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Abstract

In this paper we will give an overview concerning properties of composition oper‐

ators T_{f}(g) :=f og in the framework of Besov‐Lizorkin‐Triebel spaces. Boundedness

and continuity will be discussed in a certain detail. In addition we also give a list of

open problems.
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1 Introduction

Let E denote a normed space of functions. Composition operators T_{f} : g\mapsto f\circ g, g\in E ,
are

simple examples of nonlinear mappings. It is a little bit surprising that the knowledge about

these operators is rather limited. One reason is, of course, that the properties of T_{f} strongly

depend on f and E . Here in this paper we are concerned with E being either a Besov or a

Lizorkin‐Triebel space (for definitions of these classes we refer to the appendix at the end

of this article). These scales of spaces generalize Sobolev spaces W_{p}^{m}(\mathbb{R}^{n}) ,
Bessel potential

spaces H_{p}^{s}(\mathbb{R}^{n}) , Slobodeckij spaces W_{p}^{s}(\mathbb{R}^{n}) as well as Hölder spaces C^{s}(\mathbb{R}^{n}) in view of the

identities

\bullet W_{p}^{m}(\mathbb{R}^{n})=F_{p,2}^{m}(\mathbb{R}^{n}) , 1<p<\infty, m\in \mathbb{N} ;

\bullet H_{p}^{s}(\mathbb{R}^{n})=F_{p,2}^{s}(\mathbb{R}^{n}) , 1<p<\infty, s\in \mathbb{R} ;
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\bullet W_{p}^{s}(\mathbb{R}^{n})=F_{p,p}^{s}(\mathbb{R}^{n})=B_{p,p}^{s}(\mathbb{R}^{n}) , 1\leq p<\infty, s>0, s\not\in \mathbb{N} ;

\bullet C^{s}(\mathbb{R}^{n})=B_{\infty,\infty}^{s}(\mathbb{R}^{n}) , s>0, s\not\in \mathbb{N}.

In our opinion there is a very interesting interplay between integrability and regularity

properties of f, g and of the composition f\circ g . It is our aim to describe this in detail

and to give a survey on the state of the art. Many times we will not give proofs but discuss

illustrating examples. The theory is far from being complete. However we believe that a

discussion of these operators in spaces of fractional order of smoothness s>0 is appropriate
and leads to a better understanding of the various phenomenons which occur.

Convention: If there is no need for a distinction between Lizorkin‐Triebel spaces and Besov

spaces we will simply write E_{p,q}^{s}(\mathbb{R}^{n}) instead of F_{p,q}^{s}(\mathbb{R}^{n}) and B_{p,q}^{s}(\mathbb{R}^{n}) , respectively. In the

same spirit, E_{p,q}^{s}(\mathbb{R}^{n}) can denote W_{p}^{s}(\mathbb{R}^{n}) in case s\in \mathbb{N} and p=1 or +\infty , although those

spaces are not Lizorkin‐Triebel nor Besov spaces.

An illustrating example

Let us have a look at the following boundary value problem:

\triangle u(x)+f(u(x)) = h(x) , x\in $\Omega$,

u = 0, x\in\partial $\Omega$.

Here  $\Omega$ is an open and bounded subset of \mathbb{R}^{n} with smooth boundary. Let L denote the

solution operator for the Dirichlet problem for the Laplacian with respect to  $\Omega$ . Then our

boundary value problem can be reformulated as a fixed point problem

 u=L(h-f(u)) . (1)

By \mathring{E}_{p,q}^{s}( $\Omega$) we denote the collection of all functions in Ep, q( $\Omega$) having vanishing boundary
values (this makes sense if s>1/p). Since L : E_{p,q}^{s-2}( $\Omega$)\rightarrow\mathring{E}_{p,q}^{s}( $\Omega$) is an isomorphism a

discussion of (1) requires

T_{f}(E_{p,q}^{s}( $\Omega$))\subset E_{p,q}^{s-2}( $\Omega$)
including some estimates which relate the norms \Vert T_{f}(u)\Vert_{E_{p,q}^{s-2}( $\Omega$)} and \Vert u\Vert_{E_{p,q}^{s}( $\Omega$)}.

Remark 1 There are many papers dealing with problems as in our illustrating example.
We refer e.g. to [28], [34], [49], where boundedness and continuity of composition operators

are treated in connection with the Schrödinger equation.
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The main problem

From a little bit more abstract point of view the above example indicates that we have to

study the following problem.

Problem 1:

Suppose E_{p_{0}^{0},q_{0}}^{s,\ell oc}(\mathbb{R}^{n})\subset E_{p_{1}^{1},q_{1}}^{s,\ell oc}(\mathbb{R}^{n}) . Find necessary and sufficient conditions on f:\mathbb{R}\rightarrow \mathbb{R}
s.t.

T_{f}(E_{p_{0},q_{0}}^{s_{0}}(\mathbb{R}^{n}))\subset E_{p_{1},q_{1}}^{s_{1}}(\mathbb{R}^{n}) .

Remark 2 (i) For a given space of functions E on \mathbb{R}^{n}
,

the associated space E^{\ell oc} is the

collection of all functions g s.t. u g\in E ,
for all u\in \mathcal{D}(\mathbb{R}^{n}) .

(ii) Our assumption E_{p_{0}^{0},q_{0}}^{s,\ell oc}(\mathbb{R}^{n})\subset E_{p_{1}^{1},q_{1}}^{s,\ell oc}(\mathbb{R}^{n}) indicates that there is no hope for an increase

of the local regularity of the whole set T_{f}(E_{p_{0}^{0},q_{0}}^{s}(\mathbb{R}^{n})) .

(iii) The theory of the operators T_{f} ,
as we know it at this moment, does not depend very

much on the underlying domain  $\Omega$ . So we discuss  T_{f} on function spaces defined on \mathbb{R}^{n}.

(iv) Of course, it would make sense to replace T_{f} by more general mappings like

N(g_{1}, \ldots, g_{d})(x):=f(x, g_{1}(x), \ldots, g_{d}(x)) , x\in \mathbb{R}^{n},

where f : \mathbb{R}^{n+d}\rightarrow \mathbb{R} . In this generality these mappings N are called Nemytskij operators.

Much less is known for these general mappings. In our survey only very few remarks will be

made concerning this general situation.

There are hundred�s of references dealing with Problem 1 and its generalizations. However,

only in very few cases, e.g. if f(t) :=t^{m}, m\in \mathbb{N} ,
one knows the final answer. We will add a

few remarks later on. For the moment we will turn to a simplified problem.

Problem 2:

Find necessary and sufficient conditions on f:\mathbb{R}\rightarrow \mathbb{R} s.t.

T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset E_{p,q}^{s}(\mathbb{R}^{n}) . (2)

We will call the property (2) the acting property. In applications one needs more than the

acting condition. In general one also needs boundedness and continuity. This justifies to

consider the following modified problems.
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Problem 2�:

Find necessary and sufficient conditions on f:\mathbb{R}\rightarrow \mathbb{R} s.t.

T_{f} : E_{p,q}^{s}(\mathbb{R}^{n})\rightarrow E_{p,q}^{s}(\mathbb{R}^{n})

is bounded.

Remark 3 (i) Generally speaking, a mapping T of a metric space E to itself is said to be

bounded if T(A) is bounded for all bounded set A\subset E.

(ii) Coming back to our illustrating example it makes sense to ask for optimal inequalities

describing the boundedness of T_{f} . We will take care of this problem as well in our survey.

(iii) We do not know whether Problems 2 and 2� have the same solution. Indeed, we do not

have a counterexample in the framework of composition operators showing that the acting
condition can occur without boundedness. Furthermore, let us mention that it is classically
known that the acting condition implies at least a weak form of boundedness, see e.g. [39,
pp. 275‐276], [55, Lem. 5.2.4, 5.3.1/1] and [14, Section 4.2].
(iv) If we slightly generalize the class of operators by considering N(g)(x) :=f(x, g(x)) ,  x\in

\mathbb{R}^{n}
,

i.e. Nemytskij operators, then it is well‐known that acting conditions and boundedness

conditions may be different. For simplicity we only consider n=1 and \mathbb{R} replaced by [0 ,
1 ].

Then the classical example is given by

f_{s}(x, u):=\left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} u\leq x^{s/2},\\
\frac{1}{u^{2/s}}-\frac{x}{u^{4/s}} & \mathrm{i}\mathrm{f} u>x^{s/2},
\end{array}\right.
where 0<s<1 . The associated Nemytskij operator maps B_{\infty,\infty}^{s}[0 ,

1 ] into itself, but is not

bounded. We refer to [5].

Problem 2�:

Find necessary and sufficient conditions on f:\mathbb{R}\rightarrow \mathbb{R} s.t.

T_{f} : E_{p,q}^{s}(\mathbb{R}^{n})\rightarrow E_{p,q}^{s}(\mathbb{R}^{n})

is continuous.

Remark 4 Problem 2 (Problem 2�) and Problem 2� have different answers in general.
Below we will show that for some Lizorkin‐Triebel spaces there exist noncontinuous bounded

composition operators, see Corollary 1.

4



In our opinion also the following problem is of interest.

Problem 3:

Characterize all function spaces E
,

where the following assertions are equivalent

\bullet  T_{f}(E)\subset E,

\bullet  T_{f} : E\rightarrow E is bounded,

\bullet  T_{f} : E\rightarrow E is continuous,

whatever be f : \mathbb{R}\rightarrow \mathbb{R}.

At the end of our paper, see Section 7, we will give a list of spaces for which the acting

property is equivalent to the boundedness and to the continuity. We will also produce a

negative list, it means, we will collect also those spaces, for which such equivalences do not

hold.

Both authors have written surveys with respect to this topic in earlier times, see [11], [55,
Chapt. 5] and [15]. To increase the readibility of this survey we allow some overlap with

those articles. However, we mainly concentrate on the progress since 1995. In addition, \mathrm{a}

number of open problems is formulated within this text.

This survey is organized as follows. After the Introduction we collect a number of necessary

conditions for the acting property to hold. This will make the splitting in the discussion of

sufficient conditions more transparent. We start with this discussion in Section 3 by con‐

centrating on Sobolev spaces. In Section 4 we will discuss the case of fractional order of

smoothness. The results of this section motivate to study composition operators on intersec‐

tions which we will do in Section 5. Some generalizations to the vector‐valued situation are

considered in Section 6 (but here we concentrate on Sobolev spaces). As mentioned above,
there will be a section devoted to Problem 3, namely Section 7. In the very short final section

we make some concluding remarks.

Notation

As usual, \mathbb{N} denotes the natural numbers, \mathbb{Z} the integers and \mathbb{R} the real numbers. If E

and F are two Banach spaces, then the symbol E\mapsto F indicates that the embedding is

continuous. The symbol c denotes a positive constant which depends only on the fixed

parameters n, s, p, q and probably on auxiliary functions, unless otherwise stated; its value

may vary from line to line. Sometimes we will use the symbols
((

\sim<
� and (

(\sim>
� instead
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of ((

\leq and (

(\geq , respectively. The meaning of  A\sim<B is given by: there exists a constant

c>0 such that A\leq cB . Similarly \sim> is defined. The symbol A_{\wedge}\vee B will be used as an

abbreviation of A\sim<B\sim<A.

We denote by C_{b}^{m}(\mathbb{R}^{n}) the Banach space of functions on \mathbb{R}^{n} which are continuous and

bounded, together with their derivatives up to order m
,

and by C_{ub}(\mathbb{R}^{n}) the Banach space

of bounded and uniformly continuous functions on \mathbb{R}^{n} . The classical Sobolev spaces are

denoted by W_{p}^{m}(\mathbb{R}^{n}) ,
and their homogeneous counterparts by \dot{W}_{p}^{m}(\mathbb{R}^{n}) ,

for m\in \mathbb{N} and

 1\leq p\leq\infty . Inhomogeneous Besov and Lizorkin‐Triebel spaces are denoted by  B_{p,q}^{s}(\mathbb{R}^{n})
and F_{p,q}^{s}(\mathbb{R}^{n}) , respectively. We use the notation \dot{F}_{p,q}^{s}(\mathbb{R}^{n}) and \dot{B}_{p,q}^{s}(\mathbb{R}^{n}) for the homogeneous
Lizorkin‐Triebel and Besov spaces. For their definition, we refer to Section 9. General

information about these function spaces, as well as the Wiener classes BV_{p} ,
can be found

e.g. in [55, 63, 64] (F_{p,q}^{s}(\mathbb{R}^{n})) , [33, 37, 63] (\dot{F}_{p,q}^{s}(\mathbb{R}^{n})) ,
and [20, 21, 67] (BVp). Let us mention

that we exclude the spaces F_{\infty,q}^{s}(\mathbb{R}^{n}) ,
even in case when we write E_{p,q}^{s}(\mathbb{R}^{n}) , 1\leq p, q\leq\infty.

