. For the extension F' := K(E[N]) of K generated
by the coordinates of the points in E[N], we let G x := Gal(F/K) the Galois group of
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F over K. We fix a level N-structure v : (Z/NZ)? = E[N] of E over F, and we denote
by v the composition of v with the action of 0 € Gp k. Then for any 0 € Gp/x, we
denote by (7* the pull-back with respect to the F-valued point ¢” : Spec F' — M of M

g *

corresponding to (E,v?). Then the image of the sum * := ZoeGF/K (7% is invariant

by the action of the Galois group, hence gives a pull-back morphism

Hl

mot

(M, Sym*. 7 (1)) + S HE

mot

(K,Sym" " (1)).

Note that on Spec K, the motivic sheaf (*7# is given by the motive H(E)(1), which by
definition corresponds to the motive M (1))(1). The structure of K-coefficients on ¢t*5#
gives the following decomposition.

Lemma 3.1.  For integers j satisfying 0 < j < k/2, we have the decomposition
of motives

Sym*, 7 = @ (W*27) (k - j),

0<j<%

where we take the convention that for k = 25, we let M (y°)(k/2) be the Tate motive
Q(k/2) with coefficients in Q.

Let a > 0 be an integer and we let f, be the conductor of 1*. We let F,, := K(FE[f,])
be the extension of K generated by the coordinates of the points in Elf,], and we let
wr,p, be the order of the Galois group Gal(F/F,). The Eisenstein classes Eis®t2(p)
are defined for points p € E[N]\ {0} but is not defined for p = 0. Hence in defining c2,
we differentiate between the case when f, # (1) and f, = (1).

Definition 3.2. We define ¢, as follows.

1. If fo # (1), then we fix a primitive f,-torsion point p, of E and let

1

Pa := ————|pal,
WqWF/F,

where we denote again by p, the N-torsion point of E corresponding to p, through
v and v, and w, is the number of units in O which are congruent to one modulo

fa-
2. If f, = (1), then we let

u = —— > ol

w,w
@TE e BINI{0)

We define the class c;; as follows.
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Definition 3.3.  For any integer a,n such that n > a > 0, we let k = 2n—a — 2.
Then the motive M®(n) := M ()*)(n) is a direct summand of Sym*:*#°(1). We define
the motivic class ¢ to be the image of Elsmot (pq) with respect to the projection

Hl

mot

(K, Sym**2#(1)) — H}:

mot

(K, M*(n)),
where ¢, is as in Definition 3.2.

Let p be a rational prime which does not divide §, and we take N > 3 to be an
integer divisible by f and prime to p. In order to prove the p-adic Beilinson conjecture,
it is necessary to calculate the images of cf with respect to the Beilinson-Deligne and
p-adic regulator maps. The image ro(c%) by the Beilinson-Deligne regulator map was
calculated by Deninger [Del]. We will calculate the image 7,(c%) by the p-adic regulator
map using rigid syntomic cohomology.

Denote by MZ,.(n) the crystalline realization of M“(n), which is a filtered module
with a o-linear action of Frobenius, and let HJ (K, Mg (n)) be the syntomic coho-

(n). Then noting that ¢ ®g Q, =

this case, there exists a canonical isomorphism

mology of K, with coefficients in Mg n) in

Mo
cris CI’IS

(33) tg ®Q Qp _> Hs}yn(Kpﬂ Mgrls( ))
If we let V'(n) be the p-adic étale realization of M“(n), then we have a canonical
isomorphism
(34) }Is:lyn(I(P7 Mcarls( )) — H}(Kpa Vpa(n))a
which combined with (3.3) gives the exponential map (2.3). The syntomic regulator
map

Tsyn - Hmot(K Ma( )) — Hslyn(KWMgrls( ))

defined by Besser ([Bes| §7) is compatible with the p-adic regulator r, through the
isomorphism (3.4) ([Bes] Proposition 9.9, see also [Ni]). Therefore, in order to calculate
log,, o7y (cyy), it is sufficient to calculate the image of rgyn(cj;) with respect to (3.3). We
will calculate this image using the explicit determination of the syntomic Eisenstein
class given in [BK].

