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Well-posedness and standing waves for
the fourth-order non-linear
Schrodinger-type equation

By

Jun-ichi SEGATA*

Abstract

We consider the initial value problem for the fourth-order non-linear Schrodinger-type
equation (4NLS) which describes the motion of an isolated vortex filament. In the first part
of this note we review some recent results on the time local well-posedness of (4NLS) and give
the alternative proof of those results. In the second part of this note we consider the stability
of a standing wave solution to (4NLS) for the completely integrable case.

§1. Introduction

This is a joint work with Masaya Maeda. In this note we consider the initial value
problem for the fourth-order non-linear Schrédinger-type equation (4NLS) of the form:

' P(0,2) = ¢(x), x€R,

where ¢(z) : R — C is a given function and (¢, z) : R? — C is the unknown function.
The nonlinear term N is given by

N(Qp)Ea 893¢7 893%7 8§¢7 83%) = )‘1 |¢|2¢ + )\2|¢|4¢ + )\3(8x¢)2E + )‘4|8x¢|2¢
A5 O + Aol 50,
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where v # 0 and A\; (j = 1,---,6) are real constants. The equation (1.1) describes
the three dimensional motion of an isolated vortex filament embedded in an inviscid
incompressible fluid filling an infinite region. This equation is proposed by Fukumoto-
Moffatt [5] as some detailed model taking account of the effect from the higher order
corrections of the Da Rios model (cubic nonlinear Schréodinger equation)

(1.2) 100 + 824 — —%|7,b|2w, (t,7) € R2.

For the physical background of (1.1), see Fukumoto [4].

In this note we consider the well-posedness of the initial value problem (1.1) and
the orbital stability of standing wave solutions to (1.1). Our notion of well-poseness
contains the existence and uniqueness of the solution, and the continuity of the data-
to-solution map. By standing wave solutions, we mean a solution of (1.1) with the form
Y(t,x) = e™lp(x), where w € R and ¢ is a real-valued function.

Concerning the local well-posedness of (1.1) in the usual Sobolev space H*(R), we
proved in [17] that the initial value problem of (1.1) is locally well-posed in H® with
s > 1/2 under the condition that v < 0 and A¢ = 0. Later on Huo-Jia [8] obtained the
same results when v > 0 and Ag = 0. Furthermore, in [18] we proved the well-posedness
of (1.1) in H® with s > 7/12 when v < 0 without the condition A\¢ = 0. Recently
Huo-Jia [9] extended the previous works to H® with s > 1/2 without any restriction on
the coefficients. Summing up the previous results, we have the following theorem.

Theorem 1.1 (Huo-Jia [8, 9], Segata [17, 18]).  Lets > 1/2. For any ¢ € H*(R),
there exists T = T'(||¢||m=) > 0 and a unique solution v of (1.1) satisfying

¢ e C([0,T]; H*(R)) N X7,

where X is defined by (2.12). Moreover, for any R > 0, the map ¢ — 1(t) is Lipschitz
continuous from the ball {¢ € H*(R); ||¢|lm= < R} to C([0,T]; H*(R)).

To prove the well-posedness of (1.1) they applied the Banach fixed point theorem
to the corresponding integral equation in the Fourier restriction space introduced by
Bourgain [1]. The Fourier restriction space is a completion of the Schwartz space with
respect to the norm

Wllx.., = Ir + & — vEY2E) $(r, Ol 22 o)

where (§) = /1 + [£]? and ’QZ(T, €) is the space-time Fourier transform of (¢, z).

The Fourier restriction norm reflects the algebraic structure of the symbol of the
associated linear operator i0; + 02 + v9d*. Thanks to this fact, the Fourier restriction
space is very useful to prove the well-posedness of the nonlinear dispersive and hyperbolic
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equations in the lower order Sobolev spaces. However very complicate calculation is
needed to obtain the nonlinear estimates in the Fourier restriction space.

The first purpose in this paper is to give an alternative proof of Theorem 1.1
simpler than the Fourier restriction method. Our proof for Theorem 1.1 also relies on
the Banach fixed point theorem via the corresponding integral equation. However we
use the space-time norm defined by

|l x7r = 19l L2 0,7;1: (r)) + auxiliary norms.

instead of employing the Fourier restriction norm.