If an equivalence class [f] ,
for the a.e. equality, contains a continuous representative, then

we call the class continuous and speak of values of f at any point (by taking the values of

the continuous representative).
If f is a function defined on \mathbb{R}^{n}

,
and if h\in \mathbb{R}^{n} ,

we put \triangle_{h}f(x) :=f(x+h)-f(x) . Throughout
the paper  $\psi$\in \mathcal{D}(\mathbb{R}^{n}) denotes a specific cut‐off function, i.e.,  $\psi$(x)=1 if |x|\leq 1 and  $\psi$(x)=0
if |x|\geq 3/2.

2 Necessary conditions

We begin with a collection of necessary conditions for the acting property. They are all

found essentially before 1990. However, they give a good idea concerning the expectable
solution of Problem 2.

Proposition 1 Let s>0 . Let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function. The acting

property T_{f}(\mathcal{D}(\mathbb{R}^{n}))\subset E_{p,q}^{s}(\mathbb{R}^{n}) implies f\in E_{p,q}^{s,\ell oc}(\mathbb{R}) .

The proof follows easily by testing T_{f} on functions u\in \mathcal{D}(\mathbb{R}^{n}) such that u(x)=x_{1} on some

ball of \mathbb{R}^{n}
,

see e.g. [4, Thm. 3.5] or [55, Thm. 5.3.1/2].

Proposition 2 Let s>0 . Let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function.

(i) The acting property T_{f}(E_{p,q}^{s}\cap L_{\infty}(\mathbb{R}^{n}))\subset B_{p,\infty}^{s}(\mathbb{R}^{n}) implies f\in W_{\infty}^{1,\ell oc}(\mathbb{R}) .

(ii) In case E_{p,q}^{s}(\mathbb{R}^{n})\not\subset L_{\infty}(\mathbb{R}^{n}) ,
the acting property T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset B_{p,\infty}^{s}(\mathbb{R}^{n}) implies  f\in

\dot{W}_{\infty}^{1}(\mathbb{R}) .
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Remark 5 (i) The necessity of (local) Lipschitz continuity for the acting condition in the

framework of function spaces with fractional order of smoothness has been observed for the

first time by Igari [36] (p=q=2,0<s<1, s\neq 1/2) . Then the result has been extended to

Besov and Lizorkin‐Triebel spaces by the first named author and some co‐authors. We refer

to [12] for more detailed references and for the proof of Prop. 2. Let us also mention the

recent publication [4, Thm. 3.1 and 3.2], where a proof in a more general context is given.

(ii) Observe that E_{p,q}^{s}(\mathbb{R}^{n})\mapsto B_{p,\infty}^{s}(\mathbb{R}^{n}) . Hence, the Nikol�skij‐Besov space B_{p,\infty}^{s}(\mathbb{R}^{n}) is the

largest space within the family E_{p,q}^{s}(\mathbb{R}^{n}) .

Proposition 3 Suppose 1+1/p<s<n/p . Then the acting property  T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset
 B_{p,\infty}^{s}(\mathbb{R}^{n}) implies f(t)=ct for some constant c.

The phenomenon described in Proposition 3 is well known since Dahlberg [30] had published
his short note in 1979. He had proved that the implication T_{f}(W_{p}^{m}(\mathbb{R}^{n}))\subset W_{p}^{m}(\mathbb{R}^{n}) requires

f(t)=ct for some constant c . Extensions to Besov and Triebel‐Lizorkin spaces have been

given by Bourdaud [8, 11]. Extensions to values p, q<1 can be found in Runst [54] and

in [59]. Runst has also been the first who had investigated implications of  T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset
 B_{p,\infty}^{s}(\mathbb{R}^{n}) . A proof of Prop. 3 can be also found in [55, 5.3.1] and [4, Thm. 3.3].
As many times in the theory of Besov‐Lizorkin‐Triebel spaces in limiting situations the third

index q has some influence.

Proposition 4 Suppose 1+1/p=s<n/p.
(i) Let q>1 . Then the acting property T_{f}(B_{p,q}^{s}(\mathbb{R}^{n}))\subset B_{p,q}^{s}(\mathbb{R}^{n}) implies f(t)=ct for some

constant c.

(ii) Let p>1 . Then the acting property T_{f}(F_{p,q}^{s}(\mathbb{R}^{n}))\subset F_{p,q}^{s}(\mathbb{R}^{n}) implies f(t)=ct for some

constant c.

This has been proved by the first named author in [10] and [11], see also [55, Lem. 5.3.1/2] and

[4, Thm. 3.3]. The existence of nontrivial composition operators on B_{p,1}^{1+(1/p)}(\mathbb{R}^{n}) , n>p+1,
and on F_{1,q}^{2}(\mathbb{R}^{n}) , n>2 ,

is an open problem.

Remark 6 The degeneracy is connected to the existence of unbounded functions in

E_{p,q}^{s}(\mathbb{R}^{n}) . Instead, if we consider E_{p,q}^{s}\cap L_{\infty}(\mathbb{R}^{n}) ,
the Dahlberg phenomenon disappears.

Indeed E_{p,q}^{s}\cap L_{\infty}(\mathbb{R}^{n}) is known to be a Banach algebra for the pointwise product. Hence,
all entire functions, vanishing at 0 ,

act on it. For this problem, we refer also to Section 5.

Remark 7 Notice that the embedding W_{\infty}^{1,\ell oc}(\mathbb{R})\mapsto E_{p,q}^{s,\ell oc}(\mathbb{R}) holds if 0<s<1 ,
while the

reverse embedding holds for s>1+(1/p) . In view of the four preceding propositions, the

values s=1, s=1+(1/p) and s=n/p appear as the critical ones for Problem 2.
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3 Sobolev spaces

For an easier reading of the paper we first discuss Problems 2, 2�, 2� for Sobolev spaces. Ac‐

cording to Remark 3, we present boundedness in the same section than the acting condition.

3.1 The acting condition on Sobolev spaces

In view of Section 2, in particular Remarks 6 and 7, it makes sense to separate the discussion

into the cases

\bullet m=1 ;

\bullet  m\geq 2 and W_{p}^{m}(\mathbb{R}^{n})\mapsto L_{\infty}(\mathbb{R}^{n}) ;

\bullet  m\geq 2 and W_{p}^{m}(\mathbb{R}^{n})\not\subset L_{\infty}(\mathbb{R}^{n}) .

Theorem 1 Suppose  1\leq p\leq\infty . Let  f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function s.t.

f(0)=0 . Then it holds

T_{f}(W_{p}^{1}(\mathbb{R}^{n}))\subset W_{p}^{1}(\mathbb{R}^{n}) \Leftrightarrow \left\{\begin{array}{l}
f'\in L_{\infty}^{\ell oc}(\mathbb{R}) p>n\\
or p=1=n\\
f'\in L_{\infty}(\mathbb{R}) otherwise.
\end{array}\right.
In either case we have

\Vert f\circ g\Vert_{W_{p}^{1}(\mathbb{R}^{n})}\leq\Vert f'\Vert_{L_{\infty}(\mathbb{R})}\Vert g\Vert_{W_{p}^{1}(\mathbb{R}^{n})} . (3)

Remark 8 (i) For a proof we refer to Marcus and Mizel [42], see also [6, Chapt. 9].
(ii) If f and g are C^{1} functions, and if f(0)=0 ,

then

\displaystyle \int_{\mathbb{R}^{n}}|f(g(x))|^{p}dx = \displaystyle \int_{\mathbb{R}^{n}}|f(g(x))-f(0)|^{p}dx\leq\Vert f'\Vert_{L_{\infty}(\mathbb{R})}^{p}\int_{\mathbb{R}^{n}}|g(x)|^{p}dx , (4)

\displaystyle \int_{\mathbb{R}^{n}}|f'(g(x))\frac{\partial g}{\partial x_{i}}(x)|^{p}dx \leq \displaystyle \Vert f'\Vert_{L_{\infty}(\mathbb{R})}^{p}\int_{\mathbb{R}^{n}}|\frac{\partial g}{\partial x_{i}}(x)|^{p}dx, i=1
,

. . .

,
n.

Hence, (3) follows under these extra conditions. By (4) also the role of the condition f(0)=0
becomes clear. The extension of these estimates to the general case is more complicated.

Theorem 2 Let m=2
, 3, . . .

,
and let  1\leq p<\infty . We suppose that  W_{p}^{m}(\mathbb{R}^{n})\mapsto L_{\infty}(\mathbb{R}^{n}) .

Let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function s.t. f(0)=0.
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(i) Then the composition operator T_{f} maps W_{p}^{m}(\mathbb{R}^{n}) into itself if, and only if, f\in W_{p}^{m,\ell oc}(\mathbb{R}) .

(ii) For f\in W_{p}^{m,\ell oc}(\mathbb{R}) we have

\Vert f\circ g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}\leq C(f, g)(\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}+\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}^{m}) , (5)

where

C(f, g) := c(\Vert f\Vert_{W_{\infty}^{m-1}(I_{g})}+\Vert f^{(m)}\Vert_{L_{p}(I_{g})})
I_{g} := \{t\in \mathbb{R}:|t|\leq\Vert g\Vert_{L_{\infty}(\mathbb{R}^{n})}\},

and c is independent of f and g.

Remark 9 (i) For a proof we refer to [9], see also [55, 5.2.4].
(ii) The estimate (5) will be typical for the supercritical case, i.e., the case  E_{p,q}^{s}(\mathbb{R}^{n})\mapsto
 L_{\infty}(\mathbb{R}^{n}) . Recall the chain rule

D^{ $\gamma$}(f\displaystyle \circ g)=\sum^{| $\gamma$|}\sum_{|$\alpha$^{i}|\neq 0}c_{ $\gamma$,\ell,$\alpha$^{1},\ldots,$\alpha$^{\ell}}(f^{(\ell)}\circ g)D^{$\alpha$^{1}}g\ell=1_{$\alpha$^{1}+\cdots+$\alpha$^{\ell}= $\gamma$}\ldots D^{$\alpha$^{\ell}}g , (6)

where  $\gamma$:=($\gamma$_{1}, \ldots, $\gamma$_{n}) , $\alpha$^{i}:=($\alpha$_{1}^{i}, \ldots, $\alpha$_{n}^{i}) ,
i=1

,
. . .

,
\ell

,
are multi‐indices and  c_{ $\gamma$,\ell,$\alpha$^{1},\ldots,$\alpha$^{\ell}} are

certain combinatorical constants. Let  $\gamma$=(m, 0, \ldots, 0) . Then the sum on the right‐hand
side contains the terms

(f^{(m)}\displaystyle \mathrm{o}g)(\frac{\partial g}{\partial x_{1}})^{m} and (f�og) \displaystyle \frac{\partial^{m}g}{\partial x_{1}^{m}} .

From this point of view an estimate as given in (5) looks natural.

We need a further class of functions. If E is a normed space of functions on \mathbb{R}^{n}
,

then the

space E_{unif} is the collection of all g\in E^{\ell oc} s.t.

\displaystyle \Vert g\Vert_{E_{unif}}:=\sup_{a\in \mathbb{R}^{n}}\Vert g $\psi$(\cdot-a)\Vert_{E}<\infty,
where  $\psi$ is the cut‐off function from our list of conventions.

Theorem 3 Let  m=2
, 3, . . .

,
and let  1\leq p<\infty . We suppose that  W_{p}^{m}(\mathbb{R}^{n})\not\subset L_{\infty}(\mathbb{R}^{n}) .

Let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function s.t. f(0)=0.
(i) If m=n/p\geq 2 ,

then T_{f}(W_{p}^{m}(\mathbb{R}^{n}))\subset W_{p}^{m}(\mathbb{R}^{n}) holds if, and only if, f'\in W_{p,unif}^{m-1}() .

(ii) Let m=n/p\geq 2 and f'\in W_{p,unif}^{m-1}(\mathbb{R}) . Then

\Vert f\circ g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}\leq C_{f}(\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}+\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}^{m}) (7)
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where

C_{f}:=c(\displaystyle \Vert f\Vert_{W_{\infty}^{1}(\mathbb{R})}+\sup_{a\in \mathbb{R}}(\int_{a}^{a+1}|f^{(m)}(t)|^{p}dt)^{1/p}) (8)

and c is independent of f and g.

(iii) Let either  1<p<\infty and  2\leq m<n/p ,
or p=1 and 3\leq m<n . Then  T_{f}(W_{p}^{m}(\mathbb{R}^{n}))\subset

 W_{p}^{m}(\mathbb{R}^{n}) holds if, and only if, G(t)=ct, t\in \mathbb{R} , for some c\in \mathbb{R}.

(iv) If n\geq 3 ,
then T_{f}(W_{1}^{2}(\mathbb{R}^{n}))\subset W_{1}^{2}(\mathbb{R}^{n}) holds if, and only if, f''\in L_{1}() .

(v) Let f''\in L_{1}(\mathbb{R}) . Then

\Vert f\circ g\Vert_{W_{1}^{2}(\mathbb{R}^{n})}\leq c(\Vert f'\Vert_{L_{\infty}(\mathbb{R})}+\Vert f''\Vert_{L_{1}(\mathbb{R})})\Vert g\Vert_{W_{1}^{2}(\mathbb{R}^{n})} (9)

and c is independent of f and g.