§4. Eisenstein class and p-adic Eisenstein series

In this section, we review the explicit description of the syntomic Eisenstein class
in terms of p-adic Eisenstein series given in [BK]. Let M := M(N) be the modular
curve over Z[1/N] given in the previous section. We will first describe a certain real
analytic Eisenstein series Eg5,
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Let I' C C be a lattice, and we denote by A the area of the fundamental domain
of I' divided by & := 3.14159 ---. For any integer a and complex number s satisfying
Re(s) > a/2 + 1, the Eisenstein-Kronecker-Lerch series KX(z,w, s;I") to be the series

z—l—'y
K (z,w,sT)
Z | _|_,y|2s >
vel

where Y denotes the sum over v € T satisfying v # —z and (2, w) := exp((Wz—wz)/A).
By [Wei| VIII §12 (see [BKT] Proposition 2.4 for the case a < 0), this series for s
continues meromorphically to a function on the whole s-plane, holomorphic except for
a simple pole at s = 1 when ¢ = 0 and w € I'. This function satisfies the functional
equation

(4.1) D(8)K!(z,w,sT) = A1 2T(a+1 - s)K (w,z,a +1— s){w, 2).

We fix a level N-structure v : (Z/NZ)* 2 =TT, and let p € I'/T. For integers
k and [, we define the real analytic Eisenstein series FpS Yo, tO be the modular form on
M¢ :== M(N) ®g C whose value at the test object (C/T",dz,v) is given by

(4.2) ERS2.1,(C/T,dz,v) i= AT T(8) K 14200, 0,8 D)| s -

We let ERS, =2, a,E5S 4, , for the Q-linear sum ¢ =3 a,[p).

When [ = 0, then Egj—Q,O,Lp is a holomorphic Eisenstein series of weight k42 on Mc.
From the g-expansion, we see in this case that this Eisenstein series is defined over Q,
and hence defines a section Eji20,, in I'(Mg,w®* ® Q}VIQ) for w := pr, QE/M Denote
by 3r the de Rham realization of ¢, which is the coherent Ops,-module Rlpr*Q;E
with Gauss-Manin connection

VZ%R—)%R(X)Q}VI@,

and let Symk F4r be the k-th symmetric product of J73r with the induced connection.
From the natural inclusion w®* — Symk JOR, we see that Ej 90, defines a section in
(Mg, Sym" #ar ® Q},)-

Let p be a prime number not dividing N. We denote by 7, the filtered overcon-
vergent F-isocrystal associated to # on Mz, which is given by #3gr with an additional
structure of Hodge filtration and Frobenius. Let HJ  (Mz,, Sym* i, (1)) be the rigid
syntomic cohomology of My, with coefficients in Symk,%”rig(l). The rigid syntomic
regulator is a map
(M, Sym (1)) — H! ( Zp,Symk,%”rig(l)),

Tsyn * H syn

mot

k42

and we define the syntomic Eisenstein class Eisg\"(¢) to be the image by the syntomic

regulator of the motivic Eisenstein class. We let MZrd be the ordinary locus in Mz, and
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M&d = M‘Z?;d ®z, Qp. By [BK] Proposition A.16, a class in H, (M‘Z?;d, Sym* i, (1))

syn
is given by a pair («, &) of sections

o € D(Mg, 1 Sym* #iy (1))

(4.3)
£ € T(MG?, Sym" g ©q, Qjora)

satisfying V(a) = (1 — ¢*)&. The « for the class (a, &) corresponding to the restriction
k+2

syn () is given as follows.

to the ordinary locus of the syntomic Eisenstein class Eis

We let p > 5 be a prime not dividing N, and we let M be the p-adic modular curve
defined over Z, parameterizing the triples (Epg,n,v) consisting of an elliptic curve Ep
over a p-adic ring B, an isomorphism

(4.4) n:Gm=Ep

of formal groups over B, and a level N-structure v. The ring of p-adic modular forms
Vp(Qp,T'(IV)) is defined as the global section

VP(Qp7 F(N)) = F(Mv OM) ®Zp Qp-
The g-expansion gives an injection
Vo(@Qp, T(N)) = Qp(Cn)[la]]-