The difficulty to prove the well-posedness for (1.1) comes from the second order
derivatives of ¢ in the nonlinear term A. Due to this difficulty we cannot apply the
classical energy method. We overcome this “loss of a derivatives” by making use of the
Kato local smoothing effect obtained by Kato [10] and Kenig-Ponce-Vega [13].

However the simple combination of the contraction principle and the Kato local
smoothing effect only implies that (1.1) is locally well-posed in H® for s > 1 (see
Section 2 below). In order to guarantee the local well-posedness of (1.1) for H* with
s < 1, we combine above two tools with the restriction lemma due to Christ-Kiselev [3]
(see Lemma 2.1 below).

The Christ-Kiselev lemma allows one to reduce the “retarded” estimate from the
“non-retarded” one. By using this lemma we can obtain better estimates for the inho-
mogeneous terms which are the crucial estimates to prove Theorem 1.1. We note that
in Theorem 1.1 we do not impose any restriction condition on the coefficients. It will
be clear from our proof below how to extend those results to more general nonlinear
dispersive equations.

From Theorem 1.1, it is natural to consider the following question: Is (1.1) well-
posed in H® with s < 1/2? To answer this question, we consider the completely inte-
grable case of (1.1):

1 3 3 —
(1.3)  i0wp+ Ot + vt = =S [0y — Sv [Pl — Sv(0a)*Y — v|0uPI*y
SO — PO,

This corresponds to (1.1) with \; = —1/2, Ao = =3v/8, A3 = =3v/2, Ay = —v, A5 =
—v/2 and A\¢ = —2v. In this case, (1.3) has the following two parameter family of
solutions

YN~ (tx) = 271/2eit{~/+w/2—(1+6w)N2+yN4}€mN
xsech(yY%(x — (2 + 4vy)N —4vN3)t)), NeR, v >0,

which have been obtained by Hoseini-Marchant [7]. By using this special solution we
can obtain the following theorem:
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Theorem 1.2.  Fors € (—1/2,1/2), the data-to-solution map associated to (1.3)
H* — C([0,T); H*)(¢ — 9(t)) is not uniformly continuous. That is,

Je>03R>0s85 Y5> 0VYT >0 3y, ¢o s.t.||é1]|= < R, ||¢o|lu= < R,
lp1 — ¢2llme < and [[01(T) = ¢2(T)|| e > e,

where Y1 (t), 12(t) are solutions of (1.3) with 1¥1(0) = ¢1, ¥2(0) = ¢o.

A by-product of the contraction mapping principle provides the Lipschitz continuity
of data-solution map. Therefore, Theorem 1.2 tells us that one cannot solve the initial
value problem (1.3) by a contraction mapping principle implemented on the integral
equation for the initial data in H® with —1/2 < s < 1/2.

Remark.  Although Theorem 1.2 does not cover the lower order case s < —1/2,
we believe that same conclusion holds for this range. Furthermore, we believe that
(1.1) is truly ill-posed for s < —1/2. Indeed, Kenig-Ponce-Vega [14] proved that the
nonlinear Schrédinger equation (1.2) cannot have a unique solution starting from the
delta function. This implies the ill-posedness of (1.2) in H® with s < —1/2. The
ill-posedness question for (1.1) in the lower order case is an issue in the future.

Remark. In [17] and [8], it was proved that if we assume the strong restriction
X = 0, then (1.1) is locally well-posed in H'/2. So far we do not know whether (1.1) is
well-posed in H® with s = 1/2 for the case A\g # 0.

Next we consider the orbital stability of the standing wave solution. We continue
to consider the completely integrable equation (1.3). The standing waves of (1.3) is
explicitly given by

Y(t,x) = eiwt¢7(x)’ gofy(m) = 271/286011(’)/1/21'),

where ~ is positive solution to the quadratic equation vv? +~ —w = 0. The equation
(1.3) has further advantage that (1.3) admits infinitely many conservation quantities.
Indeed, Langer and Perline [15] derived the following conservation quantities for (1.3):

1
4 hw)=j [ i

1 1
(1.5) Il(w):§4|axw|2dx—§4|w|4dx,

1 3 — 1 —
10 h()=j [ BuPde+ ] [ 10FT0Rde + 5 [ Pvoie

5 2772 3 20,112 1 6
+5 [T+ ] [ 0afiuido+ g [ 1wl
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In general, the conservation quantities for (1.3) are expressed as

= %/ |8;:n'¢|2d£l? + / Pm(ﬂ%@, - ’8;'1—1¢’a;n—1a)dx’ m €N,
R R

where P, is a polynomial. Therefore combining Theorem 1.1, the conservation laws

I (¢)

and the Gagliardo-Nirenberg inequality, we easily see that (1.3) is globally well-posed
in H™ with m € N. We notice that when (1.3) is not completely integrable, we do not
know whether (1.3) is globally well-posed or not.

