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Abstract
Let n > 3 and Q be a C?-bounded domain in R™ with 0 € Q. We consider

(0.1)

Au+/\up+“i—|:1:0 in
u=0 on 09,

2(n—s)
n—2 7

where 0 < s < 2, 2" =

A>0 if 1<p< ot
O<A< () if p=1,

and A\1(92) is the first eigenvalue of —A with the Dirichlet boundary condition.

In this paper, we shall prove the equation (0.1) has a positive solution provided that 5 <
p < Z—fg If the mean curvature H at 0 is negative, then for each of the following cases, the
equation (0.1) has a positive solution.

+2

n

2. p=2%£2 and

0<s<l if n=3,
0<s<2 ifn>4

If H(0) < 0, then we also prove the existence of a positive solution for the following equation:

[=]*

Au—/\up+“2*—_1:0 in
u=0 on 09,

where

A>0 and1§p<min{ n ,2*—1}.
n—2
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1 Introduction

In this paper, we consider the existence of positive solutions of the following nonlinear elliptic

equations:
1

{ AutduP + 22 =0 in Q

|a]*

1.1
w=0 on 0f, (1)

where ) is a bounded domain in R” withn > 3,0 € 90Q, 0 < s < 2, 2* = 2*(s) = %, 1<p< Z—i‘g
and A is a real parameter. For the case p = 1, this problem was considered by Ghoussoub-Robert
[3, 4], and they proved the following result.

Theorem A. Suppose that Q is a bounded smooth domain in R™ with 0 € 0Q and A < A\1(§2), where
M (Q) > 0 is the first eigenvalue of —A with the Dirichlet boundary condition. Then the equation

Au—l—)\u—l—% =0 in Q,

u=0 on 0
has a positive solution provided that the mean curvature H of 0Q at 0 is negative.
In an earlier paper by Brézis-Nirenberg [1], among other results, they showed:

Theorem B. Suppose that 0 is a bounded smooth domain in R™ with n > 4. Then for every
A € (0,A1(Q)), there exists a positive solution for the equation

Au+/\u+uz_ﬁ =0 in Q,
u=0 on 0.

In this article, we study more general cases. Namely, we obtain the following theorems.

Theorem 1.1. Suppose that Q) is a bounded domain in R™ with 0 € ). Then the equation

[]®

Au—l—)\up—i—ﬁzo m €,
u=0 on 90

has a positive solution if one of the following conditions holds:

(i) 9 is C3 at 0, H(0) < 0 and

A>0 if l<p< 2
0<A< () ifp=1.

(ii) O is C3 at 0, H(0) =0, A> 0 and 1 < p < 242
(iii) O is C* at 0 (no restriction for the mean curvature), A >0 and "5 < p <
(iv) 0 is C® at 0, H(0) <0, A >0, p = 2£2 qnd

n+2
n—2°

0<s<l ifn=3,

0<s<2 ifn>4.
Our proof for Theorem 1.1 is inspired by the idea in Brézis-Nirenberg [1]. However, there is a major
difference between our work and [1]. As it is well-known, the Sobolev best constant S, is actually
independent of Q. This important fact was used in [1] implicitly. For our problem, pus(2) defined in



Lemma 2.1 below does depend on the domain 2. For the proof of the assertion (iv), besides using the
fact that the Sobolev best constant S, is independent of €2, we also take advantage of that the energy
level ¢* in the mountain pass lemma (see the remark of Theorem C) is independent of the choice of v.

Furthermore, we prove the existence theorem of the following:

Theorem 1.2. Suppose that Q is a bounded domain in R™ with 0 € 9, A > 0, 92 € C° at 0,
H(0) <0 and 1 <p < min{-"5,2" —1}. Then the equation

*
u2 —1

{ Au—AuP+L— =0 1in Q,

[]®

1.3
u=0 on 0N (1.3)

has a positive solution.

For 2 = R", we prove the following theorem by the Pohozaev identity together with the blow-up
argument used in the proof of Theorem 1.1.

Theorem 1.3. Forn > 3 and A > 0, there exists a positive solution of the equation

[a]®

n+2 2% —1
Au+Aun=2 +*—— =0 in RY, (1.4)
u=0 on OR} '

provided that
0<s<1l ifn=3,
0<s<2 ifn>4.

This paper is organized as follows. Couples of auxiliary lemmas are collected in Section 2. The
proof of theorems occupies Section 3-Section 5.

2 Preliminaries

In this section, we prove two lemmas for the proof of main theorems.

Lemma 2.1. Suppose that Q is a bounded domain with 0 € 9Q, X\ > 0 and assume one of the
followings:

(i) O is C3 at 0, H(0) < 0 and 1 < p < 2£2.

(ii) OQ is C® at 0, H(0) =0 and 1 < p < Z£2,

o : o : n n+2
(i) O is C* at 0 (no restriction for the mean curvature) and " < p < 242
Then there exists a nonnegative function vo € H3 () \ {0} such that

B pltr) < (5= 5 ) (@7 (2.1)
1{1238{ s,p\tV0 2 o Hs , .
where o
Lo A oo 1) 1
45571,(111) = /{; <§|VU| - m(u )p - 2—* |(Ij|s dx fO’l’ u e HO (Q),

and

1 |U|2* -
u € Hy(QY) and de=15.
Q

|[*

1s(Q) := inf {/ \Vu|?dz
Q



For the proof of Lemma 2.1, we apply the following lemma:

Lemma 2.2. Let u € Hj(R'}) be an entire positive solution of

Au+ s (R W —0 in Rs; )
u=0 on OR} with fRi ﬁ?dy =1
or .,
el

Then the followings hold:
(i .
ue C?(RY) if s<1+ 2,
ue CYWRY) foral0<pB<1l if s=1+42
ue CYARY) forall0<f < ™28 if s> 14 2,

(ii) There is a constant C such that |u(y)| < C(1 + |y[)*~™ and |Vu(y)| < C(1 + |y|)™"
(1i1) u(y', yn) is azially symmetric with respect to the yp-axis, i.e., w(y',yn) = u(|y’|, yn)-

Concerning the proof of the existence of a solution, assertions (i) and (ii) for the equation (2.2), see
Egnell [2] and Ghoussoub-Robert [3, 4]. The existence of a solution for the equation (2.3) is obtained
in Theorem 1.3. For the rest part of the proof for Lemma 2.2, we refer to Lin-Wadade [5].