There exists a Frobenius action ¢* on V,(Q,,I'(NV)) given on the g-expansion as ¢* =
Frob ® o, where Frob(q) = ¢” and o is the the absolute Frobenius acting on Q,({n).
The Eisenstein series Ej42,0,, naturally defines an element in V,(Q,,I'(XV)), and using
the fact that the differential Oiog 4 1= qd% preserves the space of p-adic modular forms,
we let for any integer [ > 0

Al
Etiv2,.0 = Olog ¢ Prv2,0.0-

We let E’(€122,0,<P = (1—¢*)Ek42,0,, and E,(f_?l_kzl’@ = 8llog qE’(~3122,0,<P for any integer
[ > 0. Then the calculation of the g-expansion shows that we have

Following the method of Katz [Katz], we may construct a p-adic measure on Z, x Z
with values in V,(Q,,'(IV)) satisfying the following interpolation property.

Theorem 4.1.  There exists a p-adic measure i, on Zy X Z,; with values in
Vo(Qp, T'(NV)) such that

/ "yl (z,y) = El(c}—?Q,l,go
Zp XLy

for integers k>0, 1 > 0.
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(»)

k200 for [ < 0 as follows.

Using this measure, we define £

Definition 4.2 (p-adic Eisenstein series).  Let k be an integer > —1. We let
E®) o k41,1 V. T(N
k42,00 " . Ty ,u@(:c,y) € p(Qpa (IV)),
p X&p

where [ is any integer in Z.

The p-adic Eisenstein series satisfies the differential equation

(p) _
alquEk—l—Q,l,go - Ek—|—3,l—|-1,np’
and the weight of E,iljr)u’ o 18 k + 1+ 2. The syntomic Eisenstein class may be described
using these p-adic Eisenstein series. The moduli problem for M implies that there exists
a universal trivialization

~

n:Gmgﬁ'

of the universal elliptic curve on M, which gives rise to a canonical section w of w :=
L
E/M

affine, there exists sections x and y of E such that the elliptic curve E@p =E® Qp is

pr, Q2 corresponding to the invariant differential dlog(1 + T') on Gy Since M is

given by the Weierstrass equation
Eg, :y* =42° — gox — g3, 92,93 € Vp(Qp, T(N))
satisfying W = dx/y. Then the pull back of the F-isocrystal J#i; to Mg, is given as
Hiig = Optg, @7 © Opgg, 0,

with connection V(u") = @V ®dlog q, V(@) = 0, Frobenius ¢*(@") = p~ @Y, ¢* (") =
u" and Hodge filtration Fil ™" iy = Hig, Fil’ Hig = Opq,, 0", Fil' Ay = 0 (See [BK]
§4.3). If let @™" := @"Y™u"", then the filtered F-isocrystal Symk%’éig(l) on Mg, is
given by the coherent module

k
Symk%ig(l) = @ OM@pak_j’j(l)
§=0

with connection V(@*=77 (1)) = jw*~7+1~1(1) ® dlog q, Frobenius
¢*(@F (1)) = p! TR (1),

and Hodge filtration

k
Fil"(Sym" #iz(1) = €D Ouag, @ 77(1).
j=m+k+1
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If we let &gf be the section
~k+2 - (_1)k_j () ~k—7j,j
O () == Z T B ko190 (),
=0

then we have

- 1-9¢")E -
V(@i (p)) = L OIPk200 g0k(1) 5 dlog .

The main result of [BK] is the following.

Theorem 4.3 ([BK] Theorem 5.11).  Let k be an integer > 0. The syntomic
Eisenstein class
Bisgyiy' () € Heyu(Mz,, Sym" s (1))

syn

restricted to the ordinary locus H (M%;d, Symk%ig(l)) is represented by the pair (o, §)

syn

as in (4.3), where & = Eii20,,0"%(1)/k! @ dlogq and « is a section which maps to

GEL2 () in T(My,, Sym” Hig(1)).