Remark 10 (i) For a proof we refer to [9], see also [55, 5.2.4] and [14]. The crucial idea in the

proofs of Thm. 2 and Thm. 3 (except part (iii)) consists in an integration by parts involving
the norm of the Sobolev space. Part (iii) in Thm. 3 is a particular case of Proposition 3, see

some further comments in Subsection 4.3.

(ii) The class W_{p,unif}^{m}(\mathbb{R}) plays a crucial role in the composition problem, not only in the

critical case m=n/p . This becomes clear if we consider instead of the usual Sobolev space

W_{p}^{m}(\mathbb{R}^{n}) the so‐called Adams‐Frazier space W_{p}^{m}\cap\dot{W}_{mp}^{1}(\mathbb{R}^{n}) ,
see Theorem 25.

We turn back to the problem touched in Remark 9(ii). Here is an improvement of the

estimate (5) in the supercritical case.

Theorem 4 Let m=2
, 3, . . .

,
and let  1\leq p<\infty . We suppose that  W_{p}^{m}(\mathbb{R}^{n})\mapsto L_{\infty}(\mathbb{R}^{n}) .

Let f : \mathbb{R}\rightarrow \mathbb{R} be in W_{p}^{m}(\mathbb{R}) s.t. f(0)=0 . Then there exists a constant c s.t.

\Vert f\circ g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}\leq c\Vert f\Vert_{W_{p}^{m}(\mathbb{R})}(\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}+\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}^{m-1/p}) . (10)

Here c is independent of f and g\in W_{p}^{m}(\mathbb{R}^{n}) .

Remark 11 A proof of (10) has been given in [14]. The exponent m-1/p is the optimal

one, see Proposition 6 in Section 4. However, the result does not extend to all f in W_{p}^{m,\ell oc}(\mathbb{R}) .

A counterexample is given by f(t)=\sin t, t\in \mathbb{R} ,
see [14].

3.2 Continuity of composition operators on Sobolev spaces

Theorem 5 (i) Let  1\leq p<\infty . Every composition operator  T_{f} ,
which maps W_{p}^{1}(\mathbb{R}^{n}) into

itself� is continuous.

(ii) Let 1<p<\infty, m\in \mathbb{N} and m>n/p . Then every composition operator T_{f} ,
which maps

W_{p}^{m}(\mathbb{R}^{n}) into itself� is continuous.
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Proof We concentrate on (ii). Under the given restrictions we have W_{p}^{m}(\mathbb{R}^{n})=F_{p,2}^{m}(\mathbb{R}^{n})
in the sense of equivalent norms. From Thm. 2 we derive the equivalence of the acting
condition T_{f}(W_{p}^{m}(\mathbb{R}^{n}))\subset W_{p}^{m}(\mathbb{R}^{n}) and f\in W_{p}^{m,\ell oc}(\mathbb{R}) , f(0)=0 . Furthermore, the bound‐

edness of T_{f} follows from the estimate (5). In this situation we can apply Proposition 7, see

paragraph 4.2.3, and obtain that T_{f} must be continuous as well.

Remark 12 Part (i) is a famous result of Marcus and Mizel [43]. Part (ii) seems to be a

novelty.

4 Spaces of fractional order of smoothness

According to Section 2, it makes sense to separate the discussion into the cases

\bullet 0<s<1 ;

\bullet 1<s<1+1/p ;

\bullet 1+1/p<s<n/p ;

\bullet \displaystyle \max(1+1/p, n/p)<s.

4.1 The case of low smoothness

In case 0<s<1 ,
the only known necessary condition, see Remark 7, turns out to be also

sufficient.

Theorem 6 Let 1\leq p,  q\leq\infty and  0<s<1 . Let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable

function s.t. f(0)=0.
(i) The following assertions are equivalent:

(a) T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset E_{p,q}^{s}(\mathbb{R}^{n}) ;

(b) T_{f}:E_{p,q}^{s}(\mathbb{R}^{n})\rightarrow E_{p,q}^{s}() is bounded;

(c) Either f'\in L_{\infty}(\mathbb{R}) if E_{p,q}^{s}(\mathbb{R}^{n})\not\subset L_{\infty}(\mathbb{R}^{n}) or f'\in L_{\infty}^{\ell oc}(\mathbb{R}) if E_{p,q}^{s}(\mathbb{R}^{n})\mapsto L_{\infty}(\mathbb{R}^{n}) .

(ii) Let f' be as in (c) . Then

\Vert f\circ g\Vert_{E_{p,q}^{s}(\mathbb{R}^{n})}\leq\Vert f'\Vert_{L_{\infty}(I_{g})}\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R}^{n})}

holds for all g\in E_{p,q}^{s}(\mathbb{R}^{n}) and I_{g} is defined as in Thm. 2.

11



Proof The space E_{p,q}^{s}(\mathbb{R}^{n}) is defined by first order differences, see Definition 2 in Section

9. For those differences we have the obvious inequality |\triangle_{h}(f\circ g)|\leq\Vert f'\Vert_{\infty}|\triangle_{h}g| . For the

estimate of the L_{p}‐term we refer to (4). Both inequalities together prove (ii) and at the

same time the implications (c)\Rightarrow(b) , (a) . The nontrivial implication (\mathrm{a})\Rightarrow(\mathrm{c}) follows by

Proposition 2. \blacksquare

By using real interpolation for Lipschitz‐continuous operators, see [52], one can add conti‐

nuity to the list in part (i) of the theorem.

Theorem 7 Let  1\leq p,  q<\infty and  0<s<1 . Let f : \mathbb{R}\rightarrow \mathbb{R} be a continuous function
s.t. f(0)=0 and either f'\in L_{\infty}(\mathbb{R}) if B_{p,q}^{s}(\mathbb{R}^{n})\not\subset L_{\infty}(\mathbb{R}^{n}) or f'\in L_{\infty}^{\ell oc}(\mathbb{R}) if  B_{p,q}^{s}(\mathbb{R}^{n})\mapsto
 L_{\infty}(\mathbb{R}^{n}) . Then T_{f} : B_{p,q}^{s}(\mathbb{R}^{n})\rightarrow B_{p,q}^{s}(\mathbb{R}^{n}) is continuous.

The proof in [55, Thm. 5.5.2/3] uses the real interpolation formula

(L_{p}(\mathbb{R}^{n}), W_{p}^{1}(\mathbb{R}^{n}))_{s,q}=B_{p,q}^{s}(\mathbb{R}^{n}) , 0<s<1, 1\leq q\leq\infty,
in connection with a result of Maligranda [41] concerning the continuity of a nonlinear

operator T with respect to real interpolation, see [55, Sect. 2.5].

4.2 The case of high smoothness

In view of the results presented in Section 2, there is a natural conjecture.

Conjecture 1 Let s>1+(1/p) . The composition operator T_{f} ,
associated to a Borel

measurable function f : \mathbb{R}\rightarrow \mathbb{R}
, maps Ep, q^{\cap L_{\infty}(\mathbb{R}^{n})} to Ep, q(\mathbb{R}^{n}) if, and only if, f\in E_{p,q}^{s,\ell oc}(\mathbb{R})

and f(0)=0.

The validity of the above Conjecture is known in case of Sobolev spaces (recall W_{p}^{m}(\mathbb{R}^{n})=
F_{p,2}^{m}(\mathbb{R}^{n}) , 1<p<\infty, m\in \mathbb{N}) ,

see Thm. 1 and [14, Thm. 2]. For n=1
,

it is also valid for

any Lizorkin‐Triebel space and for some Besov spaces, see Subsection 4.2.1. The extension

to dimensions n>1 is an open question.

4.2.1 The acting condition in the one‐dimensional situation

To begin with we deal with a simplified situation where we give a sketch of the proof.

However, the used arguments are also typical for the more general results which will be

mentioned below.
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We need some more classes of functions. For a function g : \mathbb{R}\rightarrow \mathbb{R}
,

we denote by \Vert g\Vert_{BV_{p}} the

supremum of numbers

(\displaystyle \sum_{k=1}^{N}|g(b_{k})-g(a_{k})|^{p})^{1/p},
taken over all finite sets {] a_{k}, b_{k}[ ; k=1

,
. . .

,
N } of pairwise disjoint open intervals. \mathrm{A}

function g is said to be of bounded p ‐variation if \Vert g\Vert_{BV_{p}}<+\infty . The collection of all such

functions is called the Wiener class and denoted by  BV_{p} . We refer to [20, 21, 67] for a

discussion of these classes. Their importance in the composition problem is related to the

Peetre�s embedding

B_{p,1}^{1/p}(\mathbb{R})\mapsto BV_{p}(\mathbb{R}) , (11)

see e.g. [53] and [20, Thm. 5].

Proposition 5 Let 1\leq p<\infty,  p\leq q\leq\infty and  1+1/p<s<2 . Let f'\in B_{p,q}^{s-1}(\mathbb{R}) s.t.

f(0)=0 . Then there exists a constant c>0 such that the inequality

\Vert f\circ g\Vert_{B_{p,q}^{s}(\mathbb{R})}\leq c\Vert f'\Vert_{B_{p,q}^{s-1}(\mathbb{R})}(\Vert g\Vert_{B_{p,q}^{s}(\mathbb{R})}+\Vert g'\Vert_{BV_{sp-1}}^{s-(1/p)}) (12)

holds for all real analytic functions g in B_{p,q}^{s}(\mathbb{R}) .

Remark 13 By (11) and by assumption s>1+(1/p) ,
a weaker version of (12) is given by

\Vert f\circ g\Vert_{B_{p,q}^{s}(\mathbb{R})}\leq c\Vert f'\Vert_{B_{p,q}^{s-1}(\mathbb{R})}(\Vert g\Vert_{B_{p,q}^{s}(\mathbb{R})}+\Vert g'\Vert_{B_{p}^{s\frac{(}{q},1}(\mathbb{R})}^{s-1/p)}) . (13)

Proof Because of

B_{p,q}^{s-1}(\displaystyle \mathbb{R})\mapsto B_{\infty,\infty}^{s-1-1/p}(\mathbb{R})\mapsto C_{ub}^{s'}(\mathbb{R})\mapsto L_{\infty}(\mathbb{R}) , 0<s'<s-1-\frac{1}{p},
the function f' is a continuous. Hence we may apply the chain rule and obtain

(f\circ g)'=(f'\circ g)g'

in the pointwise sense. Furthermore, we will use that

\Vert u\Vert_{B_{p,q}^{s}(\mathbb{R})^{\vee}}\wedge\Vert u\Vert_{L_{p}(\mathbb{R})}+\Vert u'\Vert_{B_{p,q}^{s-1}(\mathbb{R})} (14)

for all distribution u if s>0 ,
see [63, 2.3.8].

Step 1. Since the estimate of the L_{p}‐term is as in (4), we only have to deal with the

homogeneous part of the Besov norm. For brevity we put

$\omega$_{p}(f, h):=(\displaystyle \int_{\mathbb{R}}|\triangle_{h}f(x)|^{p}dx)^{1/p}, h\in \mathbb{R}
13



Using (14) we have to estimate

(\displaystyle \int_{-1}^{1}(\frac{$\omega$_{p}((f\circ g)',h)}{|h|^{s-1}})^{q}\frac{dh}{|h|})^{1/q} .

Since

$\omega$_{p}((f'\circ g)g', h)\leq\Vert f'\Vert_{\infty}$\omega$_{p}(g', h)+U(h) ,

where

U(h) :=(\displaystyle \int_{\mathbb{R}}|\triangle_{h}(f'\circ g)(x)|^{p}|g'(x)|^{p}dx)^{1/p},
we are reduced to prove that

(\displaystyle \int_{-1}^{1}(\frac{U(h)}{|h|^{s-1}})^{q}\frac{dh}{|h|})^{1/q}
can be estimated by the right‐hand side of (12).
Step 2. Without loss of generality we may assume h>0 . The set of zeros of g' is discrete,
and its complement in \mathbb{R} is the union of a family (I_{l})_{l} of nonempty open disjoint intervals.

For any h>0 we denote by I_{l}' the (possibly empty) set of x\in I_{l} whose distance to the right

endpoint of I_{l} is greater than h
,

and we set

I_{l}'':=I_{l}\displaystyle \backslash I_{l}', a_{l}:=\sup_{I_{l}}|g'|.
By g_{l} we mean the restriction of g to I_{l} ,

hence a strictly monotone smooth function. If

 I_{l}'\neq\emptyset ,
then we have

|g(g_{l}^{-1}(y)+h)-y|\leq a_{l}h for y\in g_{l}(I_{l}') , (15)

where g_{l}^{-1} denotes the inverse function of g_{l}.