Proof of Lemma 2.1. We first show (i). Ghoussoub-Robert [3, 4] proved that if H(0) < 0, then
1s(€) is attained by a positive function vy with

o
/ |Vuvol?de = ps(Q) and / 0 gy = 1.
Q Q |JI|S

Then since A > 0, we have

t? APt e -
maX@s,p(tUO):maX <—/ |Vvo|2d:17— /vé’“dw— —/ Y0 d:c)
= p+1Jo > Jo laf

<ma (5 [ 19wk o [0 a) < (Gt - 50) = (3 - 3 ) s
max vol“dz |x|sx —I?Zagc 2,us > =5 % s .

Thus (i) is proved.

Next, we shall prove assertions (ii) and (iii). Since u5(2) < us(R?}), we consider two cases. First,
if ps(Q) < ps(R7), then pus(€2) can be achieved by some function in HJ(Q), see [3, 4] and [5]. In this
case, (1.2) can be proved by the same fashion used in the proof of the assertion (i). Hereafter, we only
need to deal with the remaining case that u,(€) = us(R%).

Without loss of generality, we may assume that in a neighborhood of 0, 92 can be represented by
xn = ('), 2’ = (21, ,xn_1), where ©(0) = 0, V'p(0) =0, V' = (d1,--- ,0,_1), and the outer
normal of 9f) is —e,,.

Let u € Hg(R"}) be an entire positive solution of (2.2), and take U and U to be neighborhoods of
0 such that ¥(U) = By, (0) and ¥(U) = Bra (0), respectively. We define for € > 0,

ve(z) =777 uw <@> for x € QNU, and 0::=nve in Q, (2.4)

4



where 7 € C°(U) is a positive cut-off function with n = 1 in U, and
VU(z) = (2,2, — p(z')) for x€QNU.

For t > 0, we have

t2 AtpH t2 vZ
b ,(te) < — [ |Vo.|*d ——/APHd ——/ < dx. 2.5
,p(vg)_2/9| bcffde— T | e - o | Cpde (2:5)
In what follows, we investigate each integral in (2.5) precisely. By a change of the variable @ =y
and Lemma 2.2, we get
[vipa= [ pvepae- [ aaapa
Q QnU QnuU
_ 2
< [ ulPay-2 [ 0@ ) o) Vuly) - (Vo)ey dy
R7 Bf,
_ 2 _ _
+ /B L (@) @Onu®) (V') ey Py — & /B (77 ew) (An) (P (ey)) uly)*dy
o o

€

- / \Vu(y)|? dy — 2 / L (T (ey))” Dnuly) V'uly) - (V'¢)(ey )y + O(e?).
Ri Bﬁ(l

€

Using integration by parts and V'u = 0 on JR?, we obtain

I=—2 /B 0 (T (9))® nuly) V'uly) - (V') (4 )dy

= —g / 0 (#7 (ey))” Duly) VVuly) - V' [o(ey’)] dy
B,
=2 ) VI (0 )] - Guuly) V) oley
Brg
#2 [ e) Vo) Vuly) (e )dy
B,

n—1
0 (™ () Bpuly) Z Diu(y) (ey’)dy

_2/
-2/

Applying the equation (2.2) and integration by parts, we have

1 (07 (20))” ) Y Buuy) e(ey/ )y + O(E"),

+
ro

€

n—1
I = _/ 0 (2 (ew)? Buuly) S Biiuly) pley’)dy
B, i=1

€

S(R™ B A [u 2* ,
= _%}1})/3& n (¥ l(ey))z%w(ay )dy

€



- l/+ 0 (#(ey))” 0 [(Onu(v))?] e(ey’)dy
BQQ

£

€

= —282%(3}1)/3& 0 (T ey))” |( |)+2 pley)dy
+ é /— (T (ey)” (9au(v))” p(ey)dS, + O(e™) = Ji + Jo + O(").
BT, NOR?

If 9Q is C2 at 0, ¢ can be expanded by

=5 et + O (26)
i=1
Thus we see that
le—%%(i&i)/m (T (ey))? T |)+2 o(ey’)dy
:_2su2s*(§3ﬁ)/ - /Qn@ Ley))® ?|)+2 o(ey’)dy

€

n(n—s)

|J1’1| < 05/ |y|2*(1—'ﬂ)+1—sdy _ O(E s )
F<leyl<ro}

Moreover, note that

- _ n(n—s)
5fRn\B+ u(y )2 |y|1 *dy =O0(e »=2"),

 fyy , 107 oy = O, &)

which is integrable because 2*(1 —n) +2 —s+mn < 0, i.e., n> — (24 s)n +4 > 0. Thus by using (2.6)
and (2.7), we get

28€us . Y; Y
Jio—— Z /nﬁﬂnd +0(e2)
i=1

n—1

252 (RY) [ w(@) 1y Pyn 2
_ Z — K H(0)e + O(?),
2%(n — 1) /n ly[2+s dyzo‘ +0(?) 1H(0)e +0(7)
where 1
1= 2sus(RY) [ u(@)? |y Pyn
H(0) := i Ky = ' 28
(0) —— Z a; and K o /n g2+ dy (2.8)

In the above estimate, we used the fact u(y’, yn) = u(|y’|, yn). Next, we see that

Jy= 1 /_ 0 (@) (Dnuv))? (ey’)dS,
Bt noRrn

€



1 _ 2
== / 1 (T (ey)” (Bnu(y))® wley’)dsS,
€ (B{Q\Bzﬁ)mam
1
ey (Ouu(w))? @ley')dS, = oy + Jop,  and
€ JBT _noRe
ro/2 +

C
WAS—/ |(Ons) (o, 0) 2 ip(ey) |y
{R<|ey’|<ro}
g&/ W22y = O(e").
{R<ley’|<ro}

Moreover, note that |(9,u)(y',0)?|y'|> = O(]y'|~2"*3) for large |y| and 2n —3 > n — 1 for n > 3.
Hence, it is integrable and

€ [qey sy [On) (Y O Pl Pdy’ = O(e™), 29)
2 [y |Ou) (o ORIy Py’ = O(2)
Thus by using (2.6) and (2.9), we get
JQQ—EZQZ/ ((Bnu)(y,0)) y2dy’ + O(?)
c n—1
= / (Va)(y, 0)*ly'Pdy’ > o + O(e?) = Ko H(0)e + O(e?),
n—1 Rn—1 el
where
Kom [ (V) 0PIy Pdy (210)
After all, we get
/ V6. 2de < p(RY) — Ky H(0)e + K H(0)e + O(e2). (2.11)
Next, by changing the variable W(I =y, we have
/ 0P dy = R / uPdy + O(e n ). (2.12)
Q n

-
Furthermore, the integral meﬁ ﬁ#dw can be estimated as follows. By a change of the variable