There are two main approaches to prove the stability of the standing wave solutions,
the method based on the study of a linearized Hamiltonian around the standing wave
(see for instance, Grillakis-Shatah-Strauss [6]), and the purely variational methods which
is developed by Cazenave-Lions [2].

Concerning the former approach, the linearized Hamiltonian around the ¢, associ-
ated to (1.3) is very complicate and it is difficult to get any information on its spectrum.
On the other hand, the standing wave solution e’ (z) has fine variational character-
izations (see Proposition 4.1 below). Thanks to this characterization, we can employ

the latter approach and obtain the following theorem.

Theorem 1.3.  The standing wave solution e ¢.(x) to (1.3) is orbitally stable
in H™ with m € N in the following sense: for all € > 0 there exists § > 0 such that for
all p € H™ with

inf — el (- m <6
eeﬁé}yeR“"j e oy (- +y)|lam <0,

the solution 1 to (1.3) with the initial data 1(0,x) = ¢(x) exists globally in time and
satisfies

su inf t)— %o (- + )| gm < e.
et 00 s ()l

The plan of this note is as follows. In sections 2 and 3, we give outline of proof for
Theorem 1.1 and Theorem 1.2, respectively. In Section 4, we describe the sketch of the
proof for Theorem 1.3.

We close this section by introducing several notations and function spaces which
will be used throughout this note. D3 = (—=92)*/2 and (D,)* = (I — 92)*/? denote the
Riesz and Bessel potentials of order —s, respectively. Let {W(¢)}ier be the unitary
group generated by the linear operator i92 + ivds:

W= o= [ i

where ¢(€) is the Fourier transform of ¢ with respect to x variable. || - || rr.re and
| -[z2ze denote the space-time norms defined by

19l z.ze = 1Y@l Lawlle o),

[llLace = ¥ @) e o)l e ).
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§2. Well-posedness for 4NLS

In this section we guarantee the time local well-posedness for (1.1). For simplicity
of the exposition we consider the initial value problem

21 {z‘atw + 02+ vOk) = [P0y, (t,x) € R?,

P(0,z) = ¢(z), x€R.

The problem (2.1) is rewritten as the integral equation

(2.2) P(t) =W(t)e — 2/0 W (t — ) ([0*9zy) (1)dr,

where {W(t)};cr be the unitary group generated by the linear operator i0? + ivds.
We prove the existence of the solution to (2.2) in the short interval [0,7"] by using the
Banach fixed point theorem for suitable function space. For the simplicity, we asume
0<T<1.

As already mentioned in Section 1, the difficulty to prove the local well-posedness
comes from the second derivatives of the unknown function in the nonlinear term. To
overcome this difficulty we employ the Kato local smoothing effect due to Kato [10] and
Kenig-Ponce-Vega [13]:

(2.3) ID32W ()]l ez < Clidllizz (homogeneous type),
¢
(2.4) |D? / Wt —7)F(r)dr||peerz <C|F|[z1r2 (inhomogeneous type).
0
Interpolating (2.3) with (2.4), we obtain
¢
(25) ID2 [ Wit =) P(r)drlgzss < CTVPl s

The estimate (2.5) tells us that the inhomogeneous term gains extra smoothness in x
of order 2 in L°L%. Thanks to this gain of the regularity, we can overcome the loss
of second order derivatives in the nonlinearity. Therefore combining the contraction
mapping principle and the Kato local smoothing effect we guarantee the time local
well-posedness for (2.1). To this end, we prove that the map

(2.6) () (t) = W(t)o - @/O W (t — ) ([¢[*0zy) (1)dr

is a contraction on suitable function space. Taking into account of the smoothing effect
we introduce the function space

Xp={¢ € C([0.T; H*(R)); [[¢]lx, < oo},

1llxr = I g 11z + I1D5%/20 ]| e 12, + auxiliary norms.
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By using the inequality (2.5), we have
19| g g + || D520 | o 2
<Ol + CT1/3||D;—1/2(|¢|28§1b)||Li/zL2T + Lot
<C|Y||lus + CT1/3|||¢|2D§+3/2¢”L2/2L% +/.0.t.
< C“¢“H; + CTl/?’“ﬂ’“%ngs HD§+3/21/J||L;°L2T +L.o.t.