Substep 2.1. Let

$\Omega$_{p}(f, t):=(\displaystyle \int_{\mathbb{R}}\sup_{|h|\leq t}|\triangle_{h}f(x)|^{p}dx)^{1/p}, t>0 . (16)

By (15) and by a change of variable we find

\displaystyle \int_{I_{l}'}|\triangle_{h}(f'\circ g)(x)|^{p}|g'(x)|^{p}dx\leq a_{l}^{p-1}$\Omega$_{p}^{p}(f', a_{l}h) . (17)

By the Minkowski inequality w.r. \mathrm{t}. L_{q/p} ,
and by Proposition 8 in Section 9, we obtain
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(\displaystyle \int_{0}^{\infty}(\frac{1}{h(s-1)p} \sum_{l}a_{l}^{p-1}$\Omega$_{p}^{p}(f', a_{l}h))^{q/p}\frac{dh}{h})^{1/q}

\displaystyle \leq (\sum_{l}(\int_{0}^{\infty}(\frac{1}{h^{p(s-1)}}a_{l}^{p-1}$\Omega$_{p}^{p}(f', a_{l}h))^{q/p}\frac{dh}{h})^{p/q})^{1/p}
= (\displaystyle \sum_{l}a_{l}^{p-1+p(s-1)})^{1/p}(\int_{0}^{\infty}(\frac{$\Omega$_{p}(f',t)}{t^{s-1}})^{q}\frac{dt}{t})^{1/q}
\displaystyle \leq c\Vert f'\Vert_{B_{p,q}^{s-1}(\mathbb{R})}(\sum_{l}(\sup_{I_{l}}|g'|)^{sp-1})^{1/p}

Now we follow [20, proof of Thm. 7]. By definition, the function g' vanishes at the endpoints
of I_{l} . Let $\beta$_{l} be one of these endpoints. Furthermore, there is at least one point $\xi$_{l}\in I_{l} such

that

|g'($\xi$_{l})|=\displaystyle \sup_{I_{l}}|g'|.
Hence

\displaystyle \sum_{l}\sup_{I_{l}}|g'|^{sp-1}=\sum_{l}|g'($\xi$_{l})-g'($\beta$_{l})|^{sp-1}\leq\Vert g'\Vert_{BV_{sp-1}}^{sp-1}
By (17), we conclude that

(\displaystyle \int_{0}^{\infty}(\frac{1}{h^{(s-1)p}}\sum_{l} Ií |\displaystyle \triangle_{h}(f'\mathrm{o}g)(x)|^{p}|g'(x)|^{p}dx)^{q/p}\frac{dh}{h})^{1/q}
\leq c\Vert f'\Vert_{B_{p,q}^{s-1}(\mathbb{R})}\Vert g'\Vert_{BV_{sp-1}}^{s-(1/p)} . (18)

Substep 2.2. Since g' vanishes at the right endpoint of I_{l} it holds

|g'(x)|\displaystyle \leq\sup_{|v|\leq h}|g'(x)-g'(x+v)|
for all x\in I_{l} Thus we obtain

\displaystyle \sum_{l}\int_{I_{l}''}|\triangle_{h}(f'\circ g)(x)|^{p}|g'(x)|^{p}dx\leq(2\Vert f'\Vert_{\infty})^{p}$\Omega$_{p}(g', h)^{p} . (19)

By Proposition 8, we conclude that

(\displaystyle \int_{0}^{\infty}(\frac{1}{h(s-1)p}\sum_{l} Ií�
|\displaystyle \triangle_{h}(f'\mathrm{o}g)(x)|^{p}|g'(x)|^{p}dx)^{q/p}\frac{dh}{h})^{1/q}

\leq c\Vert f'\Vert_{\infty}\Vert g\Vert_{B_{p,q}^{s}(\mathbb{R})} . (20)
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Putting (4), (17), (18) and (20) together we obtain (12). The proof is complete. \blacksquare

To derive the acting property with respect to  B_{p,q}^{s}(\mathbb{R}) one uses a specific density argument

(to get rid of the restriction to real analytic g ), the Fatou property, see, e.g., [22] and [32].
To obtain the acting property for B_{p,q}^{s}(\mathbb{R}) for higher values of s, m+1/p<s<m+1,
m\geq 2 ,

one can use an induction argument in combination with

\Vert u\Vert_{B_{p,q}^{s}(\mathbb{R})^{\vee}}\wedge\Vert u\Vert_{L_{p}(\mathbb{R})}+\Vert u^{(m)}\Vert_{B_{p\overline{},q}^{sm}(\mathbb{R})} (21)

if s>0 ,
see [63, 2.3.8]. However, to get an optimal inequality for those values of s and to

deal with m\leq s\leq m+1/p, m\geq 2 ,
more effort is needed. To describe this we have to

introduce a further space of functions. Since from now on we do not give proofs and the

arguments in the Lizorkin‐Triebel case are similar (however, a bit more sophisticated) we

turn to the general notation. The outcome is the following, see [23], [24], [25] and [48] for

all details.

Theorem 8 Let 1<p<\infty,  1\leq q\leq\infty (p\leq q if E=B) ,
and s>1+(1/p) . The

composition operator T_{f} ,
associated to a Borel measurable function f : \mathbb{R}\rightarrow \mathbb{R}

,
acts on

Ep, q(\mathbb{R}) if, and only if, f(0)=0 and f\in E_{p,q}^{s,\ell oc}(\mathbb{R}) .

Remark 14 We believe that the restriction p\leq q in the B‐case is connected with the

method of proof but not with the problem itself.

Acting property and boundedness are equivalent in this situation. To describe this, we use

the smooth cut‐off function  $\psi$ and define  $\psi$_{t}(x) := $\psi$(x/t) , t>0 . We denote by \mathrm{E}_{p,q}s(\mathbb{R}) the

space of all functions in L_{\infty}(\mathbb{R}) which belong to the homogeneous Besov‐Lizorkin‐Triebel

space \dot{E}_{p,q}^{s}(\mathbb{R}) ,
and endow it with the natural norm

\Vert f\Vert_{\mathrm{E}_{p^{s},q}(\mathbb{R})}:=\Vert f\Vert_{E_{p,q}^{s}(\mathbb{R})}+\Vert f\Vert_{L_{\infty}(\mathbb{R})}.
Theorem 9 Let 1<p<\infty,  1\leq q\leq\infty (p\leq q if E=B) ,

and s>1+(1/p) .

(i) Let f\in E_{p,q}^{s,\ell oc}(\mathbb{R}) and f(0)=0 . Then there exists a constant c>0 such that the inequality

\Vert f\circ g\Vert_{E_{p,q}^{s}(\mathbb{R})}\leq c\Vert(f$\psi$_{\Vert g\Vert_{L_{\infty}(\mathrm{R})}})'\Vert_{\mathcal{E}_{p,q}^{s-1}(\mathbb{R})}(\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R})}+\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R})}^{s-(1/p)}) (22)

holds for all such functions f and all g\in E_{p,q}^{s}(\mathbb{R}) .

(ii) There exists a constant c>0 such that the inequality

\Vert f\circ g\Vert_{E_{p,q}^{s}(\mathbb{R})}\leq c\Vert f\Vert_{E_{p,q}^{s}(\mathbb{R})}(\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R})}+\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R})}^{s-(1/p)}) (23)

holds for all functions f\in E_{p,q}^{s}(\mathbb{R}) , f(0)=0 ,
and all functions g\in E_{p,q}^{s}(\mathbb{R}) .
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4.2.2 Optimal inequalities (I)

We would like to discuss the quality of the estimate (23). However, for doing that there is

no need to concentrate on n=1 . The following simple arguments work for any n.

Proposition 6 Let 1\leq p,  q\leq\infty and  s>1+1/p . Let h : [0, \infty[\rightarrow[0, \infty[ be a nondecreasing

function satisfy ing h(x)=o(x^{s-(1/p)}) for  x\rightarrow+\infty . Let  N be any semi‐norm on \mathcal{D}(\mathbb{R}^{n}) . If

f is a continuous function such that, for some constant c>0 ,
the inequality

\Vert f\circ g\Vert_{B_{p,\infty}^{s}(\mathbb{R}^{n})}\leq c(N(g)+h(N(g))) (24)

holds for all g\in \mathcal{D}(\mathbb{R}^{n}) ,
then f is a polynomial of degree \leq s.

Proof We take the natural number m\geq 1 such that m-1\leq s<m . Let  $\varphi$ be a function

in \mathcal{D}(\mathbb{R}^{n}) s.t.  $\varphi$(x)=x_{1} for all x\in[-1, 1]^{n} . Then it holds (f\circ a $\varphi$)(x)=f(aX) for all

x\in[-1, 1]^{n} and all a>0 . Hence

\triangle_{te_{1}}^{m}(f\circ a $\varphi$)(x)=\triangle_{at}^{m}f (ax1), \forall x\in[-1/2, 1/2]^{n}, \forall t\in[0, 1/2m], \forall a>0.

Using this identity and (24), we deduce

(\displaystyle \int_{-a/2}^{a/2}|\triangle_{t}^{m}f(x)|^{p}dx)^{1/p}\leq ct^{s}(a^{(1/p)+1-s}N( $\varphi$)+h(aN( $\varphi$))a^{(1/p)-s})
for all  t\in ]  0

, 1] and a>2m . By taking a to +\infty ,
and by applying the assumption on  h

,
we

deduce

\triangle_{t}^{m}f(x)=0 \mathrm{a}.\mathrm{e} .
, \forall t\in]0 ,

1].

Then by a standard argument, we deduce that f is a polynomial of degree at most m-1.

Remark 15 Proposition 6 yields that the exponent s-1/p in (13), (22), and (23) is optimal.
It also implies the optimality of the estimate (10).

4.2.3 Continuity of composition operators in the one‐dimensional situation

There is a general continuity theorem in [18, Cor. 2] which can be applied for all n
,

if

Conjecture 1 is valid.

Proposition 7 Let s>1+1/p . If Conjecture 1 is valid for E_{p,q}^{s}(\mathbb{R}^{n}) ,
then a composition

operator T_{f} is continuous if, and only if, f(0)=0 and f belongs to the closure of the smooth

functions in E_{p,q}^{s,\ell oc}(\mathbb{R}) .
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In consequence of Thm. 8 and this proposition we immediately get the following.

Corollary 1 Let  1<p<\infty and  s>1+(1/p) . Let f : \mathbb{R}\rightarrow \mathbb{R} be Borel measurable.

(i) Let 1\leq q<\infty(p\leq q if E=B) . Then the following assertions are equivalent :

\bullet  T_{f} satisfies the acting condition T_{f}(E_{p,q}^{s}(\mathbb{R}))\subset E_{p,q}^{s}(\mathbb{R}) .

\bullet  T_{f} is a bounded mapping of E_{p,q}^{s}(\mathbb{R}) to itself.

\bullet  T_{f}:E_{p,q}^{s}(\mathbb{R})\rightarrow E_{p,q}^{s}(\mathbb{R}) is continuous.

\bullet  f\in E_{p,q}^{s,\ell oc}(\mathbb{R}) and f(0)=0.

(ii) The following assertions are equivalent:

\bullet  T_{f} satisfies the acting condition T_{f}(E_{p,\infty}^{s}(\mathbb{R}))\subset E_{p,\infty}^{s}(\mathbb{R}) .

\bullet  T_{f} is a bounded mapping of E_{p,\infty}^{s}(\mathbb{R}) to itself.

\bullet  f\in E_{p,\infty}^{s,\ell oc}(\mathbb{R}) and f(0)=0.

(iii) There exist functions f in E_{p,\infty}^{s}(\mathbb{R}) , f(0)=0 ,
such that T_{f} : E_{p,\infty}^{s}(\mathbb{R})\rightarrow E_{p,\infty}^{s}(\mathbb{R}) is not

continuous.

4.2.4 Acting conditions in the general n‐dimensional situation

In dimension n>1 , Conjecture 1 has not been proved up to now. We give here two sufficient

acting conditions. In the first one, we try to approach the minimal assumptions on f . In the

second one, we obtain an optimal estimate, but with stronger regularity assumptions on f.

Theorem 10 Let 1\leq p\leq\infty, 1\leq q\leq\infty, \displaystyle \max(n/p, 1)<s< $\mu$ . We suppose  f\in C^{ $\mu$}(\mathbb{R})
and f(0)=0 . Then T_{f} maps E_{p,q}^{s}(\mathbb{R}^{n}) into E_{p,q}^{s}(\mathbb{R}^{n}) .

Remark 16 (i) Of course, we have C^{ $\mu$}(\mathbb{R})\subset E_{p,q}^{s,\ell oc}(\mathbb{R}) . For a proof of Thm. 10 we refer to

[55, Sect. 5.3.6, Thm. 2].
(ii) Let E=B . Under some extra conditions on s

,
it is proved in [13] that one can replace

C^{ $\mu$}(\mathbb{R}) by B_{p,q}^{s+ $\epsilon$,\ell oc}(\mathbb{R}) with  $\epsilon$>0 arbitrary.

Theorem 11 Let 1\leq p\leq\infty, 1\leq q\leq\infty, m\in \mathbb{N} and \displaystyle \max(m, n/p)<s<m+1 . We

suppose f\in C^{m+1}() and f(0)=0 . Then there exists a constant c s.t.