@zy,wehave

2% 2%
/ Ve gy = / S (2.13)
ono |7l B ’m
e |
Since U1 (y) = (¢, yn + #(y)), it holds [#1(y)|* = [y]? + 2yne(¥/) + (¢(y'))°, and then
11 1
v s _5 ' ’ V)2 5
’—E lyl <1+ 2y2@(‘62y) 4 (igjz;‘l) )2




L (1 sueley) 5(90(62/))2> Lol <2yn«a<ey'> ) (so(ey'»?)z. 10

lyl elyl? 2¢2|y[2 lyl* \ elyl? e2lyl?
Thus from (2.13) and (2.14), we obtain

2 2" 2
/ %dw:/ “_sdy_f/ ww) &) g, 4 o)
ant |2l R” | €JBt . ly|
ro/=

/

€

yzy'ﬂ
—1—552%/ » |2+s —2L 22 dy + O(?)

n—1

se uw(y)? |y Pyn 2 2Ky 2
=1- / d a; +0(E)=1— ————H(0)e + O(e?),
n—1 e Wt 0D = - g 0+ O

where K7 is the same positive constant as in (2.8).
After all, each integral can be estimated by
Jo IV |Pde < ps(R) — K1 H(0)e + Ko H(0)e + O(€2),
nt2  (n—2)p 2)17 n(P+1)
) (2.15)

Joobtde =2 f uPtdy + O(e

*

v o 'Ky
fsmffmsdx—l T (RH)H( Je + O(g?).

By (2.5) and (2.15), we have for t > 0,

By (t0:) < g (1s(R%) — K1 H(0)e + KoH(0)e + O(2))

p+1 ni2  (n—2)p n(p+1 2" 2*K
At <g—¥———< = / WPy + Ofe <“)> 2 <1——1H(0)5+O(52)>. (2.16)

p+1 2 215 (R%)

We claim that the right-hand side has the maximum point ¢,, expressed by

1 *_ *_
t = s (R7) 77 Shs ()™ 7= K H(0)e + ——— s (RY) =2 K, H(0)e

_ = A 2Ms(Rn) 2*2;10/ up_i_ldygn;rz (n=2)p 2)p +O( )+O(€HT+2_<n_22>p+1)+O(5n+2_(n_2)p).

(2.17)

Indeed, set
tm = us(R})Z=2 + A(e) with A(e) =0 (2.18)

as ¢ — 0. Since t,, is the maximum point, we have

n+2

(s (RY) — K1 H(0)e + KoH(0)e + O(?) — A2 <ET-—("‘5“’ / uPHldy + O™ ))

. 2* K,
—t2 2<1—7H05+052>:0. 2.19
@y 0 + 0 (219)
By substituting (2.18) into (2.19), we see that

ps(R7) — K1H(0)e + K2 H(0)e + O(e?)



ol Pl nis (n-2p
—/\<M5(R+)2**2 +A(5)) (5 ? 2 /}R

(mrn = a@) <1 B 25(—%)

= ps(R) — K1H(0)e + K2H(0)e + O(e?)
() + O(A(2)?) <EL—L—L / uPHdy + O(Eﬂgil)>

Wy + O ))

+

H(0)e + 0(52)>

(B FE + (= (R

n . ny =3 2K
(1) + 2~ 2B FAE) + 00AP) (1 5 GO0 +0()
2“5(R )
2 9 . wis_nop
= 22 KaH () + KoH(0) — Apua(R)#5 / Py U 0(2) 1 0(AE))
N paZ=s 28(2F -2 [ nt2 _ (n—2)p
- a0 (2 - ()’ —2—%%(&) =SRH(0): + O ) 0
where note that
n+2_(n—2)p<2 e p>1  and n+2_(n—2)p<n(p+1) o>
2 g <~ P=es 2 2~ 2 M PeELTT

*_g k(% L n+2 a2y _1
4@ = (2 - 2maEnF= - T s k) e+ o)

2% — 2 p—1 n—2)p
X ( K H(0)e + KoH(0)e — A pg(RY )22 / u”“dysT__L + 0(52)> + O(A(e)?)

R"

B
Here, note that hm ()

Y AG) 1, which implies A(g) = B(e) + O(B(¢)?). Moreover, we have

2% 3 2%

1 ny—2=38 ny_ 225 nt2  (n—2)p
B<€>:<mus<R+> T gyt (BT K (0 4 O >)

2 9 - niz_ oy
><< KlH(o)eJrKQH(o)e—Aus(Ri)%/ uPHldy e 5 = +0(52)>

2 1
1 ny— 23 1 ny— 23 2
= S1s(R}) TR K H(0)e + 5 s (R) 75 Ko H(0)e + O(?)
- —Q*A 2us(R1)—23?—52 / uPHldy T EFE L O T IEE A L o(ent2-(2r) (2.20)
= -

+

As a consequence, we obtain (2.17). By (2.16) and (2.17), we see that

max & p (t0e)

1

23
<3 e (RY) 55 Ky H(0)

1
2% =2

s (R 757 4 201, (R >;(1us<R"> K H(0)e +



n—2" 2

_ = A 2Ms(Rn) 2*2;2/ up_i_ldygn;rz (n— 2)p>+0( )+O( n+2 (n22)P+1)+O(€n+2—(n—2)p)]
n
A 41 _p
X (s () — K H(O)e + KpH(0)e + O(2) = 25 i (RDFS 4 (-4 Dy (R]) =
1 ny—% L ny—2=2
x| s (RY)” FEKH(0) + oo Hs(RY) T2 Ko H(0)e
_ 2*/\_2“5(1@1)—22:3?/ wPHldy e 2>’”>+0( )40 <";2>P+1)+O(€n+2—(n—2)p)1
n
X (/ up—‘rldyg#_(";?ﬁ’ O(SH(P;'U )>
n
1 n * n 1 n _2r=3 1 n _2r-3
~ o ps (RY )77 42 s (RY )2* = §M5(R+) 2*‘2K1H(0)5+mﬂs(R+) 72 KyH(0)e
-5 A 2Ms(Rn) 2*229/ up+1dy€n;2 (n— 2)p>+0( )+O(€nT+2_(n22)p+1)+0(€n+2—(n—2)p)]
R
2K,
X (1= ———H(0)c+ 0(52)>
< 2ps(RY)
1 1 ny=2 1 " =2 — A n oy 2EL 41 nt2 (n—2)p
= (5 5 ) DT+ BT K H(O)e — 2, (R F [ urtiayeios
2 o 2 p+1 -
+O(e2) + O(e" 5 ~ 41y 4 O(en+2-(n=2p), (2.21)
By using (2.21), we can show (ii) and (iii) as follows. First, if A > 0, H(0) =0 and 1 < p < 2£2 je,,
2 — ("T” — ("_—22)’7) > 0, we have for small € > 0,
max @ p(t0z)
1 1 2t A oy 2L 1 nt2_ (n-2)p nt2_ (n—2)p
< (55 ) m@DT= - Lo @DES [ty T 4 o) 4o T
2 2% p+1 R?
1 1 =2
< <§ - §> ws(RY )72,
Thus (ii) is proved.
Next, if A >0 and "5 <p < 242 el — ("—H—@) > 0, we have for small € > 0,

B, (10
max P p(t0e)

11 ny g2 A ny £ 1, _ni2
S<§_2_*>N‘S(R+)2 —mﬂs( +)22/iup+ dye™
1 1

2

<

Thus (iii) is proved.