The main ingredient in the proof of the above theorem is the characterization of
¢ by the residue, which by [BL] 2.2.3 (see also [HK] C.1.1) and the compatibility of
the Beilinson-Deligne regulator map with the residue morphism shows that & represents
the de Rham FEisenstein class in de Rham cohomology. See [BK]| Proposition 3.6 and
Proposition 4.1 for details concerning this point.

8 5. Special values of Hecke L-functions

In this section, we give in Propositions 5.2 and 5.4 the precise relation between the
special values of the Hecke L-function L(1?,s) and Eisenstein-Kronecker-Lerch series.
Assume that K is an imaginary quadratic field of class number one, and let E be an
elliptic curve over QQ with good ordinary reduction at a prime p with complex multiplica-
tion by the ring of integers Ok of K. We let ¢ be the Grossencharacter of K associated
to Ex := FE ®g K, and we denote by § the conductor of ¢. We fix an invariant differ-
ential w of F defined over K. We fix once and for all a complex embedding 7: K — C
of the base field K into C, and we let I" be the period lattice of F := F ®g , C with
respect to w. Then we have a complex uniformization

(5.1) C/T =5 E(C)

such that the pull-back of the invariant differential w coincides with dz. Note that since

E has complex multiplication, we have I' = QO for some complex period Q € C*.
By abuse of notation, we will denote by v and 1 the complex Hecke characters 1),

and 1, associated to 1, where 7 is the fixed embedding given above. Let —dx denote
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the discriminant of K, so that K = Q(v/—dx). The Hecke character ¢ is of the form
Y((u)) = e(u)u for any u € Ok prime to f, where € : (Og/f)* — K* is a primitive
character on (O /f)*.

Let x : (Ok/fy)* — K> be a primitive character of conductor f,, and let f, be a
generator of f,. Then for any v in O, we define the Gauss sum G(x,u) by

G(x,u) = Z X(v) exp (QWiTrK/Q (uv/fX\/ —dK>)
vEOK [fx
(see [Lan] Chapter 22 §1), where we extend x to a function on Ok /f, by taking x(u) := 0
for any u € Ok not prime to f,. We let G(x) := G(x,1). Then the standard fact
concerning Gauss sums are as follows (see for example [Lan| Chapter 22 §1.)

Lemma 5.1. Let the notations be as above.

1. We have |G(x)|? = N(fy).
2. For any u € Ok, we have G(x,u) = x(u)G(x).

As in §3, we let a > 0 be an integer and f, be the conductor of )*. Then the finite
part € of ¥ is a primitive character €* : (Ok /fo)* — C* of conductor f,. We fix a
generator f, of f, and we denote by by G(£%,u) the corresponding Gauss sum for any
u in O K-

We let the notations be as in §3. In particular, we let w, be the number of units
in Ok which are congruent to one mod f,, and we let wr,r, be the order of the Galois
group Gal(F/F,). We again let N > 3 be a rational integer divisible by § and prime to
p, and F := K(E[N]). We fix an isomorphism v : (Z/NZ)? = +T/T.

We first consider the case when f, # (1). We let p, := Q/ f, be a primitive f,-torsion

point, which corresponds through the uniformization (5.1) to a point p, # 0 € E(K).
We then have the following.

Proposition 5.2.  Suppose f, # (1). Then we have

(_1)a G(Sa)ﬁ

EOO o T =— - T L a -

WqWF/F, 2 : n,a—n,pa(c/ ,dz,v) Aa—n|Q|2n (s)L(v%, s)]
¢ geGal(F/K)

a,

Proof. Let wg be the number of units in Og. By definition, we have
1 Y (u) 1 e®(u)u®
L= £ 3 S L 5
wo u€Ok N(u) wo ueOk N(U)

Then Lemma 5.1 (2) gives the equality ¢%(u) = G(e*, u)/G(e®). If we expand the
definition of the Gauss sum, we see that

1 g% (v)u® . uv
Lts)=— Y 0 2mi T W),
)= 3 e o (e (775 ))

vEOK [fa
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Noting that Ok is preserved by complex conjugation, we see that the above is equal to

2 ur v
e X > a7 -T)