\Vert f\circ g\Vert_{E_{p,q}^{s}(\mathbb{R}^{n})}\leq c\Vert f\Vert_{C_{b}^{m+1}(\mathbb{R})}(\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R}^{n})}+\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R}^{n})}^{s}) (25)

holds for all such f and all g\in E_{p,q}^{s}(\mathbb{R}^{n}) .
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Proof The theorem has been proved essentially in [55, 5.3.7, Thm. 1 and 2]. Only one

further remark is needed. Because of s>\displaystyle \max(1, n/p) we have

s-\displaystyle \frac{n}{p}=s(1-\frac{n}{ps})>1-\frac{n}{ps}
and therefore, the continuous embeddings

B_{p,q}^{s}(\mathbb{R}^{n})\mapsto B_{ps,v}^{1}(\mathbb{R}^{n}) and F_{p,q}^{s}(\mathbb{R}^{n})\mapsto F_{ps,v}^{1}(\mathbb{R}^{n}) (26)

for arbitrary  v\in ]  0, \infty]. \blacksquare

Remark 17 (i) Probably the exponent  s in (25) can be improved to s-1/p under additional

assumptions on f ,
see Proposition 6 and Thm. 4.

(ii) The estimation of the norm of \Vert f\circ g\Vert in Theorem 11 is better than in Theorem 10. In

the detailed statement of Theorem 10, the norm \Vert f\circ g\Vert is controlled by \Vert g\Vert^{ $\mu$} instead of \Vert g\Vert^{s}
for \Vert g\Vert\geq 1.
(iii) Both theorems have a long list of forerunners. Let us mention at least a few: Moser

1960 (Sobolev spaces) [47], Mizohata 1965 (Bessel potential spaces with p=2 ) [46] ,
Peetre

1970 (Besov spaces, nonlinear interpolation) [52], Adams 1976 (Bessel potential spaces) [1],
Meyer 1981 (Bessel potential spaces) [45], Runst 1986 (Besov‐Lizorkin‐Triebel spaces) [54],
Adams & Frazier 1992 (Bessel potential spaces) [2, 3].

4.3 The intermediate case (I)

We consider the case 1+1/p<s<n/p . By Proposition 3, the composition operator

necessarily lowers the regularity. The study of T_{f} for f(t) :=\sin t, t\in \mathbb{R} ,
is particularly

enlightening in this respect. Let us define

g_{ $\alpha$}(x)= $\psi$(x)|x|^{- $\alpha$}, x\in \mathbb{R}^{n},  $\alpha$>0 . (27)

Then it is well known (and not very complicated to prove) that in case s>0

g_{ $\alpha$}\displaystyle \in F_{p,q}^{s}(\mathbb{R}^{n}) \Leftrightarrow 0< $\alpha$<\frac{n}{p}-s (28)

and

g_{ $\alpha$}\in B_{p,q}^{s}(\mathbb{R}^{n}) \Leftrightarrow either  0< $\alpha$<\displaystyle \frac{n}{p}-s or  $\alpha$=\displaystyle \frac{n}{p}-s and  q=\infty (29)
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hold, cf. [55, Lem. 2.3.1/1]. Then

\displaystyle \frac{\partial^{m}}{\partial x_{1}^{m}}\sin(g_{ $\alpha$}(x))\vee\wedge\sin^{(m)}(|x|^{- $\alpha$})(|x|^{- $\alpha$-2}x_{1})^{m}+ lower order terms,

in a certain neighborhood of the origin. Compare this with the m‐th order derivative of the

original function. It turns out that

\displaystyle \frac{\partial^{m}}{\partial x_{1}^{m}}g_{ $\alpha$}(x)\vee\wedge|x|^{- $\alpha$-2m}x_{1}^{m}+ lower order terms (|x|\rightarrow 0) .

Since we have ( $\alpha$+1)m> $\alpha$+m if m\geq 2 this shows that the local singularity of the

composition becomes stronger than the singularity of the original function g_{ $\alpha$}.

Going back to the general situation, a natural question consists in asking for the best possible

image space, hence we turn to Problem 1 for the rest of this subsection. The following strange

number will play a certain role

$\rho$^{*}=$\rho$^{*}(s,p, n):=\displaystyle \frac{\frac{n}{p}+\frac{1}{p}(\frac{n}{p}-s)}{\frac{n}{p}-s+1} . (30)

Theorem 12 Suppose 1+1/p<s<n/p . Let f be a non‐polynomial Borel measurable

function. Then for every r>$\rho$^{*}(s,p, n) there exists a compactly supported function  g_{r}\in

 Ep_{q}() such that the composition f\mathrm{o}g_{r} does not belong to B_{p,\infty}^{r}(\mathbb{R}^{n}) .

Remark 18 (i) A proof in case of smooth f can be found in [58, 59, 55]. However, by the

same arguments one can deal with non‐smooth functions.

(ii) If 1+1/p<s<n/p ,
then 1+1/p<$\rho$^{*}<s . This indicates a certain loss of smoothness.

Whether there exists a nonlinear function f such that T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset B_{p,\infty}^{$\rho$^{*}}(\mathbb{R}^{n}) is still an

open question.

(iii) Also the following observation is of some interest. We study the difference d(s) :=

s-$\rho$^{*}(s,p, n) for fixed n and p(n>p+1) . Obviously, d(1+1/p)=d(n/p)=0 and d(s)>0
if 1+1/p<s<n/p . Moreover, the function d(s) is concave on this interval, hence, it

attains a maximal value d(S) there. We have

s_{0}:=\displaystyle \frac{n}{p}+1-\sqrt{\frac{n-1}{p}} and d(s_{0})=(\displaystyle \sqrt{\frac{n-1}{p}}-1)^{2}+\frac{p-1}{\sqrt{p(n-1)}}
This shows that d(s) has a bound depending on p and n

,
but it does not have an a priori

bound for fixed p and independent of n.
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We will use the following abbreviation:

\displaystyle \Vert f\Vert_{\mathrm{a}_{p}^{r}([-w,w])}:=(\int_{0}^{w}|h|^{-rp-1}\int_{-w}^{w}|\triangle_{h}^{m+1}f(y)|^{p}dydh)^{1/p} (31)

with m\in \mathbb{N} and m+1>r>0 . The notation \Vert f\Vert_{\mathrm{a}_{p}^{r}([-w,w])} reminds on a norm in a

homogeneous Besov space. In some sense it is an incomplete one.

Theorem 13 Suppose T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset E_{p,p}^{r}(\mathbb{R}^{n}) and 0<r\leq s<n/p . Let f\in L_{\infty}(\mathbb{R}) .

Then it follows that

\displaystyle \sup_{w\geq 1}w^{- $\gamma$}\Vert f\Vert_{\mathrm{a}_{p}^{r}([-w,w])}<\infty (32)

for all

 $\gamma$>$\gamma$_{0}(s, n,p, r):=\displaystyle \frac{\frac{n}{p}+\frac{1}{p}(\frac{n}{p}-s)-r(\frac{n}{p}-s+1)}{\frac{n}{p}-s} . (33)

Remark 19 (i) For the proof we refer to [61].
(ii) Let us comment on the condition (33). Fix n and p and consider s\uparrow n/p . Then the

lower bound for  $\gamma$ tends to infinity, which means that the necessary condition (32) becomes

less restrictive. This is connected with the fact that local singularities in spaces with  s\uparrow n/p
become weaker and weaker, cf. (27) and (28). If we fix also s and consider r\downarrow 0 ,

then

the necessary condition (32) becomes again weaker (since the lower bound of  $\gamma$ increases).
Clearly, that corresponds to the fact that the spaces  E_{p,p}^{r}(\mathbb{R}^{n}) become larger. A similar

observation gives a converse result if r\uparrow s.

(iii) A first essential conclusion of Theorem 13 is obtained by observing that \Vert f\Vert_{\dot{a}_{p}^{r}([-w,w])} is a

non‐decreasing function in w . So, whenever f is not a polynomial of low degree, \Vert f\Vert_{\mathrm{a}_{p}^{r}([-w,w])}
is bounded from below by a positive constant. Then Theorem 13 says (in the case that f
is bounded) that $\gamma$_{0}\geq 0 if, and only if, r\leq$\rho$^{*} ,

which also follows from Theorem 3. Hence,
Theorem 13 represents an extension of Theorem 3.

Replacing the space E_{p,p}^{r}(\mathbb{R}^{n})=B_{p,p}^{r}(\mathbb{R}^{n})=F_{p,p}^{r}(\mathbb{R}^{n}) by the Sobolev space W_{p}^{r}(\mathbb{R}^{n}) , r\in \mathbb{N},
we have necessary and sufficient conditions. Let

\mathcal{P}_{m}=\{g : g(t)=\displaystyle \sum_{\ell=0}^{m}a_{\ell}t^{\ell}, a_{\ell}\in \mathbb{R}, \ell=0
,

. . .

, m\}, m\in \mathbb{N},

and

A_{ $\gamma$,p}(f):=\displaystyle \sup_{w\geq 1}w^{- $\gamma$}(\int_{-w}^{w}|f^{(m)}(y)|^{p}dy)^{1/p} , (34)

which replaces (31).
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Theorem 14 Suppose 0\leq r\leq s<n/p . Recall, $\rho$^{*} and $\gamma$_{0} are defined in (30) and (33),
respectively. Let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function if r\geq 1 and a continuous

function if r=0
,

but not an element of \mathcal{P}_{r-1} . Then T_{f}(E_{p,p}^{s}(\mathbb{R}^{n}))\subset W_{p}^{r}(\mathbb{R}^{n}) implies r\leq$\rho$^{*},

f(0)=0, f\in W_{p}^{r,\ell oc}(\mathbb{R}) and A_{$\gamma$_{0},p}(f)<\infty.

Now we turn to the sufficient conditions. We concentrate on r\geq 2 (for r=0,1 we refer to

[60]).

Theorem 15 Suppose 1<p<\infty, 2\leq r\leq s<n/p and define again $\gamma$_{0} by (33). Let

f(0)=0 . If  A_{$\gamma$_{0},p}(f)<\infty ,
then  T_{f}(E_{p,p}^{s}(\mathbb{R}^{n}))\subset W_{p}^{r}(\mathbb{R}^{n}) holds. Moreover, there exists some

constant c such that

\Vert f\circ g\Vert_{W_{p}^{r}(\mathbb{R}^{n})}\leq cA_{$\gamma$_{0},p}(f)(\Vert g\Vert_{E_{p,p}^{s}(\mathbb{R}^{n})}+\Vert g\Vert_{E_{p,p}^{s}(\mathbb{R}^{n})}^{$\gamma$_{0}+r-\frac{1}{p}}) (35)

holds with c independent of f and g.

Remark 20 Both theorems are proved in [60]. However, the used arguments are as in

[30, 8, 11, 54] (Thm. 14) and [9] (Thm. 15).

Various examples are treated in [59, 60, 61]. Here we concentrate on smooth periodic func‐

tions. If f\not\equiv 0 is periodic and smooth, then

\displaystyle \int_{-w}^{w}|f^{(m)}(y)|^{p}dy\wedge\vee w, w\geq 1.
Hence  A_{ $\gamma$,p}(f)<\infty if, and only if,  $\gamma$\geq 1/p . In such a situation Theorems 14 and 15 yield
final results. Here another strange number occurs. Let

 $\rho$= $\rho$(s, n,p):=\displaystyle \frac{}{\frac{n}{p}-s+1}\frac{n}{p} . (36)

Obviously,  $\rho$<$\rho$^{*} if p<\infty.

Corollary 2 Let  1<p<\infty and let  2\leq r\leq s<n/p . Suppose that f is periodic,

f\in C^{\infty}(\mathbb{R}) ,
and f\not\equiv 0 . Then T_{f}(E_{p,p}^{s}(\mathbb{R}^{n}))\subset W_{p}^{r}(\mathbb{R}^{n}) holds if, and only if, f(0)=0 and

r\leq $\rho$.

This has a fractional counterpart, see [55, 5.3.6] and [61].

Theorem 16 Let  1\leq p<\infty and  1<s<n/p . Suppose that f is periodic, f(0)=0,
f\in C^{\infty}(\mathbb{R}) ,

and f\not\equiv 0 . Then the following assertions are equivalent:

(i) T_{f}(F_{p,q}^{s}(\mathbb{R}^{n}))\subset B_{p,\infty}^{r}(\mathbb{R}^{n}) . (ii) T_{f}(F_{p,\infty}^{s}(\mathbb{R}^{n}))\subset F_{p,q}^{r}(\mathbb{R}^{n}) . (iii) r\leq $\rho$.
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In [55, Thm. 5.3.6/3] we have been able also to prove the following associated inequality.

Theorem 17 Let f'\in C^{\infty}(\mathbb{R}) and let f(0)=0 . Suppose 1\leq q,  r\leq\infty and  1<s<n/p.
Let  $\rho$ be as in (36). Then there exists a constant  c such that

\Vert f\circ g\Vert_{F_{p,r}^{ $\rho$}(\mathbb{R}^{n})}\leq c(\Vert g\Vert_{F_{p,q}^{s}(\mathbb{R}^{n})}+\Vert g\Vert_{F_{p,q}^{s}(\mathbb{R}^{n})}^{ $\rho$}) (37)

holds for all g\in F_{p,q}^{s}(\mathbb{R}^{n}) .