—*) a(R}) 73,

2

10

_(n=2)p

nt2 (n—2)p

P4 0(e) + o= F )




In the proof of the assertion (iv) of Theorem 1.1, we use the information derived from the positive
solution of the equation

{ Av+ vz \*| =0 in R7, (2.22)

v=0 on JRY.

If the equation (2.22) has no positive solution, the proof of Theorem 1.1 is valid. In case (2.22) has a
positive solution, we use the following lemma in our proof.

Lemma 2.3. Suppose that Q is a bounded domain in R"™ with 0 € 9, X > 0, 9Q € C3 at 0 and
H(0) < 0. Then there exists a nonnegative function vo € HE(Q)\ {0} such that @5 .(vo) < 0 and

max b, . (tvg) < ¢,

where

n— om ut)?
By (1) =, s (u );:/ﬂ@vuﬁ—%(mm_i( )

2 2% |217|5

*

> dx  for u € HLQ),

c* =@, (v), and v € HJ(R') is the positive solution of the equation (2.22).

Proof. Considering the proof of Lemma 2.1, we take u = v € HJ(R") and define 9. € Hj(Q) by
(2.4). From the estimates (2.15), we get for t > 0,

t2 APHL 2 o
D, . (t0e) < —/ | Ve |2dx — /@Epﬂdx_ — vgsdx
2 Ja p+1Jo > Jano o]

t2

<5 (/ |Vo|?dy — K} H(0)e + K4H(0)e + 0(52)>
RY}

pNZans ey 2 v? 2K/
T T (/nv”“dy—l-O( ))—2—*</Rn Wdy— 21H(0)5+O(52)>
+

2 1 2% 2*
t_ |Vv|2dy— AtPt / p+1dy _ t_ v sd
2 RY p+1 Jgn |y|

- @ ((Kg — KDt + K{ti’*)e +0(?)

H(0)e
= f1(t) + —(2) f2(t) + O(e?), (2.23)
where 21 112
2s VYT Yn
k=2 [ Sy wa wy= [ 000 Py
2 R7 lyl n-t
Since 2* > 2, -2 =5 > 2 and
o
/ |Vv|2dy:)\/ vp+1dy+/ v—sdy»
n R7 R? |y
we find

sup f1(t) = f1(1) =c¢* and fo(t) > 0 for t > t1,

t>0

11



where
0 if K5> K7y,

tl = ’ ’ *;
Ki—K3\ 72 :
( 1K12> <1 if Ky < Kj.

Hence, in case H(0) < 0 and € small, we conclude
D (t0e) < fr(1) ="
Finally, we take vy = to0. where ¢; is large enough so that @, .(vy) < 0. The lemma is proved. O

Lemma 2.4. Suppose that Q is a bounded domain in R™ with 0 € Q. If (i) n=3 and 0 < s <1 or
(ii)) n >4 and 0 < s < 2, there exists a nonnegative function vo € Ha () \ {0} such that @ .(vo) < 0
and

2 g
I{l>aX@s «(tvg) < n)\ S,
where ) o
o 1 o (M=2)A a1 (uh) 1
D . (u) .—/Q<2|Vu| o™ (u™) -2 > Tl dz  for uw € Hy(Q2)
and

Sy, = inf {/ |Vu|2dx’ u € Hi(Q) and / |u|%dx = 1}.
Q Q
Remark. It is well-known that when Q = R"™, S,, is achieved by the function
g9(@) = CL+[2) "=

where C' is a normalization constant.

Proof of Lemma 2.4. Let zy be an interior point of §2 such that B(zg,3r) C Q. Take ¢(z) € C(Q?)
be a cut off function with ¢|p(,,,) = 1 and ¢(w)|Q\B(EO’2T) = 0. Consider

(o)== (T2 ) olo) € (@)

For t > 0, we have

i 2n 2%
D4 (tge) = / 1V ge|? do — L 2ALTE )M / Qd:r— L . (2.24)
Q

2 les

Using the integration by parts and a change of the variable y = =2, we get

/ Ve () e
Q

2 2
_ / (Vo) <x - "”’°> ‘ (x)dz — 2T / g (“” - x0> () Ad(x)dx
B(zq,2r) € B(zg,2r)\B(xo,r) €

- / V()P (ao + ey)dy — €2 / 9(9)* (o + £3)(Ad) (o + ey)dy.
B(0,2) B(0,28)\B(0,%)

Direct calculation gives
Js0,20) IV9@)IPdy = [ [Va(y)Pdy + O(e"72),
O(L) ifn=3,

fRn\B(o,g) 9(y)?dy = O(log(%)) if n=4,
O@E"") if n>5.
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Hence,
O(e) if n=3,

/ |V ge(z)|*dx =/ IVy(y)*dy + O(e?log(L)) if n=4,
“ R O@E™2) if n> 5.

Next, we have

/an(x)%de/ g(y) ™2 dy + O(e),

and

2% 1 2\—(n—s) .
/ gE(J;Z; de — &_s/ (1+ |y| ) . b(z0 +€y)2 dy = O(ES).
o |z B0,z) |wo+eyl

Therefore,

t? n—2)Atnz o
Qs’*(tgs) = 5/ |Vg(y)|2dy - %/ g(y) n—2 dy
Rr n N
—(n—s O(e) if n=3,
L e . ) ifn=3
€ ) 20 + ey|° P(xo +ey)” dy + O(elog(z)) if n=4,
PO ’ O(e"2) if n > 5.

Elementary calculus gives

t2 -2 )\t"QTn n 1 —-n I
max (5/ IVg(y)Pdy — (712#/ g(y)%dy> — —\TTSE
R~ n n

t>0

To sum up,

if either (i) n =3 and 0 < s <1l or (ii) n > 4 and 0 < s < 2. This completes the proof. O

We need the following lemma in the proof of Theorem 1.2.