To close this estimate, we have to evaluate L3 L5 norm for a solution. This type of
the estimates are called the estimates for “maximal functions”. As in the proof of
Kenig-Ponce-Vega [12] and [13] we can obtain L2L® and LILS® estimates

(2.7) W ()ollL2Lse < Cll@ll o+

(2.8 IW(©)lcs s < Clidl -

Interpolating (2.7) with (2.8), we obtain L3 L5 estimate

(2.9) IW()¢llsrse < Cligll e

Especially, we have

t
(210) [ Wit= Pz < Ol gy
With that in mind, we modify X as
Wl xz = 19l g ms +I1D5 20 oo 12 + ¥l 23 13 + auxiliary norms.
By the inequality (2.10), we have

1]l g < Cllpll aor + CIDL*H ([G1PO50) | s 12 + Loo-t.

<O ¢ll gsas + Cl P DY | 1y 2 + Lot

< Cllllyusas + CT2 [ 62D |1z 12 + Lo,

< Cllllyusas + CT2 [ 62D |z s + Lo

< Ol a2 + CTV2[4]3 s 1DY> e g, + L0t
Therefore if 5/24+ < s+ 3/2, that is s > 1, then we can control the last term by X
norm. Hence above method yields the time local well-posedness for H* with s > 1. To
guarantee the well-posedness for H® with 1/2 < s < 1, we need to refine the method
mentioned above. To this end we employ the restriction lemma essentially due to Christ-

Kiselev [3]. The version of this lemma that we use is the one presented in Kenig-Koenig
11, p.883).
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Lemma 2.1. Let K : S(R?) — C(R?). Assume that

< C”FHLZZLPT?

LIt Lge

/OT K(t,7)F(r)dr

for some 1 < pa,q1,q2 < 00 with ps # 00,qe # 0. Then

/Ot K(t,7)F(r)dr

< C[|F || paz p2-

L L

By using the Christ-Kiselev lemma and the duality argument we obtain the refined
version of (2.10) for the inhomogeneous term.

Lemma 2.2.

(2.11) /t Wt —7)F(r)dr

< CTYV3({Da)*  Fl o/
L3LSe cT

The constants in (2.11) are independent of T'.

Proof of Lemma 2.2. See [19, Lemma 2.4] O

Combining the local smoothing effect and Lemma 2.2 we obtain the desired result.
Although we omit the estimate for the lower order terms, to justify all estimates,
we need to modify X, as follows:

[l xr = l¥llLge s + ||D§+3/2¢||L;OL2T + 1024 oo 12,

+||D920w|| 3(2s+3) 2543 +|‘Di+l/2w“ 3(2s43) 2(2s+3) +||8m¢|| 3(25+3)
Lz2s_1 LTZ Lz—z LT2.<;+1 L 2s+1 Lgf+3

x

(2.12) HIDF 29l seere 20mem + 9] seors 20mm + [9]lLs s
Lac 4 LT2S—1 LJ‘ a LT2S—1

See [19, Section 3] for the detail. The continuous dependence on the initial data follows
from the standard argument. This completes the proof of Theorem 1.1. [

§ 3. Lack of uniform continuity of solution map

In this section we prove the lack of uniform continuity of solution map associated
to (1.3) following Kenig-Ponce-Vega [14].

Proof of Theorem 1.2. We construct two solutions v; and 15 to (1.3) satisfying
the following properties: There exists € > 0 such that for arbitrary 7" > 0 and § > 0,

|[101(0) — 2(0)|| s < 6 and |11 (T) — o (T)|| s = € > 0.
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To construct such functions we introduce the two parameter family of solutions to
(1.3) which have been obtained by Hoseini-Marchant [7]:

¢N,7(t, ZL’) = 2’}/%eit{7+V’Y2—(1+6I/"y)N2+VN4}ein
xsech(y2 (w — (2 + 4vy)N — 4vN?)1)).