Remark 21 The proof of Thm. 17 relies on a specific estimate of products in Lizorkin‐

Triebel spaces, see [55, Thm. 4.6.2/5]. There is also counterpart for Besov spaces but less

satisfactory.

4.4 The intermediate case (II)

Now we assume that 1<s<1+1/p . Since W_{\infty}^{1,\ell oc}(\mathbb{R})\not\subset E_{p,q}^{s,\ell oc}(\mathbb{R}) and E_{p,q}^{s,\ell oc}(\mathbb{R})\not\subset W_{\infty}^{1,\ell oc}(\mathbb{R}) ,

we have two independent necessary acting conditions, but we do not know if these two

conditions are sufficient. Indeed, at this moment we do not have a conjecture how does the

solution of Problem 2 looks like. The best sufficient condition obtained so far is connected

with a new class of functions which has been introduced for the first time by Bourdaud and

Kateb.

We define U_{p}^{1}() as the set of Lipschitz continuous functions f on \mathbb{R} such that

\displaystyle \Vert f'\Vert_{U_{p}}:=\sup_{t>0}t^{-1/p}$\Omega$_{p}(f', t)<+\infty , (38)

see (16) for the definition of $\Omega$_{p}.

Theorem 18 Let  1\leq p<+\infty and  0<s<1+(1/p) . If f\in U_{p}^{1}(\mathbb{R}) and f(0)=0 ,
then

T_{f}(B_{p,q}^{s}(\mathbb{R}^{n}))\subset B_{p,q}^{s}(\mathbb{R}^{n}) . Moreover, the inequality

\Vert f\circ g\Vert_{B_{p,q}^{s}(\mathbb{R}^{n})}\leq c(\Vert f'\Vert_{\infty}+\Vert f'\Vert_{U_{p}})\Vert g\Vert_{B_{p,q}^{s}(\mathbb{R}^{n})}

holds for all g\in B_{p,q}^{s}(\mathbb{R}^{n}) .

Remark 22 (i) A first proof of this theorem was found by Bourdaud and Kateb [16]. For

n=1
,
Kateb [38] improved Theorem 18 by obtaining the acting property under the condition

f'\in L_{\infty}\cap\dot{B}_{p,\infty}^{1/p}(\mathbb{R}) . Observe,

U_{p}^{1}(\mathbb{R})\mapsto\dot{W}_{\infty}^{1}\cap\dot{B}_{p,\infty}^{1+1/p}(\mathbb{R})
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and the embedding is proper, see [20]. An extension of this result of Kateb to the general
n‐dimensional case is still open.

(ii) Whether Theorem 18 has a counterpart for Lizorkin‐Triebel spaces is an open question.

(iii) Of course, smooth periodic functions f do not act by composition on E_{p,q}^{s}(\mathbb{R}^{n}) ,
for

1<s\leq 1+1/p ,
see Theorem 16.

A second proof of Thm. 18 has been given in [20]. There we first investigated the limiting
situation s=1+1/p ,

which we will recall below, and afterwards we used nonlinear inter‐

polation (more exactly, real interpolation of Lipschitz continuous operators) to derive the

result for 0<s<1+1/p.

Theorem 19 Let  1<p<\infty . If  f\in U_{p}^{1}(\mathbb{R}) and f(0)=0 ,
then  T_{f}(B_{p,1}^{1+1/p}(\mathbb{R}^{n}))\subset

 B_{p,\infty}^{1+1/p}(\mathbb{R}^{n}) . Moreover, the inequality

\Vert f\circ g\Vert_{B_{p,\infty}^{1+1/p}(\mathbb{R}^{n})}\leq c(\Vert f'\Vert_{\infty}+\Vert f'\Vert_{U_{p}})\Vert g\Vert_{B_{p,1}^{1+1/p}(\mathbb{R}^{n})}
holds for all g\in B_{p,1}^{1+1/p}(\mathbb{R}^{n}) .

There is a further result, rather close to the one‐dimensional case of Thm. 19, we wish to

mention. Recall, the Wiener classes BV_{p}() have been introduced in Subsection 4.2.1. We

will need the class of all primitives.

Definition 1 Let p\in[1, +\infty] . We say that a function f : \mathbb{R}\rightarrow \mathbb{R} belongs to BV_{p}^{1}() if f
is Lipschitz continuous and if its distributional derivative belongs to BV_{p}() .

We endow BV_{p}^{1}() with the norm

\Vert f\Vert_{BV_{p}^{1}(\mathbb{R})}:=|f(0)|+\Vert f'\Vert_{BV_{p}(\mathbb{R})} \forall f\in BV_{p}^{1}(\mathbb{R}) ,

which renders BV_{p}^{1}() a Banach space. Concerning composition of functions belonging to

BV_{p}^{1}() we have proved in [20] the following satisfactory result.

Theorem 20 Let  1\leq p<\infty . Then the following statements hold.

(i) If  f, g\in BV_{p}^{1} then f\circ g\in BV_{p}^{1} and

\Vert f\circ g\Vert_{BV_{p}^{1}(\mathbb{R})}\leq\Vert f\Vert_{BV_{p}^{1}(\mathbb{R})}(1+2^{1/p}\Vert g\Vert_{BV_{p}^{1}(\mathbb{R})}) .

(ii) Let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function. Then the operator T_{f} maps BV_{p}^{1}() to

itself if, and only if, f\in BV_{p}^{1}() .

Remark 23 Also the inclusion

BV_{p}^{1}(\mathbb{R})\mapsto U_{p}^{1}(\mathbb{R})
is proper, see [20] or [40].
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The main example

There is one example which is of particular importance, mainly for historic reasons. We

consider f(t) :=|t|,  t\in R. This function belongs to the Besov space  B_{p,\infty}^{1+1/p,\ell oc}(\mathbb{R}) and is

Lipschitz continuous, of course. It is also immediate that it belongs to BV_{p}^{1}() and therefore

to U_{p}^{1}() . By employing Thm. 19 and Thm. 18 we obtain the following corollary.

Corollary 3 Let  1<p<\infty . The operator  g\mapsto|g| maps the Besov space B_{p,1}^{1+1/p}(\mathbb{R}^{n}) ) into

the Besov space B_{p,\infty}^{1+1/p}(\mathbb{R}^{n}) . Moreover, the inequality

\Vert|g|\Vert_{B_{p,\infty}^{1+1/p}(\mathbb{R}^{n})}\leq c\Vert g\Vert_{B_{p,1}^{1+1/p}(\mathbb{R}^{n})}
holds for all g\in B_{p,1}^{1+1/p}(\mathbb{R}^{n}) .

Remark 24 The corollary can be derived also from a result of Savaré [57] who had inves‐

tigated the mapping g\mapsto|g| with respect to a Banach space z^{1+1/p,p}(\mathbb{R}) ,
where

B_{p,1}^{1+\frac{1}{p}}(\mathbb{R})\mapsto Z^{1+\frac{1}{p},p}(\mathbb{R})\mapsto B_{p,\infty}^{1+\frac{1}{p}}(\mathbb{R}) .

For Besov spaces with 0<s<1+1/p we can argue by using nonlinear interpolation to

obtain the boundedness of g\mapsto|g| considered as a mapping of B_{p,q}^{s}(\mathbb{R}^{n}) into itself. This

method can not be applied to Lizorkin‐Triebel spaces. By employing a different method the

outcome is the following.

Theorem 21 Let 1\leq p,  q\leq\infty (1<p<\infty, 1\leq q\leq\infty if E=F) . In addition we assume

0<s<1+1/p (s\neq 1 if p=1 in case E=F) . Then the operator g\mapsto|g| maps the space

E_{p,q}^{s}(\mathbb{R}^{n}) into itself. Moreover, the inequality

\Vert|g|\Vert_{E_{p,q}^{s}(\mathbb{R}^{n})}\leq c\Vert g\Vert_{E_{p,q}^{s}(\mathbb{R}^{n})}

holds for all g\in E_{p,q}^{s}(\mathbb{R}^{n}) .

Remark 25 (i) Completely different methods have been used by Bourdaud, Meyer [22] and

Oswald [51] to prove Thm. 21 with E=B . Whereas in the first reference the proof is

based on Hardy�s inequality the second reference is using spline techniques and Marchaud�s

inequality.

(ii) A first proof of Thm. 21 with E=F has been given in [11], but with the extra condition

s\neq 1 . Here a similar method as in [22] is applied. A second proof has been published by
Triebel [65, Thm. 25.8]. It relies on atomic decompositions and allows to deal with s=1 if

1<p<\infty.
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Let us turn to the continuity of the mapping g\mapsto|g| . The Lipschitz continuity of f(t)=|t|
yields the continuity of g\mapsto|g| considered as a mapping of B_{p,q}^{s}() into itself if 0<s<1

and 1\leq p,  q\leq\infty ,
see Thm. 7. Also the continuity with respect to  W_{p}^{1}(\mathbb{R}^{n}) is well‐known,

see Thm. 5. There is nothing known on the continuity in all other cases where we know

T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset E_{p,q}^{s}(\mathbb{R}^{n}) .

4.5 Optimal inequalities (II)

All estimates in Subsection 4.4 do not reflect the nonlinearity of T_{f} , they are all of the form

\leq c(f)\Vert g\Vert . Hence, the norm of  g enters with the power 1. This is in sharp contrast to

the estimates given in case s>1+1/p . However, by using essentially the same type of

arguments as in Prop. 6, one can also prove the following, see [20] for all details.

Lemma 1 Let  1<p\leq+\infty ,
and  s>1+(1/p) . Let N be a norm on \mathcal{D}(\mathbb{R}^{n}) . Let E be

a normed function space such that \mathcal{D}(\mathbb{R}^{n})\subseteq E\subseteq W_{1}^{1,\ell oc}(\mathbb{R}^{n}) and such that there exists a

positive constant A such that

\displaystyle \sup_{h\neq 0}|h|^{1-s}(\int_{\mathbb{R}^{n}}|\frac{\partial g}{\partial x_{i}}(x+h)-\frac{\partial g}{\partial x_{i}}(x)|^{p}dx)^{1/p}\leq A\Vert g\Vert_{E} \forall g\in E (39)

for all i=1
,

. . .

,
n.

If there exist a continuously diffe rentiable function f : \mathbb{R}\rightarrow \mathbb{R} and a constant B>0 such

that T_{f} maps \mathcal{D}(\mathbb{R}^{n}) into E
,

and such that the inequality

\Vert f\circ g\Vert_{E}\leq B(N(g)+1) \forall g\in \mathcal{D}(\mathbb{R}^{n}) (40)

holds, then f must be an affine function.

Remark 26 (i) The spaces Ep, q(\mathbb{R}^{n}) , t>1+1/p , satisfy the assumptions of Lemma 1 with

1+1/p<s<\displaystyle \min(t, 2) .

(ii) A mapping T:E\rightarrow E is called sublinear, if there exists a constant c such that

\Vert Tg\Vert_{E}\leq c(1+\Vert g\Vert_{E})

holds for all g\in E . Hence, by Lemma 1, a composition operator T_{f} , satisfying the acting

property T_{f}(E_{p,q}^{s}(\mathbb{R}^{n}))\subset E_{p,q}^{s}(\mathbb{R}^{n}) ,
can be sublinear only in case s\leq 1+1/p.

(iii) It is of a certain surprise that the boundary between sublinear and superlinear estimates

is given by s=1+1/p and not simply s=1 (think on a fractional version of the chain rule).
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5Composition operators defined on intersections

Adams and Frazier [2, 3] have been the first who have seen that it makes sense to consider

composition operators on intersections of the type H_{p}^{s}\cap W_{sp}^{1}() ,
where H_{p}^{s}(\mathbb{R}^{n})=F_{p,2}^{s}(\mathbb{R}^{n}) is

a Bessel potential space. The main observation is the following: the Dahlberg phenomenon,
see Prop. 3, disappears.

Theorem 22 Let 1<p,  q<\infty and  s>1, s\not\in \mathbb{N} . Let m>s be a natural number and let

f\in C_{b}^{m}(\mathbb{R}) s.t. f(0)=0 . Then T_{f} maps F_{p,q}^{s}\cap W_{s}\mathrm{p}() into F_{p,q}^{s}(\mathbb{R}^{n}) . In either case the

mapping is bounded and continuous.

Remark 27 (i) For the first moment it is surprising that the relation of s to n/p does not

have an influence. However, if s>\displaystyle \max(1, n/p) ,
then we have F_{p,q}^{s}(\mathbb{R}^{n})\mapsto W_{sp}^{1}() ,

see

(26), and we are back in the situation discussed in Subsection 4.2.4. If 1<s<n/p ,
then

F_{p,q}^{s}(\mathbb{R}^{n})\not\subset W_{s}\mathrm{p}() and consequently F_{p,q}^{s}\cap W_{s}\mathrm{p}() is strictly smaller than Fp, q(\mathbb{R}^{n}) .