Lemma 2.5. Suppose that € is a bounded domain in R™ with 0 € 9Q, A > 0, 9Q € C3 at 0, H(0) < 0
and 1 < p < =25. Then there exists a nonnegative function vo € H} () \ {0} such that ¥y ,(vg) < 0
and

1 1 =2
olg?% Vs p(tvo) < <§ - 2—*> ns(RY)>=2,

where

1 A 1 (ut)?
Wy p(u) = /Q <§|Vu|2 + m(u+)p+1 T Tl dx  for u € HH Q).

Proof. As in the proof of Lemma 2.1, we use the entire solution u € Hj(R") of the equation (2.2),
and define 9. € H§(2) by (2.4). Then from the estimates (2.15), we obtain for ¢ > 0,

ot e APl 2 [
ws,P(tUE) S E/Q |VU€| dx + p+ 1 /Q’Uép dr — o /Q |;|Sd$
2
<35 (1s(R}) — K1H(0)e + K2H(0)e + O(e?))
AP e ooy / n(pt1) 2 2*K;
+ gz Tz uPtdy +O(e™ 2 ——<1——H05+052>. 2.25

13



It is easy to see that for each small € > 0, there exists ¢y > 0 such that W ,(to0.) < 0. Moreover, let
tm be the maximum point of the right-hand side of (2.25) in (0,tg). Then as in the same way to the
proof of Lemma 2.1, we can find the expression of t,, by

1 -
ﬁﬂs(Ri)_%KzH(O)e +0(£?)

2

A *— 2} n n—2)p n n—2)p

+ g a(RY) T /R iy H I O I o (2
+

1 _2'-s
b = s (RE) T + S pa, ()™ 573 Ky H(0)= +

_1 1 _2r-3 1 _2*-3 n (n—2)
= s (RY) T 4 5 (RY) 5 K H(0)e 4 g s (RY) 52 K H(0) + O™ 77 7), (226)

where note that 1 < p < -2 implies 242 — @ <2 < min{%2 — @ +1,n+2—(n—2)p}.
By substituting (2.26) into (2.25), we eventually get

. 1 1 2 1 2 nt2 _ (n—2)p
g ipt00) < (5 - 5 ) e (B 4 L (R RH0)e + 05~ 25)

1 1 2%
P S]R” -2,
< <2 2*>H (RY)

which is possible since H(0) < 0 and "T” — @ —1>0,ie, p < "5 Thus Lemma 2.5 is

proved. O

3 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1 by applying Lemma 2.1 and the mountain pass lemma
of the following type:

Theorem C. Let & be a C'-function on a Banach space E. Assume that there exist an open set
0e€U C E and p € R such that

{ b(u) > p  for all uw e U, (3.1)

P(0) <p, D) <p forsome v#U.

Set
. E ? >

where P denotes the class of continuous paths joining 0 to v. Then there exists a sequence {u;j} C E
such that

(P(uj) — G

P (uj) — 0 in E*.

Remark. Suppose v; € Hj(Q) with @ .(v;) < 0 for i = 1,2, where & , is as defined in Lemma 2.3.
Then @, . (tv;) < 0 for t > 1, and P . (tv;) — —o0 as t — oo. Hence, there exists a continuous path
v(n) € HL(Q) with v(0) = vy, v(1) = v2 and D .(v(n)) < 0. Therefore, if we take

¢:= inf max®, . (w) >0, (3.2)
PeP weP

then ¢ is independent of the choice of v as long as @ .(v) < 0.
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Proof of the Subcritical Case for Theorem 1.1. In what follows, take E = H}(f2) in Theorem C
and check the condition (3.1). By the Sobolev inequality and the Sobolev-Hardy inequality, we have

1 2 . o
f +)p+1d < )\1(9)||vu||L2(Q) if p = ]_,
Q(u L= p+1 .
OHVUHLZ(Q) it p>1,

o

u+ E
Jo Ut—da < C|[Vu|Za g

Thus we see that
_ Lo 2 P N
2up(w) = [ (3190 - ey - L Yo

(1-225) - CIVulZd) itp=1,
~ C||Vulbzig, — CIVul i;;g)) if p>1.

> || Va2 x

[ NI ST

Noting that 1 — ﬁ > 0, ie., A < A () in the case p = 1, and taking U := B, (0) with small
ro > 0, we have
D p(u) > p>0 forall uedQ,

where
2% —2 .
bie 2 %(1—%)—07’0 ) if p=1,
ra % — C’ré)_l — Crg*_2) if p>1.

By Lemma 2.1, there exists a nonnegative function vg € H{(£2) \ {0} such that

o*

1 1
sup @ ,(tvg) < <— - —> us(Q)77 =2
t>0

and set v =: tovp, where tg > 0 is chosen large enough so that v ¢ U and &, ,(v) < 0. Here, note that

1 1 2%
< = 1 < -~ . T . M
p<ci= inf maxd,p(w) < sup P p(tv) < <2 2*> s (§2) 2 (3.3)

Since @ ,(0) = 0, by applying Theorem C, there exists a sequence {u;} C H}(£2) such that
Dy p(uj) — ¢ and &, ,(u;) >0 in HHQ), ie,

1 2 A pptr L (uj)z _
/Q (2 |V, P (u) > o dx = c+o0(1), (3.4)
and
(u-}-)z*—l

—Auj — /\(u;r)p -t

:¢; with ¢ —0 in HH(Q). (3.5)

We show the boundedness of {u;}. Multiplying (3.5) by u;, we obtain

+

o
/S; <|V’U,J|2 _ /\(u;‘)l"“l _ %) dr =< Cj,’u]' >, (36)

and (3.4)—3 (3.6) yields that

1 1 11 H¥ 1
/Q(/\ <§—m> (Uj_)p—H‘F <§—2—*> %) dx=C+0(1)—§ <§j,uj >



1
<c+o(l) + §||Cj||H—1(Q)||Uj||Hg(Q) <C (1 + ||Uj||Hg(Q)> . (3.7)

By (3.4) and (3.7), we have
i gy < € (1 luslmycon )

which implies [|u;]|g1(q) < C. Then extracting a subsequence, still denoted by u;, we see

u; — u  weakly in Hj (),

uj —ut  strongly in LPT1(Q),
N

u] wt . 2

P N E weakly in L* (Q).

Thus passing to the limit in (3.5) yields that
Au+ X (u)P +

and then from the maximum principle, we obtain u > 0 in Q.