For any o € Gal(F/K), we have pg = p? , where o’ is the class of o in Gal(F,/K). If
ol = (v, F,/F) is the element in Gal(F,/K) corresponding to v € (O /f,)* through
the inverse of the Artin map, then by the theory of complex multiplication, we have
pa:’ = 1 (v)ps. Hence

S KN0.05.sT) =wpp, Y. K005, sT)
ocCal(F/K) o'€Gal(F,/K)

= wF/FaZ—Z > oy

vE(OK [fa)* vET

=wrm =t D Z

vE(OK [fa)* vET

" |28 (v, %(v)pa)

% VPq)-

Our assertion follows from the fact that T' = QOk, A = |Q|*/dk /27 and the definition
(4.2) of the Eisenstein-Kronecker-Lerch series. O

The right hand side of Proposition 5.2 may be used to express the Hecke L-function
on the other side of the functional equation as follows.

Lemma 5.3. We have
1
(52) ——— > EX. ., (C/T,dzv)
WaWF/Fu cal(r/K)

B Al—nN(fa)a—l—l—nﬁa —a
= e Moiacn

Proof. We have by definition

S K )pw0at+1-s5T) = S Z (G(0)pa +7)°

2(a+1—3s)

vEOK [fa vEOK [fa YET U +FY|
_ N(a)* 0"
= Tilopes

L(Eaaa’—i_l_s)

for Re(s) < a/2, hence for any s € C by analytic continuation. Our assertion follows
from the functional equation

T(s)K;(0,9%(v)pa,s;T) = A“+1_28F(a +1—35)K,;(¥(v)pa,0,a+1—s;T)
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and the definition (4.2) of the Eisenstein-Kronecker-Lerch series. ]
The case when f, = (1) is given as follows.

Proposition 5.4.  Suppose f, = (1). Then we have

1 - No+2 Q° .
o > EY, ,,(C/T.dzy) = ( e )Aa_nm'Qnr(s)Lw ,8)|sn-
pEEIN]\{0}

Proof. By definition, we have

. Na—|—2
Z K O P> S F Z Z |2s ’Y, - N2s Z |fy|2s

pEXT/T vel pe £ T/T ~el

where the last equality follows from the equality

Y (np) =

pEAT/T

N2 4 eNT

0 otherwise

and the fact that complex conjugation acts bijectively on I'. Our assertion follows from
the definition (4.2) of the Eisenstein-Kronecker-Lerch series. ]

Similarly to Lemma 5.3, we have the following.

Lemma 5.5. We have

(5.3) 1 > EY,,,(C/T.dzv)

Ya LeBIN)\{0}
o2 Ay -
N ( N2n B 1> |Q|2(a+l—n) F(S)L(w 78) s=a+1-n '

§6. The Main Result

In this section, we give an outline of the proof of our main theorem. We will mainly
deal with the case when f, # (1), as the case for f, = (1) is essentialy the same except for
the factor (N2 /N?" —1). We first calculate the p-adic and complex periods ,,(n) and
Q(n). From the definition of ¢? and from the compatibility of the syntomic regulator
with respect to pull-back morphisms, the restriction of the syntomic Eisenstein class
through the decomposition of Lemma 3.1 gives the image by the syntomic regulator of
the element c2 in H} (K, M%(n)).

Let the notations be as in the previous section. We denote by w* the class in
H}i (E/C) corresponding to dz/A, which is in fact a class in Hjg(E/K). Let k = 2n —
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a — 2. Then wF—ITLi+L .= (VE=i,*Vi(1) for 0 < j < k form a basis of Sym”** #r(1).
The relation between the basis ™™ and w™" is given by W™ = Q™ "w™". In what
follows, let ¢, be as in Definition 3.2. By Theorem 4.3, the pull-back of the syntomic
Eisenstein class Eisf!2(p,) to HY, (K,, Sym*1* (1)) is expressed by the element

syn syn

*~ k42 _ (-1) 25—k 1(p) k—j+1,5+1
CEEL (Pa) = ) il QB g, (B w, v)wt TR

Hence the element rgy,(c%) in HY (K, M2

syn cris

(n)) corresponding by definition to the
direct factor j =n — 1 and 7 =n — a — 1 is represented by