(ii) The theorem, as stated here, can be found in Brezis and Mironescu [26]. A different

proof, but restricted to the case p=q ,
has been given by Maz�ya and Shaposnikova [44].

With some restrictions in q the boundedness of T_{f} is also proved in [55, 5.3.7]. For a similar

result involving Besov spaces we also refer to [55, 5.3.7].

Of course, one may ask for larger or simply different subspaces of F_{p,q}^{s}(\mathbb{R}^{n}) such that all

functions f\in C_{b}^{m}(\mathbb{R}) generate a composition operator T_{f} s.t. this subspace is mapped into

F_{p,q}^{s}(\mathbb{R}^{n}) by T_{f} . In [26] one can find a simple argument which explains that F_{p,q}^{s}\cap W_{sp}^{1}(\mathbb{R}^{n})
is nearly optimal. Let g\in F_{p,q}^{s}(\mathbb{R}^{n}) . Since f_{1}(t)=\cos t-1 and f_{2}(t)=\sin t are admissible

functions it follows

(\cos g-1+i\sin g)\in F_{p,q}^{s}\cap L_{\infty}(\mathbb{R}^{n}) .

Since

F_{p,q}^{s}\cap L_{\infty}(\mathbb{R}^{n})\mapsto F_{sp,2}^{1}(\mathbb{R}^{n})=W_{ps}^{1}(\mathbb{R}^{n}) ,

see [26] (but traced there to Oru), we obtain e^{ig}-1\in W_{ps}^{1}(\mathbb{R}^{n}) . This implies

ie^{ig}\displaystyle \frac{\partial g}{\partial x_{\ell}}\in L_{ps}(\mathbb{R}^{n}) for all \ell=1
,

. . .

,
n.

Thus g\in\dot{W}_{ps}^{1}(\mathbb{R}^{n}) ,
the homogeneous Sobolev space. This space consists of all regular real‐

valued distributions s.t. all derivatives of the first order belong to L_{ps}(\mathbb{R}^{n}) and is endowed

with the seminorm

\displaystyle \Vert g\Vert_{W_{ps}^{1}(\mathbb{R}^{n})}:=\sum_{| $\alpha$|=1}\Vert g^{( $\alpha$)}\Vert_{L_{ps}(\mathbb{R}^{n})}.
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Hence, the optimal subspace is contained in F_{p,q}^{s}\cap\dot{W}_{sp}^{1}(\mathbb{R}^{n}) . In case of Bessel potential and

Slobodeckij spaces, Thm. 22 can be improved to become optimal with this respect. Recall,

F_{p,2}^{s}(\mathbb{R}^{n})=H_{p}^{s}(\mathbb{R}^{n}) in the sense of equivalent norms.

Theorem 23 Let  1<p<\infty and  s>1, s\not\in \mathbb{N} . Let m>s be a natural number and let

f\in C_{b}^{m}(\mathbb{R}) s.t. f(0)=0 . Then T_{f} maps F_{p,2}^{s}\cap\dot{W}_{s}\mathrm{p}() into F_{p,2}^{s}(\mathbb{R}^{n}) . Furthermore, there

exists a constant c_{f} such that

\Vert f\circ g\Vert_{F_{p,2}^{s}(\mathbb{R}^{n})}\leq c_{f}(\Vert g\Vert_{F_{p,2}^{s}(\mathbb{R}^{n})}+\Vert g\Vert_{W_{ps}^{1}(\mathbb{R}^{n})}^{s})
holds for all g\in F_{p,2}^{s}\cap\dot{W}_{sp}^{1}(\mathbb{R}^{n}) .

Remark 28 Thm. 23 has been proved by Adams and Frazier in [3].

Now we turn to Slobodeckij spaces. Recall, if s>0 is not an natural number, then F_{p,p}^{s}(\mathbb{R}^{n})=
B_{p,p}^{s}(\mathbb{R}^{n})=W_{p}^{s}(\mathbb{R}^{n}) holds in the sense of equivalent norms.

Theorem 24 Let  1\leq p<\infty and  s>1, s\not\in \mathbb{N} . Let m>s be a natural number and let

f\in C_{b}^{m}(\mathbb{R}) s.t. f(0)=0 . Then T_{f} maps F_{p,p}^{s}\cap\dot{W}_{s}\mathrm{p}() into F_{p,p}^{s}(\mathbb{R}^{n}) . Furthermore, there

exists a constant c such that

\Vert f\circ g\Vert_{F_{p,p}^{s}(\mathbb{R}^{n})}\leq c\Vert f\Vert_{C_{b}^{m}(\mathbb{R})}(\Vert g\Vert_{F_{p,p}^{s}(\mathbb{R}^{n})}+\Vert g\Vert_{W_{ps}^{1}(\mathbb{R}^{n})}^{s})
holds for all g\in F_{p,p}^{s}\cap\dot{W}_{s}\mathrm{p}() and all f\in C_{b}^{m}(\mathbb{R}) s.t. f(0)=0 . In either case the mapping

T_{f} is continuous.

Remark 29 (i) Thm. 24 has been proved by Maz�ya and Shaposnikova in [44].
(ii) Open problem: prove Theorems 22, 23, 24 for the maximal range of s, p, q and under

minimal regularity conditions on f . Up to now, only the case of Sobolev spaces has a

complete answer, given by the following statements, see [14, Thm. 1 and 2].

Theorem 25 Let m be an integer \geq 2,  1\leq p<+\infty — with the exception of  m=n and

p=1 — and let f : \mathbb{R}\rightarrow \mathbb{R} be a Borel measurable function.

(i) T_{f} takes W_{p}^{m}\cap\dot{W}_{mp}^{1}(\mathbb{R}^{n}) to itself if, and only if, f(0)=0 and f'\in W_{p,unif}^{m-1}(\mathbb{R}) .

(ii) The inequality

\Vert f\circ g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}\leq cC_{f}(\Vert g\Vert_{W_{mp}^{1}(\mathbb{R}^{n})}^{m}+\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}) (41)

holds for all f s.t. f(0)=0 and f'\in W_{p,unif}^{m-1}(\mathbb{R}) ,
and all g\in W_{p}^{m}\cap\dot{W}_{mp}^{1}(\mathbb{R}^{n}) ,

where C_{f} is

defined by (8).
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Theorem 26 Let m be an integer \geq 2,  1\leq p<+\infty ,
and let  f : \mathbb{R}\rightarrow \mathbb{R} be a Borel

measurable function. Then T_{f} takes W_{p}^{m}\cap L_{\infty}(\mathbb{R}^{n}) to itself if, and only if, f\in W_{p}^{m,\ell oc}(\mathbb{R})
and f(0)=0.

Remark 30 The exceptional case of Thm. 25 is covered by Thm. 26 since W_{1}^{n}\cap\dot{W}_{n}^{1}(\mathbb{R}^{n})
is embedded into L_{\infty}(\mathbb{R}^{n}) .

6 Composition operators on vector‐valued spaces

We turn to the vector‐valued situation but restrict ourselves to Sobolev spaces.

Let k\in \mathbb{N}, k\geq 2 . Let f : \mathbb{R}^{k}\rightarrow \mathbb{R} . We study the associated composition operator

T_{f}(g):=f\circ g, g=(g_{1}, \ldots, g_{k})

under the assumption g\in W_{p}^{m}(\mathbb{R}^{n}, \mathbb{R}^{k}) . To describe a sufficient condition for the acting

property we need a further class of functions. We need the following simple mappings: for

1\leq j\leq k we define

$\sigma$_{j}f(x_{1}, \ldots, x_{k}):=f(x_{1}, \ldots, x_{j-1}, x_{k}, x_{j+1}, \ldots, x_{k-1}, x_{j}) , x\in \mathbb{R}^{n}

Let  1\leq p<\infty and  k>1 . Then the space E_{p}(\mathbb{R}^{k}) is the collection of all measurable

functions f s.t.

\displaystyle \Vert f\Vert_{E_{p}(\mathbb{R}^{k})}:=\sum_{j=1}^{k}(\sup_{a\in \mathbb{R}}\int_{a}^{a+1}\Vert$\sigma$_{j}f(\cdot, t)\Vert_{L_{\infty}(\mathbb{R}^{k-1})}^{p}dt)^{1/p}<\infty.
By \dot{W}_{E_{p}}^{m}(\mathbb{R}^{k}) we denote the homogeneous Sobolev space built on E_{p} , i.e., the semi‐norm is

generated by

\displaystyle \Vert f\Vert_{W_{E_{p}}^{m}(\mathbb{R}^{k})}:=\sum_{| $\alpha$|=m}\Vert f^{( $\alpha$)}\Vert_{E_{p}(\mathbb{R}^{k})}.
Then we have the following partial generalization of Thm. 25 :

Theorem 27 Let  1<p<\infty and  m, k\geq 2 . Let f\in\dot{W}_{\infty}^{1}\cap\dot{W}_{E_{p}}^{m}(\mathbb{R}^{k}) and suppose f(0)=0.
Then T_{f} maps W_{p}^{m}\cap\dot{W}_{pm}^{1}(\mathbb{R}^{n}, \mathbb{R}^{k}) into W_{p}^{m}(\mathbb{R}^{n}) . Moreover, there exists a constant c s.t.

\Vert f\circ g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}\leq c(\Vert f\Vert_{W_{E_{p}}^{m}(\mathbb{R}^{k})}+\Vert f\Vert_{W_{\infty}^{1}(\mathbb{R}^{k})})(\Vert g\Vert_{W_{p}^{m}(\mathbb{R}^{n})}+\Vert g\Vert_{W_{mp}^{1}(\mathbb{R}^{n})}^{m}) , (42)

holds for all f\in\dot{W}_{\infty}^{1}\cap\dot{W}_{E_{p}}^{m}(\mathbb{R}^{k}) and all g\in W_{p}^{m}\cap\dot{W}_{pm}^{1}(\mathbb{R}^{n}, \mathbb{R}^{k}) .
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Remark 31 (i) This theorem has been proved in [14, Thm. 3]. The estimate (42) is not

found there, however, it can be derived as in the scalar case.

(ii) For T_{f}(W_{p}^{m}\cap\dot{W}_{pm}^{1}(\mathbb{R}^{n}, \mathbb{R}^{k}))\subset W_{p}^{m}(\mathbb{R}^{n}) it is necessary that f is locally Lipschitz contin‐

uous, see [4] and [14].

Let us have a short look on Thm. 2. A naive but natural conjecture concerning an extension

to the vector‐valued case would consist in the following:

Let f\in\dot{W}_{\infty}^{1}\cap W_{p}^{m,\ell oc}(\mathbb{R}^{k}) such that f(0)=0 . Then T_{f} maps W_{p}^{m}\cap\dot{W}_{pm}^{1}(\mathbb{R}^{n}, \mathbb{R}^{k})
into W_{p}^{m}(\mathbb{R}^{n}) .

We do not believe that this statement holds true. The space \dot{W}_{\infty}^{1}\cap\dot{W}_{E_{p}}^{m}(\mathbb{R}^{k}) is much smaller

than \dot{W}_{\infty}^{1}\cap W_{p}^{m,\ell oc}(\mathbb{R}^{k}) . This can be easily seen by studying tensor products of functions.

Let

f(x):=f(X) .

. . .

\cdot  f_{k}(x_{k}) , x=(x_{1}, \ldots, x_{k})\in \mathbb{R}^{k}

If f\in\dot{W}_{\infty}^{1}\cap\dot{W}_{E_{p}}^{m}(\mathbb{R}^{k}) ,
then each of the functions f_{j} has to belong to W_{\infty}^{m,\ell oc}(\mathbb{R}) ,

at least

if all components of f are nontrivial or more exactly, are not polynomials. To guarantee

f\in\dot{W}_{\infty}^{1}\cap W_{p}^{m,\ell oc}(\mathbb{R}^{k}) it is sufficient to have f_{j}\in W_{p}^{m,\ell oc}(\mathbb{R}) for all j.
In our understanding the extension to the vector‐valued case will be not a straightforward

generalization. We expect some new phenomenons.

Remark 32 The extension of Thm. 27 to fractional order of smoothness is completely

open.

7 On Problem 3

Recall, Problem 3 consists in characterizing those function spaces E s.t. the acting condition

T_{f}(E)\subset E is equivalent to boundedness of T_{f} : E\rightarrow E and is also equivalent to the

continuity of T_{f} : E\rightarrow E . With other words, if one has established the acting property

then one gets boundedness and continuity for free. If a space E has this property then we

will write E\in P_{3} ,
otherwise E\not\in P_{3}.