+y2*
Finally, we shall prove u # 0 in H}(€2), and suppose u = 0 in Q. Since [, |Vu;[*dz and [, %dw
are both bounded, we may assume
. 2 . (uf)*
lim / |Vuj|“de =: Cy and  lim / dx =: Cs.
i—oo Jg i—oo Jo o |z|®
Thus passing to the limit in (3.4) and (3.6), we get
¢, C
71—2—*220 and C] —Cy=0,
and then we have ) )
=|(=-—-—=)C. 3.8
¢ <2 2*> ! (3:8)
Here, we see that
x = ( +)2 =
Juy|? - Y
V| ?de > ps(Q) < dr) > pus(Q) de |
/ ! |z[* o l|zl°
and then , -
C1 > ps(Q)CF, de, O > pus(Q)T. (3.9)
By (3.8) and (3.9), we have
1 1 =
c> <§ _ 2_*> ,us(Q) 2*272_ (3.10)
Thus combining (3.3) with (3.10) yields
1 1 * 1 1 *
(53 me@r= <o< (5 mter =,
which is a contradiction. Thus v # 0 in Hg (). O

16



Proof of the Critical Case for Theorem 1.1. We now consider the case that p = ”+2 . We divide
the proof into two steps.

Step 1. By Lemma 2.4, there exists a nonnegative function vg € H}(Q)\{0} with @ .(vo) < 0 such
that

I{laX@s «({tvg) < )\ "7

Hence, it is easy to see there exists g9 > 0 such that @sy*(tvo) < 0 and

1 —n n
max &, (tvg) < —ATESE for 0< e < e,
0<t<1 n

where

Lo o A4, 1 (ut)? - )
ey [ (L _ . f HY(Q
@5 . (u) /Q <2|Vu| . (u™) G ¢ aF )dx or u € Hy(Q),

and
2n 2e

pg::n—2_2—3'

Note that @9 , = &, ..
Taking e¢ small such that p., —2 > 0 and 2* — 2 — gy > 0, by the Sobolev-Hardy inequality,

1 A 1 u? ¢
@E — = 2__ +\Npe _ 0 d
o) = [ GV = Sty = et e
1 -
31Vl ~ IVl ~ CIuli,

\/

- ||Vu||L2(Q)( = ClIVullfz gy — C||W||:2§?§)_€)v

where the constant C' > 0 is independent of . Therefore, there exist g > 0 and pg > 0 such that

1 _ X
D5 . (u) > Té(g —Crf? —Crg _2_E> =1 pe>po>0
for any u € 0B,,(0), where B, (0) = {u € Hj(Q)|[|VullL2(q) < ro}. It is obvious that vy ¢ By, (0).
Hence, we obtain

n
2

1 2-n
< ¢ := inf L < 45 13 -Az S
Po 5 € B N () S o B le) <SS

where P denotes the class of continuous paths in Hg (£2) joining 0 to vg.

Since &% ,(0) = 0, by applying Theorem C, there exists a double sequence {uc ;} C Hj(Q) such
that
S (uej) — ce and  (DF,) (ue;) — 0 in H'(Q), ie,

1 A 1 (ul)*
/Q (5|VU5J|2 — p—a(uj’j)ps — —= Vdx =c. +o(1), (3.11)

2 —¢  |x|®

and

=:(,; with {; =0 in H Q) asj—oo.  (3.12)
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Applying (3.12) on u. j, we get

(u+~)2*_€
/Q (|Vug7j|2 — /\(u::j)ps — Ei]xT)dl' =< CE,jqu,j > (3'13)

Similar to the subcritical case, for 0 < e < gq with eq small, we get the uniform boundedness of {u. ;},
[tte il 12 () < C- (3.14)

Hereafter, we assume € > 0. Then, up to a subsequence, there exists a function u. € H}(2) such that
as j — o0,

ue,j — ue  weakly in H}(Q),

ul; —ud  strongly in LP<(Q),
us,g e strongly in L? _E(Q)'
|z|27F == |z| 2% —<

We claim that ut # 0 in H}(Q2). Suppose, on the contrary, u} = 0 in H}(Q). Then passing to the
limit j — oo in (3.11) and (3.13) yields that

1
Ce = —/ |Vu5|2dx:0,
2 Ja

which contradicts to ¢ > pg > 0. Thus, u # 0 in H&(Q). Hence, taking the limit j — oo in (3.12),
we see that
(u+)2*—1—s
13

Aue + A (uf)Pet 52— =0 in Q. (3.15)

By the maximum principle, we find that u. > 0 in Q. Inferring from (3.11) and (3.15), this positive
solution wu. satisfies

2% —
2 o | Vue|*de — ﬁ Jo ubede — —2*1*—5 Jo —“jmls “dz = c.,

5 2 e (3.16)
Jo IVuelPdz — X [ ubedz — [o, “fm—dz = 0.
Note that by (3.14), we have
vl 1) < C-
Thus, by extracting a subsequence {u; := wu,}jen with ; — 0 as j — oo, there exists a function

u € HE(Q) such that

u; —u weakly in H}(S),
ul —ut  weakly in L+3(Q),

uj ut . 2*
L— —~ Y weakly in L? (Q).
|oo] 27 |[ 27

Now, passing to the limit in (3.15) yields that

+y2°—1
n u
Au+ A (u+)"_irg + (Cad i
By the maximum principle, we see that v > 0 in €. Therefore, u satisfies
2" 1

Autrurz+ 2 —0 Q.

N
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The rest part of the proof is to show u # 0 in Hg (). Assume u = 0 in HJ(£2). Then the blow-up
occurs, i.e.,
mj = uj(z;) = mgxuj(:c) — 00 as j — oo.

Otherwise, by (3.16) and the Lebesgue theorem, we have

1
0= lim = [ |Vu;j*dz = co,
2 Ja

J—00

which contradicts to cg > 0.

We consider the scaling
vi(y) = mj_luj(xj +kjy) for y e ;= {z € R"‘xj +kjz € Q},

pj—2

where kj =m; 7 and p; = 25 — 24 By (3.15), v; satisfies
2% —1—¢;
Avj—l—)\vz.)j_l—kvjx, : =0 in Q;
J 2y 7 (3.17)
v; =0 on 00;.

Let Qo = lim Q;. We distinguish into the following cases.

J—o0

Case 1. If, up to a subsequence, i—jl — 00, then v;(y) converges to some v(y) uniformly in every

compact subset of Q,, where v(y) € Ha (o) with v(0) = 1 is the solution of the equation

Av—l—)\v%zo in Q,
v=0 on 9.