-1 n—1
(=) Q, EP (B,w,v)w™" ™%

(_1)n—a+1 QaE(p) (E ) n—a,n + —a
]/ 9
y W, w F(n _ CL) p n—a,—n,pPq

W pn,a—n,pq
By definition of the exponential map, the element in ¢ ® Q, corresponding to rsyn(cg)
through the isomorphism (3.3) is

(_1)n—a—|—l
'(n)

(_l)n—l
I'(n—a)

where E,, 4—n,,, (E,w,v) is the element in I?“jr satisfying

QgEnaa—nﬁOa (E7 w, V)wn—a,n + QP_aEn—aa—n,SOa (E7 W, V)wn,n—a7

(6.1) (1=p*"0") Eng—n,p,(B,w,v) = E® (E,w,v).

n,a—"n,Pa
From the definition of ¢ and the discussion at the end of §3, this shows that we have

(_1)n—a—|—l

Ty B (Brw, )"

log,, orp(cy) =

—1 n—1
(—1) QO Ep—a,—n,p, (B w,v)w™"

TT—a)

This gives the following.

Theorem 6.1.  Let n be an integer > a and assume that the p-adic regulator r,,
is injective. Then the p-adic period Qp(n) € K, @ Ky« of the motive M*(n) is given by

(_1)n—a—|—1 a
Qp(n) = WQpEn,a—n,wa (ana V)

Proof. The theorem follows from the definition given in (2.5) of the p-adic period,
noting that we have an isomorphism

(K ®g Qp) wiy ,, = Qpu™* P Qpum "

induced from the canonical splitting K ® Q, = K, @ Ky~ = Q, P Q,. O
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The calculation of the complex period, originally due to Deninger [Del] may be
done in a similar fashion. If we let I' = QO as in the previous section, then the Betti
homology of E is given by HZ (E(C),Z) =T. We let y; := Q € T, which is a generator of
I' as a Og-module. If we fix a v € Ok such that O := Z @ Zv and if we let 5 := v(71)
where v acts through the complex multiplication of F, then we have I' := Z~; @ Zs as
a Z-module. The period relation gives the equality

ny [ Q Q/A wY
v ) \TQFQ/A) \w*V )’

The K-basis v, induces a K-basis of M%(n) C Sym* H(F(C),Q(1)), which we denote
by wp. Then the inclusion
Mg(n)®gR =t @p R

maps wp to
=n =n—a

n—aQ n—a,n n
Q ﬁw + Q An—a

Furthermore, one may prove the following.

n,n—a

Qa
n

Theorem 6.2 (Deninger [Del]).  The image r(c%) in

H (K @R, Vg (n)) = (t, @ R)/(Mp(n) ®g R)

of ¢ by the Beilinson requlator (2.1) is represented by the element

-1 n—a-+1
(=1 EX (C/T,dz,v) ™"

(_1)n_1Eoo ((C/F dz I/) W amn +
) s F(TL — CL) n—a,—n,pq

W n,6—"N,Pq

in ty Qg C.

Proof. The Eisenstein class in this paper defined using the elliptic polylogarithm
is related to the Kisenstein class defined by Beilinson and Deninger. The theorem is
then a special case of the weak Beilinson conjecture for Hecke character associated to
imaginary quadratic fields proved by Deninger [Del] (see also [DW] for the case of an
elliptic curve defined over Q with complex multiplication.) The theorem may also be
proved by explicitly calculating the Hodge realization of the elliptic polylogarithm [BL]
(see also [BKT] Theorem A 29.) O

By taking the determinant of the complex (2.2) with respect to the basis roo(c%),
wpg, W% and w™™ ™%, the above calculation and the definition of the complex period
give the following.
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Proposition 6.3.  The complex period Qoo (n) of M®(n) in K @g R is given by

Qoo(n) = (=1)“ "G () LY n) P (1) GE)L(E

in K®@gC=2CPC if fo # (1). A similar formula holds for the case when f, = (1),
but with a factor (N2 /N?" — 1) multiplied to the L-value.