Below we have made a list of more or less classical function spaces and fixed their relation

to P_{3} . In addition we have given some references, sometimes inside our survey, sometimes

not. We will use the convention -\infty<a<b<\infty.
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Function space \mathrm{E} \mathrm{E} \mathrm{P} References

[6, 3.4, 3.7]yes

no [6, 3.7]

obviousyes

no [31], [35], [48]

yes

yes

Thm. 5(i)
Thm. 5(ii)

Prop. 3yes

Cor. 1yes

no Cor. 1

Prop. 3yes

Prop. 4yes

Cor. 1yes

no Cor. 1

L (), 1 p

(), m

\mathrm{C}(), \mathrm{s} 0, \mathrm{s}

(), 1 \mathrm{p}

(), 1 \mathrm{p} , \mathrm{m} , \mathrm{m} \mathrm{n}/\mathrm{p}

(), 1 \mathrm{p} , \mathrm{m} , 1 + 1/\mathrm{p} \mathrm{m} \mathrm{n}/\mathrm{p}

\mathrm{p},\mathrm{q}(), 1 \mathrm{p} , 1 \mathrm{q} , 1 + 1/\mathrm{p} \mathrm{s}

\mathrm{P}^{\infty(}), 1 \mathrm{p} , 1 + 1/\mathrm{p} \mathrm{s}

\mathrm{p},\mathrm{q}(), 1 \mathrm{p} , 1 \mathrm{q} , 1 + 1/\mathrm{p} \mathrm{s} \mathrm{n}/\mathrm{p}

\mathrm{p},\mathrm{q}(), 1 \mathrm{p} , \mathrm{p} \mathrm{q} , 1 + 1/\mathrm{p} \mathrm{s}

\mathrm{P}^{\infty(}), 1 \mathrm{p} , 1 + 1/\mathrm{p} \mathrm{s}

\mathrm{p},\mathrm{q}(), 1 \mathrm{p} , 1 \mathrm{q} , 1 + 1/\mathrm{p} \mathrm{s} \mathrm{n}/\mathrm{p} Prop. 4yes

(), 1 \mathrm{p} , 1 \mathrm{q} Prop. 3yes\mathrm{p},\mathrm{q}

no [19]

no [19]

[19]yes

BMO()

V MO()

CMO()

bmo()

vmo()

cmo()

no [19]

[19]yes

[19]yes

AC [\mathrm{a},\mathrm{b}] [5]yes

[5]yesBV [\mathrm{a},\mathrm{b}]

Lip  $\alpha$[\mathrm{a},\mathrm{b}], 0  $\alpha$ 1 no [31], [35], [5]

[39, 8.6], [15],yes
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Definitions of all these function spaces will be given in the Appendix below.

8 Concluding remarks

As it becomes clear by the long list of open problems, in our opinion the theory of composition

operators in function spaces of fractional order of smoothness (like Besov and Lizorkin‐

Triebel spaces) isjust at its beginning. Even worst is the situation with respect to Nemytskij

operators. There are nearly no final results in the general case up to our knowledge. A few

information can be found in [55, 5.5.4]. A bit better is the situation when we restrict us to

operators of the type

 N(g)(x):=f(x, g(x)) , x\in \mathbb{R}^{n}, g\in E.

These special Nemytskij operators are studied in the monograph by Appell and Zabrejko [6],
see also the recent survey [5]. However, the knowledge concentrates on either spaces with

smoothness 0 (Lebesgue spaces, Orlicz spaces), or smoothness 1 (first order Sobolev‐Orlicz

spaces) or on spaces with  p=\infty (Hölder spaces).

9 Appendix

Here we recall the definition of the function spaces used in this survey.

9.1 Besov and Lizorkin‐Triebel spaces

To introduce the (inhomogeneous) Besov‐Triebel‐Lizorkin spaces we make use of the char‐

acterizations via differences and derivatives.

Definition 2 Let  s>0,  1\leq q\leq\infty ,
and let  M\in \mathbb{N} be such that M\leq s<M+1.

(i) Suppose  1\leq p<\infty . Then the Lizorkin‐Tr iebel space  F_{p,q}^{s}(\mathbb{R}^{n}) is the collection of all

real‐valued functions f\in L_{p}(\mathbb{R}^{n}) s.t.

\displaystyle \Vert f\Vert_{F_{p,q}^{s}(\mathbb{R}^{n})}:=\Vert f\Vert_{L_{p}(\mathbb{R}^{n})}+\Vert(\int_{0}^{1}t^{-sq}(\frac{1}{t^{n}}\int_{|h|<t}|\triangle_{h}^{M+1}f|dh)^{q}\frac{dt}{t})^{\frac{1}{q}}\Vert_{L_{p}(\mathbb{R}^{n})}<\infty.
(ii) Suppose  1\leq p\leq\infty . Then the Besov space  B_{p,q}^{s}(\mathbb{R}^{n}) is the collection of all real‐valued

functions f\in L_{p}(\mathbb{R}^{n})s.t.

\displaystyle \Vert f\Vert_{B_{p,q}^{s}(\mathbb{R}^{n})}:=\Vert f\Vert_{L_{p}(\mathbb{R}^{n})}+(\int_{\mathbb{R}^{n}}|h|^{-sq}\Vert\triangle_{h}^{M+1}f\Vert_{L_{p}(\mathbb{R}^{n})}^{q}\frac{dh}{|h|^{n}})^{\frac{1}{q}}<\infty.
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Remark 33 The spaces F_{p,q}^{s}(\mathbb{R}^{n}) , B_{p,q}^{s}(\mathbb{R}^{n}) are Banach spaces. Nowadays there exists a rich

literature on this subject. We refer to Frazier and Jawerth [33], Besov, Il�jin, and Nikol�skij

[7], Nikol�skij [50], Peetre [53] and Triebel [63, 64, 66].

In some cases, an alternative equivalent norm in Besov spaces can be obtained as follows.

We concentrate on n=1 . Using the functional $\Omega$_{p}(f, t) defined in (16), we have the following

result, see e.g. [64, Thm. 3.5.3, p. 194]:

Proposition 8 Let 1/p<s<1 . Then a real‐valued function f belongs to Bp, q(\mathbb{R}) if, and

only if,

\displaystyle \Vert f\Vert_{L_{p}(\mathbb{R})}+(\int_{0}^{\infty}(\frac{$\Omega$_{p}(f,t)}{t^{s}})^{q}\frac{dt}{t})^{1/q}<+\infty . (43)

Moreover, the above expression generates an equivalent norm on  B_{p,q}^{s}(\mathbb{R}) .

Remark 34 The condition s>1/p cannot be avoided. Indeed, (43) implies that f is locally

bounded, a property which is not shared by all Besov functions for s<1/p.

In Subsection 4.2.1 we have also used homogeneous Besov‐Triebel‐Lizorkin spaces. Here is

a definition.

Definition 3 Let s>0,  1\leq q\leq\infty ,
and let  M\in \mathbb{N} be such that M\leq s<M+1.

(i) Suppose  1\leq p<\infty . Then the homogeneous Lizorkin‐Tr iebel space \dot{F}_{p,q}^{s}(\mathbb{R}^{n}) is the

collection of all regular real‐valued distributions f s.t.

\displaystyle \Vert f\Vert_{F_{p,q}^{s}(\mathbb{R}^{n})}:=\Vert(\int_{0}^{\infty}t^{-sq}(\frac{1}{t^{n}}\int_{|h|<t}|\triangle_{h}^{M+1}f|dh)^{q}\frac{dt}{t})^{\frac{1}{q}}\Vert_{L_{p}(\mathbb{R}^{n})}<\infty.
(ii) Suppose  1\leq p\leq\infty . Then the homogeneous Besov space \dot{B}_{p,q}^{s}(\mathbb{R}^{n}) is the collection of all

regular real‐valued distributions f s.t.

\displaystyle \Vert f\Vert_{B_{p,q}^{s}(\mathbb{R}^{n})}:=(\int_{\mathbb{R}^{n}}|h|^{-sq}\Vert\triangle_{h}^{M+1}f\Vert_{L_{p}(\mathbb{R}^{n})}^{q}\frac{dh}{|h|^{n}})^{\frac{1}{q}}<\infty.
Remark 35 Of course, we have f=g in \dot{E}_{p,q}^{s}(\mathbb{R}^{n}) if f-g is a polynomial of degree \leq M.

Since we only deal with functions f\in\dot{E}_{p,q}^{s}\cap L_{\infty}(\mathbb{R}) , satisfying f(0)=0 ,
this does not

matter.
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9.2 BMO‐type spaces

BMO(\mathbb{R}^{n}) is the set of real‐valued locally integrable functions g on \mathbb{R}^{n} such that

\displaystyle \Vert g\Vert_{BMO}:=\sup_{Q}f_{Q}|g-f_{Q}g|<+\infty,
where the supremum is taken on all cubes Q with sides parallel to the coordinate axes and

where

f_{Q}g
denotes the mean value of the function g on Q . The quotient space of BMO(\mathbb{R}^{n}) ,

endowed

with the above seminorm, by the subspace of constant functions, is a Banach space. Since

the operator T_{f} is clearly not defined on the quotient space, we prefer to consider BMO(\mathbb{R}^{n})
as a Banach space of �true� functions with the following norm:

\Vert g\Vert_{*}:=\Vert g\Vert_{BM\mathrm{O}}+f_{Q_{0}}|g| \forall g\in BMO(\mathbb{R}^{n}) ,

where Q_{0} is the unit cube [-1/2, +1/2]^{n} . We denote by bmo(\mathbb{R}^{n}) the linear subspace of

BMO(\mathbb{R}^{n}) consisting of those functions g which satisfy also the following condition

\displaystyle \sup_{|Q|\geq 1}f_{Q}|g|<+\infty,
where |Q| denotes the Lebesgue measure of Q or, equivalently,

\displaystyle \sup_{|Q|=1}f_{Q}|g|<+\infty,
see [19, Lem. 7]. It turns out that bmo(\mathbb{R}^{n}) is a Banach space for the norm

\displaystyle \Vert g\Vert_{bmo}:=\Vert g\Vert_{BM\mathrm{O}}+\sup_{|Q|=1}f_{Q}|g| \forall g\in bmo(\mathbb{R}^{n}) .

We denote by cmo(\mathbb{R}^{n}) the closure of \mathcal{D}(\mathbb{R}^{n}) in bmo(\mathbb{R}^{n}) ,
and we endow cmo(\mathbb{R}^{n}) with the

norm of bmo(\mathbb{R}^{n}) . Similarly, we denote by CMO(\mathbb{R}^{n}) the closure of \mathcal{D}(\mathbb{R}^{n}) in BMO(\mathbb{R}^{n}) ,

and we endow CMO(\mathbb{R}^{n}) with the norm of BMO(\mathbb{R}^{n}) .

According to Sarason [56], a function g of BMO(\mathbb{R}^{n}) which satisfies the limiting condition

\displaystyle \lim_{a\rightarrow 0}(\sup_{|Q|\leq a}f_{Q}|g-f_{Q}g|)=0 (44)

is said to be of vanishing mean oscillation. The subspace of BMO(\mathbb{R}^{n}) consisting of the

functions of vanishing mean oscillation is denoted VMO(\mathbb{R}^{n}) ,
and we endow VMO(\mathbb{R}^{n})
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with the norm of BMO(\mathbb{R}^{n}) . We note that the space VMO(\mathbb{R}^{n}) considered by Coifman and

Weiss [29] is different from that considered by Sarason, and it coincides with our CMO(\mathbb{R}^{n}) .

As it is well known, VMO(\mathbb{R}^{n})\neq\subset BMO(\mathbb{R}^{n}) . For example, the function \log|x| belongs
to BMO(\mathbb{R}^{n}) ,

but not to VMO(\mathbb{R}^{n}) ,
see e.g. Stein [62, Ch. IV, §. I.1.2], and Brezis and

Nirenberg [27, p. 211]. We set

vmo(\mathbb{R}^{n}) :=VMO(\mathbb{R}^{n})\cap bmo(\mathbb{R}^{n}) ,

and we endow the space vmo(\mathbb{R}^{n}) with the norm of bmo(\mathbb{R}^{n}) .

For the convenience of the reader, we display all the subspaces of BMO(\mathbb{R}^{n}) we have intro‐

duced in the following diagram:

bmo(\mathbb{R}^{n}) \neq\subset BMO (\mathbb{R}^{n})
\cup $\dagger$ \mathrm{f} \cup $\dagger$ \mathrm{f}

vmo(\mathbb{R}^{n}) \neq\subset VMO (\mathbb{R}^{n})
\cup $\dagger$ \mathrm{f} \cup $\dagger$ \mathrm{f}

cmo(\mathbb{R}^{n}) \neq\subset CMO (\mathbb{R}^{n})

where all inclusions are proper and continuous.

9.3 Some further classical function spaces

A definition of the Wiener class BV() has been given in Subsection 4.2.1. The space

BV_{p}[a, b] is obtained by restricting the intervals [a_{k}, b_{k}] to subintervals of [a, b].
By AC[a, b] we denote the collection of all absolutely continuous functions on [a, b] endowed

with the norm

\displaystyle \Vert f\Vert_{AC[a,b]}:=|f(a)|+\int_{a}^{b}|f'(t)|dt.
Finally, by A() we denote the Wiener algebra on the torus, i.e., the set of all continuous,
 2 $\pi$‐periodic functions  f s.t.

\displaystyle \Vert f\Vert_{A(\mathbb{T})}:=\sum_{k=-\infty}^{\infty}|\int_{- $\pi$}^{ $\pi$}f(t)e^{ikt}dt|<\infty.
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