We take
Yi(t,z) =9Yn, (),  §=1,2,
where
y=N* Ny=N, Ny=N-6N"> N>1
Firstly we give an upper bound for |[11(0) — %2(0)||zs. From the definition of 1;,

(0, ) = 2N]72sei’”NJ’sech(Nj_2sx), j=12.

By this expression we obtain

||w1(0) - wQ(O)”H"‘(R) ~ NslNl _ N2|,7—1/4 — 4.

Next we give a lower bound for |[11(T") —12(T)||zzs. We notice that ¢y, ., concentrates
on {z;|z — ((2 + 4vy)N; — 4N )t| < y~1/2}. Therefore if

(3.1) |((2 4 4v9) Ny, — dawvNDT — (2 + 4vy) Ny — dvN)T| > /2,
then the interaction between 1 (7") and 12(T") is negligible and we can evaluate as

(32) i (T) = pa(D)llmre ~ [or (D) e + [bo2(T) e ~ N5y = C = e.

On the other hand, a simple calculation yields

|((2 4 4vy)Ny — 4vNHT — (2 + 4vy) Ny — dvN3)T|
=T|Ny — Na||2 — 4v(N{ + N1 Ny + N3) + dvy|
~ CT|N; — N3|N? = §TN*25,

Since s < 1/2, for any T'> 0 and 6 > 0, we can choose N so that
4s—2

T
> 5

holds. This implies

5TN2—28 > N28 — 7—1/2
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and (3.1) holds. Therefore we obtain (3.2). This violates the uniform continuity and
completes the proof of Theorem 1.2. O

§4. Stability of standing waves

twt

Py ().
To prove the stability, we use the variational characterization of e"“*(. (x) which is due

In this section, we prove the orbital stability of the standing waves for e

to Cazenave-Lions [2].

Proposition 4.1.  Let

Go={y € o) =, h() = inf L))

where Iy and Iy are defined by (1.4) and (1.6), respectively. Then, we have

5471/2 = {620907(' + y); e,y € R}
Furthermore, let v, satisfy Io(yn) = 4v/% and I1(¢¥n) — Li(¢~). Then, there ezist a
subsequence 1y, and 0,y € R such that ¥, — e, (- +y) in HL.

We prove the H' stability of the standing wave e*“*(., (x) by contradiction argument

due to [2].

Proof of Theorem 1.3. Firstly, we prove the H! stability. Suppose, ¢!y, is
unstable in H'. Then, there exist § > 0, ¢,, € H' and t,, € R, such that

O’i;lefR 160 = € or (- + W)l — 0, eglefR [19n(tn) = €05 (- + )1 > 6,

where 1), is the solution of (1.3) with the initial data v, (0) = ¢,. Since Iy, I; are
conserved under the flow of (1.3), we have ||¢,(tn)|lz2 = ||¢nll2 and I (Vs (t,)) =
I(¢y). Therefore, by Gagliardo-Nirenberg’s inequality, we have

1
10atn (tn)|[72 = 201 (¥ () + lelbn(tn)lm

< 211(én) + Cl0atn (tn)] 22 |l¢nl |22

This implies that ||¢,(t,)||g: is bounded.
Now, set
oy llz2

~n = ———U,(ty).
Vn = gl V)

Then, ||/ 12 = ||| 2. Furthernore

: (el ) :
L(¢y) = I (dn, - -1 Oz (tn)|7d
(0 = 1(60) + 5 (EE —1) [0 (e

1 1,
S A
nilr2
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Since ||énl|z2 — |lo4]lL2, 1(¢n) — Ii(p~) and by, (t,) are bounded in H' and L*, we
have Iy (¢n) — T1(0)- i i

Therefore, by Proposition 4.1, there exists a subsequence ), such that v, —
o (-+y) € 5471/2 in H! for some 6,y € R. However, this is a contradiction with
the assumption and completes the proof of Theorem 1.3 for m = 1. For m > 2, H™
stability of the standing waves for e*“'¢. (x) follows from the induction argument. See
[16] for the detail. O
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