G/,n)

Proof. The assertion follows from Theorem 6.2 by explicit calcuation, using the
definition of ¢, (Definition 3.2), the calculation of the complex period above, and the
relation between Eisenstein-Kronecker-Lerch series and special values of L-functions
(Proposition 5.2 if f, # (1), or Proposition 5.4 if f, = (1)). O

This gives the following corollary, which we stated in Theorem 2.1.

Corollary 6.4.  Iff, # (1), then we have

L(y*n) (=1t x
Q1) = G € K* C K®gC.

A similar formula holds when f, = (1), but with multiplication by (N°*2/N?" — 1)~1
on the right hand side.

Proof. The equalitiy follow from the calculation of the complex period in Propo-
sition 6.3. Since € is a primitive Hecke character with values in K, we see that this
value is in K. O

We next construct the p-adic measure pu® which appears in the formulation of
Conjecture 2.2. Since F has good ordinary reduction at p, the prime p splits as p = pp*
in K. In what follows, we fix once and for all complex and p-adic embeddings of our
coefficient K as follows. We let 7 : K — C as in §5 and an embedding K — C,
mapping p to a prime in C,. With this convention, we may regard the complex and
p-adic periods as elements respectively in C and C,,, by taking the first components in
Proposition 6.3 and Theorem 6.1.

Let E be the formal group of E over Ok, and let I?;r be the p-adic completion
of the maximal unramified extension K" of K, which we regard as a subfield of C,
through our fixed embedding. Since p is an ordinary prime, there exists an isomorphism
of formal groups n over O Ryr

L®

n:E = Gy,
given by a power series 1(t) = exp(A(t)/Q,) — 1, where €2, is a p-adic period of E which

is an element in Oz, satisfying

ur
Ky

(6.2) Qp ="
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The above isomorphism gives the equality
(6.3) n* (dlog(1+T)) = w/.

Again let N > 3 be an integer as in §3 divisible by f and prime to p. By [Katz]
5.10.1, the value of the p-adic Eisenstein series Ej12; ,, at the test object (E,w,v) is
defined by

(64) Ek+2,l,<pa (E7 W, V) = ng+l+2Ek+2,l,cpa (E7 7, V)'

In addition, the comparison theorem [Katz] 8.0.9 states that this value for integers
k> 0,1 >0 is an element in F' := K (f) satisfying the equality

Ek+27l7§0a (E7 w’ V) = E]gj‘2al,¢a (E7 w, V)
Then the calculation above and Theorem 4.1 gives the following.

Proposition 6.5. We let ¢, be as in Definition 3.2, and we denote again by
o, the p-adic measure on Z, X L, obtained as the value of p,, of Theorem 4.1 at
(E,w,v). If fo # (1), then we have

¢(p)“> Q'T(n)L(Y°,n)

(_1)a / n—1, a—n a
A - 1—
QF Jz,xzx YT (@) = GEY) p" Aa=n|Q2n

b
for integers a > n > 0. A similar formula holds for the case when f, = (1), but with
multiplication by (N“*2/N?" — 1) on the right hand side.

Proof. The relation between the action of the Frobenius on V,(Q,,T'(/V)) and its
specialization is given by

¢* (Ek-l-Q,l,go)(Ev n, V) - Ek+2,l,g0(E7 n, vor )7

since (F,w) is define over K and hence E» = F and w? = w. Then from the definition
of the specialization of p-adic modular forms (6.4) and the action of the Frobenius on
the p-adic period (6.2), we have

) k+1+2

pl¢* (Ek+2,l,<,0)(E> w, V) = pl (Qgp Ek+2,l,<p(Ev m, Vap)

= (p)F TR PRI R o 1w (B, ).

Applying the above calculation to the case a = k + 1+ 2 and n = k + 2, our assertion
now follows from Theorem 4.1, noting the definition of the p-adic Eisenstein series (4.5),
the definition of ¢, and the fact that the sum over all 0 € Gp/k of g is invariant by
the action of oy. O
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Proposition 6.6.  Let Z) x Z) — Z, be the surjection defined by p : (z,y) —
r/y. We define the measure u'* on Z; by

la - (_1)a —1 a %
[t = G [ @ )

If §o # (1), then this measure satisfies the interpolation property

v (1 E(p*)“) QT L n)

pn pa—l—l—n Aa—n|Q|2n

1
Qf Jzx

() = (1-

for any integers a and n such that a > n > 0. A similar formula holds for the case
when §, = (1), but with multiplication by (N*T2/N?" — 1) on the right hand side.