It is well-known that the above equation is only solvable for 2, = R™. We easily see that

no2y.
Cy:= lim [ |Vu;|?de = m§.2‘5 Jei lim |Vv;|2dy > / |Vol2dy =: Ay,
i—eo Jo i—oo Jo, R"
. 2 (225)e5 . 2y / 2
Co:=lim [ u!?dz=m;>"""" lim v dy > vr—2dy =: Asg,
2T e g I j = Jg, - Y 2 (3.18)
u? nosy.. v?
Cs:= lim | —l-dx= mE)% lim —dy.
- EE J oo T s
j—oo Jo |2 J o |5+l
Furthermore, note that
C —2)A C
71—%02—2—;”‘:%, C1—ACy—C35=0, and A; =\A,. (3.19)

By (3.18) and (3.19), we have

11 1 n-2 11 1 n-2 A
= _— — _— > _— — _— = — .
o <2 2*)01+A<2* o >02— <2 2*>A1+A<2* n >A2 e

On the other hand, by the Sobolev inequality, we see that

S, a7 < Ay
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This leads to

Hence,

which contradicts to

1 2—n n
cp < max Dy . (tvg) < =Xz 52,
0 > 0<t<1 s,*( O) n n

Case 2. If, up to a subsequence, z—’ — Yo € R”, then Q is a half space. Therefore, up to a linear
7

transformation, v; converges to some v uniformly in any compact set of R’ , where v is a positive
solution of the equation

nt2 2% -1 .
Av+ Avn—2 + Uly_\s =0 in Ri, (320)
v=0 on JRY}

with v(yo) = 1 for some yo € R%}. If the equation (3.20) has no positive solution, this leads to a
contradiction. Hence, the sequence u;(z) does not blow-up.

Step 2. However, if the equation (3.20) admits a positive solution, by Lemma 2.3 and Lemma 2.4,
there exists a nonnegative function vy € H}(Q)\{0} with &; .(vg) < 0 such that

1l 22n n
b, . in {er, ~A* s ]
I?Zag; s, (tvg) < min 4 ¢*, n)\ S2

Redoing Step 1, since the min-max value ¢g is independent of the choice of vy, we only need to deal
with Case 2, see Remark after Theorem C. Let
_2n_
vr-2dy and Bs= /

B = / Vo(y)Pdy. Ba— /
R7™ R R7™

n
+ + +

o
lyl

Noting that
Ci1> By, Cy>B; (32> Bs,

Ci—XC0y—C3=0, B;—ABy— B3=0,
_ G (n=2)A 1

we see that

A 1 1 A 1 1 B —2)A 1
COZ—CQ+ 5 5% C3Z—Bz+ - — — B3:—1—MB2——*33:C*.
n 2 2 n 2 2n 2

This contradicts to ¢ < Jnax &, . (tvg) < ¢*. Hence, we have proved u # 0 in Hg (). The positivity

of u is achieved by the strgn?g maximum principle. The proof is complete. 0

4 Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. However, since H(0) < 0 implies us(£2) < ps(R7),
we cannot apply Lemma 2.5 according to the argument of Theorem 1.1 to show the existence of a
solution for the equation (1.3).
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Proof of Theorem 1.2. For any small £ > 0, we let

1 A 1 (ut)? -
e ()= | [ 21V +Hyptl - f Hy (9
() /Q<2|Vu| o) M de for v e HY(@),

where !ng =Y, . By A > 0 and the Sobolev-Hardy inequality, we see that

. 1
Wy ,(u) = §||VU||%2(Q) —C|Vu

S,P

*_ 1 .o
2 = IVl (5 - CIVul% ).
where C' > 0 is independent of € > 0. Then there exist positive constants r and p such that
e (u) > r? <§ - C’rz*_2_5> =:1p.>p>0 (4.1)

for all u € 9B,.(0). On the other hand, by Lemma 2.5, there exists a nonnegative function vy €
H(2) \ {0} such that ¥ (vo) <0 and

1

1 2%
0 n\s*_—5
0<ic1 Vapltvo) < <§ a 2_*> Ha(RE)7 (42)

By (4.1), (4.2) and the continuity of ¥ , at ¢ = 0, we see that ¥g ,(vo) < 0 and

1 1 2%
< = 1 € < 3 [ ) F— X
0<p<ece Igrel% max v, (w) < Jax we,(t) < <2 2*> ps(R7 )72 (4.3)

for any small e > 0. Since ¥ ,(0) = 0, by applying Theorem C, there exists a sequence {u. ;} C Hg(€2)
such that

Vs (uej) — c. and (!Ps‘fp)’(ug,j) —0 in HYQ) as j—oo0, ie,

1 1 ’LL: 2" —¢
/ <§|VU5’J‘|2 + pL(uj.)f"Jrl - L) dz =c. +o(l) as j— oo, (4.4)
Q

+1° %7 2 —e  |xf®
and
( +.)2 —1—¢
—Aue j + )\(u;’:j)p - E’J|x|s =:(.; with (¢; —0 in H'(Q) as j— o0. (4.5)
Multiplying (4.5) by ue ; , we obtain
(u+~)2 —e
/Q (|Vu€,j|2 + )\(u:j)zﬂrl — €|Ja:—|s de =< (e j,uej > . (4.6)

We show the boundedness of {u.;} in H} (). (4.4) — 1(4.6) yields that

1 1 1 1 (uf)? 1
AN — — = + \yp+1 - €,] dr = 1) == .
A( Qw& 2>Ww) M TR e

< O+ |luejll g2 @)

and then we have

(ul;)* —* AMp— 12" —¢)
€, < + \p+1 . . )
L S e g ) e O sl @D
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where C' > 0 can be taken independently of j € N and € > 0. Then by (4.4) and (4.7), we have

1 9 A p—1 / 4
= ; < - 1- N Ptig 1 ;
2||Vue,y||L2(Q) S TorI < 5 5 5) Q(Us,g) T+ C(L+ [lue | g1 (e))

< O+ |lue,jllmp @) (4.8)

where we used that 1 — 2*17——_21—5 > 0 for any small ¢ > 0 by virtue of 1 — 2’1__12 > 0,ie,p<2"—1.
(4.8) implies
el 20y < C, (4.9)

where C' > 0 is independent of j € N and also € > 0.

Hereafter, we take ¢ > 0. Extracting a subsequence, still denoted by u. ;, we see that

ue; — ue  weakly in H}(Q),

uf; —uf  strongly in LPT(€), (4.10)
T + *
Yeg ., U strongly in L2 (1)
BN

as j — 0o. Then by passing to the limit j — oo in (4.5), we get
—Aue + X (u)? — w)” —7° =

and then by the maximum principle, we obtain ue > 0 in €.

It is easy to see that ue # 0 in H}(2). As a consequence, for any small ¢ > 0, we get a positive
solution u. € H(Q) satisfying

Au. —duP + 2 —. (4.11)

Next, for € > 0, passing to the limit j — oo in (4.4) and multiplying (4.11) by u. yield that

2* —¢
%fQWuEFdw—i—zﬁfng“dx— 2*—1—an ulzm?dwzce, (4.12)
2% —¢ .
Jo IVucPde + X [ ufttdz — [, ulTsdx =0.

Moreover, by taking a limit j — oo in (4.9), we have
uell 20 < C,

where C' > 0 is independent of ¢ > 0. Thus by extracting a subsequence {u; := u,} with e; — 0 as
j — 00, we get

u; —u  weakly in H} (),

u; — u  strongly in LPT1(Q),

U~ U weakly in L2 ().

lz[27 2|27

Thus passing to the limit j — oo in (4.11) yields that

2% 1
Au—)\up—i—u =0.

E
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We shall prove u # 0 in Hg (). Suppose u = 0 in HJ(£2). Up to a subsequence, we let

:
2

u
Cy:= lim [ |Vuj|?dz and Cp:= lim k dz,
j— Jo I—=7Ja |x|s

and then letting j — oo in (4.12), we get

C C! . 1 1
71 — 2—3 =cg and C;—Cy =0, ie., <§ — §> Ch = cp. (4.13)

We easily see that u;(z;) = MaXUj — 00 a8 j — oo. In what follows, we divide the proof into
three steps. We let

2(2* —2—¢;)
kj = uj(x;)” TDE=D, (4.14)

Step 1. We claim |z;| = O(k;) as j — oo.

Suppose that up to a subsequence, lim M = 00. By scaling, set
j—oo K
uj(x; + K5 Y)
vi(y) = L1122 for y €y, (4.15)
! u;j () !
where
Qi ={y eR"|z; + Ky € Q}. (4.16)

By (4.11) and (4.14), v; satisfies
e J
Av; — Ak2uj(z;) P oP + (';—J) Y =0 in
j G Wil\Ty j ER 1—W_;ly J
v; =0 on 00;.
Furthermore, we have

2- 2@ A1)
2. Np—1 _ F—2-¢; .
K5 ui(2) P = Ky —0 as j— oo,

where note that x; — 0 and 2 — (=2p=1) 0,ie,p< Z—i‘g Thus v; converges to some v smoothly
in any compact set, and v satisfies v(0) = 1 and

Av=0 in R" (4.17)
provided that Q; — R", or

{ Av =0 in some half space H, (4.18)

v=0 on O0H

provided that up to a linear transformation Q; — H := {y € R" |y, > —a} for some ¢ > 0. On the
other hand, we have

2 T )
/ vf’z dy = K; J / uj’f’2 dx < C,
Q; Q

and then fRn v%dy is finite. This contradicts to v(0) = 1. The proof of Step 1 is complete.
Note that Step 1 implies that the origin is the only blow-up point.
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Step 2. We claim that up to a subsequence, :_j —yo # 0 as j — oo.
Suppose that i—’ — 0 as j — oo. As in the proof of Step 1, we define v; and €; in (4.15) and
(4.16), respectively. Then by (4.11), v; satisfies

N2y ()P lpP S
Avj — A5 uj(zi) P o] + 15

v; =0 on 09;.

Sinﬁ we already proved that Ii? uj(z;) r=l 0, v; converges to some v smoothly in any compact set
in R?, and v satisfies

2% —1 .

Av + U‘y—‘s =0 in Ri,
v=0 on JORY,

which is a contradiction to v(0) = 1. Thus Step 2 is proved.

Step 3. We complete the proof of Theorem 1.2 in this step. We note after a linear transformation,

v; converges to some v smoothly in any compact set in R}, and v satisfies

2% —1 .
Av + v|y—\5 =0 in R:‘_,

v=0 on JR} and wv(y)= max v = 1 for some yq € RY}. (4.19)
+
By (4.19), we have
2o
fRi [Vul2dy w2’ 2" N
e E e pr®) e ED
o L n
(. 770) '
and then -
[ 9oy = [y (420)
R? R |
Furthermore, note that
_ (n—2)sz-
Cy = lim / |Vu;?dz = lim K; T / |Vv;|2dy > lim / |Vv;|2dy 2/ |Vol?dy.  (4.21)
Then by (4.13), (4.20) and (4.21), we have
1 1 1 1 L
= <§ - 2—*> @= <§ - 2—*> s (R ™2,
which yields a contradiction to (4.3). Thus u # 0 in H(2), and Theorem 1.2 is proved. O

5 Proof of Theorem 1.3

In order to prove Theorem 1.3, we first prove the following lemma.

Lemma 5.1. Let Q be a bounded domain in R™ withn > 3,0 € 9Q and 0 < s < 2. Then for p = 22

n—27
the equation (1.2) has no positive solution provided that Q is star-shaped with respect to the origin.
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Proof. Multiplying (1.2) by - Vu and Vu, respectively, and taking integrations, we obtain

1 ou\? n—2 n—2 on u?
— z-v)| — | dS; + /Vuzdx=—</\/umd:c+/—dx>,
2 /zm( ) <3V> 2 Q| | 2 Q o lzl®
2n UQ*
/|Vu|2dx=)\/umdx+/ —dx,
Q Q o lzl®

where v denotes the outward normal to 0€2. Thus we derive the following Pohozaev identity

[ (2 a0

Since € is star-shaped with respect to the origin, we deduce that g—"‘; = 0 on 092. Hence,

win w2 -1
/\/u"—de—F/ 5 dr = — Audz = 0,
Q o |7 Q

which implies © = 0 in €.

O

Next, we take @ = Bj(e,), the unit ball centered at e, = (0,---,1). It is obvious that Q is
star-shaped about the origin. Proceeding the same variational method as that in the proof for the
assertion (iv) of Theorem 1.1, due to the nonexistence of a positive solution for the equation (1.2),

Case 2 holds. Therefore, we get a positive solution of the equation (1.4). This proves Theorem 1.3.

References

[1] H.Brézis and L.Nirenberg, Positive solutions of nonlinear elliptic equations involving critical

Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no.4, 437-477.

[2] H.Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc. 330 (1992),

no.1, 191-201.

[3] N.Ghoussoub and F.Robert, Concentration estimates for Emden-Fowler equations with boundary

singularities and critical growth. IMRP Int. Math. Res. Pap. 21867 (2006), 1-85.

[4] N.Ghoussoub and F.Robert, The effect of curvature on the best constant in the Hardy-Sobolev

inequalities, Geom. Funct. Anal. 16 (2006), no.6, 1201-1245.

[5] C.S.Lin and H.Wadade, Minimizing problems for the Hardy-Sobolev type inequality
with the singularity on the boundary, preprint.

25