Proof. The equality is obtained from the definition of x'® and in calculating the
restriction of the measure p,, to Z,; x Z, . The calculation directly follows from Katz
[Katz] 8.7.6, using the functional equation (see Remark 6 below.) One may also do the
calculation using an alternative construction of Katz p-adic measure ([BKo| Proposition
3.5 and Theorem 3.7), again after using the functional equation. O

Remark.  Combining Proposition 5.2 and (5.2) (or if f, = (1), then Proposition
5.4 and (5.3)), we obtain the functional equation

D(n)L(y*n)  N(G)* ™ "T(a+1—n)L@*, a+1—n)

AP T ()G e Fa A Qe

We regard f, and f, in Ok as elements in Z, through the canonical isomorphism
Ok,
it ttp, through the isomorphism

= Zp. Denote by fi,, the measure on Z; X Z,; obtained as the pull-back of

~

L) X Ly — Ly X L)
given by (z,y) — (f,, f;'y). Since A = |Q|?>\/dx /2, if we let k; = a+ 1 —n and

k2 = 1 —n, then the interpolation property of fi,, at (E,w,v) becomes

1 _ 1~
W/ZX . 2R g, (2, y)
p p X&p

_ (1 - M) (1 ) E(p*)kl—kz) (@)k Pk LE" "

pk1 27 Qk1—k2

7k1)

pl—k2

for k1 > —kg > 0. This coincides with the interpolation property of the two-variable
p-adic measure constructed by Katz and Yager (see [Yag] §1.)
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If fo # (1), then the measure p'® defined in Proposition 6.6 satisfies the condition
of Conjecture 2.2. If f, = (1), then we need to cancel the factor (N¢*2/N?" — 1) which
appears in the interpolation formula.

Definition 6.7.  We define the pseudo-measure i, on Z;; as follows.
1. If f4 # (1), then we let u® := p'®.
2. If fo = (1), then we let % be the measure on Z,* defined by

Na—|—2
L= (1)

P

for any integer n. We define u® to be the pseudo-measure on Z; obtained as the
quotient of p/* by p% (see for example [Col] §1.2 for the definition of a pseudo-
measure).

When f, # (1), then p, is by definition a p-adic measure on Z, .
We now have the following.
Theorem 6.8.  Let a > 0 be an integer and let i be the pseudo-measure on Z,

defined in Definition 6.7. If we let

X
P

Ly(0® ® xlhe) = / W (w),

then we have

(o) - ) e

for any integer n > a such that the p-adic period ,(n) is non-zero.

Proof. We first consider the case when f, # (1). By definition of the p-adic
Eisenstein series in Definition 4.2, the moments of the measure p,, constructed in
Theorem 4.1 is given by p-adic Eisenstein series. As in (6.1), let E, oy o, (E,w,v) be
the element in K, p satisfying

(1 — pa_”a*) Epanp, (B wv)= EW (E,w,v).

n,a—"n,Pa

Then the compatibility between the Frobenius on the modular curve and a point, as
well as the restriction of the measure on Z, x Z; to Z; x Z) shows that we have the

relation
L[ e = L (1 Y (2
a5 L) = gy (1755 ) (1 3085 ) B (B



p-ADIC BEILINSON CONJECTURE 29

The calculation of the p-adic period in Theorem 6.1 shows that

(_1)a—n+1 a
Qp(n) = WQpEn,a—n,wa (E,w,v)

for our fixed embedding K — C,,. This proves in particular that

it =) () B

Our assertion now follows from Corollary 6.4. The case for f, = (1) follows in a similar

X
D

fashion, noting the interpolation property of p/* and u%;. O

Remark.  If there were a case such that €2,(n) is zero for n > a, our calculation
would imply simply that L,(¢¥* ® X;’:lyc) =0.
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