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Abstract

In this paper we want to consider a bilinear space-time estimate for homogeneous Schrédinger equa-
tions. We give an elementary proof for the estimates in Bourgain space, which is in a form of scaling
invariance.

1 Introduction

Consider the homogeneous Schrédinger equations

{iut—Auzo, (r,t) € R" X R, {wt—m:o, (z,t) € R" x R, (1.1)
u(0) = f; v(0) = g. :
Via Fourier transform, the solution v and v can be written as

ut) =e " f and  wu(t) = e Ay, (1.2)

Thus to study the estimates of the product of Schrodinger waves, uwv, is to study the estimates
of the product . .
€_ztAf€_ztAg. (13)

There are many literature investigating on the topic of bilinear estimates for Schodinger
waves. In '98, Ozawa and Tsutsumi [OT] proved an L? estimate for uv with £ derivative for
n =1,
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In 98, Bourgain [Bo] showed a refinements of Strichartz’ inequality for n = 2. If f is
supported on [£| ~ N, g is supported on [£| ~ M, and M << N, then

, , M3
I 2g)ll,, < (57) 1 1elglee (1.5)

In 01, Kenig etc. [CDKS] obtained a bilinear estimate in Bourgain space for nonlinear
Schrodinger equation in two dimension. Let b = 2+. If =1 — (1 —b) < s and ¢ < min (s +
1,25+ 2(1— b)), then

Juv]| xorr S lull o [0l 5o - (1.6)

3

In 03, Tao [T1] obtained a sharp bilinear restriction estimate for paraboloids. Let ¢ > n—::__l,
n

n>2, N >0,and f and g have Fourier transform supported in the region |{| < N. Suppose



that dist(suppf, suppq) > ¢N. Then we have
—q —i n—nt2
le=™ 7 gl sy S N szl (1.7)

In ’05, Burq, Jérard, and Tzvetkov [BGT] derived bilinear eigenfunction estimates on sphere
and on Zoll surfaces. In '09, Keraani and Vargas [KV] showed a bilinear estimate of uv in

L norm, where n > 2. If b € (0, 'Ili-‘rQ)’ then

e fe= g | ntz iy S CUFlllglnes (18)

In ’09, Kishimoto [K] derived an improved bilinear estimate for quadratic Schrodinger equa-
tion in one and two dimensions. The estimate is in a variant of Bourgain space with weighted
norm. In '10, Chae, Cho, and Lee [CCL] proved an interactive estimate of wv in a mixed
norm. Let n > 2. If%:n(l—l), 1<r<2, ¢>1,|s|<1—1 then

T

e =2 |0y, < ClL Al el (19)
Let D, S;, and S_ be the operators with the symbols

A def 4 def 4 def

D=¢l, Sy = |lr|+1¢P], and S_= [[r] - [¢f, (1.10)

respectively.

Theorem 1. Let n > 2. If for j = 1,2,

n—2
60+25++2ﬁ_+T=a1+a2,

Boz0, fo—aj+ ”T_l >0, (1.11)
I R
then Dﬁo Sﬁ+ Sﬁ— e—itAfe—itA <C . )
|prszest( ) oy < OV s loliosy - (112)

Notice that Strichartz Estimate for Homogeneous Schrédinger equation for n = 2 reads

[ull e < W f1le2,

which coincides with the bilinear estimate

ullZa = lluwl2 SIFl2llf]lz2,
when
Bo =By =P- =01 =ay=0.

The estimate is given in the form of scaling invariance. The conditions stated in the theorem
come from the scaling invariance and interactions between frequencies.



The proof of Theorem 1 is based on the ideas of the work of Foschi and Klainerman [FK],
and the work of Klainerman and Machedon [KM], however some modifications for adapting
the case of Schrodinger are required. The purpose of this work is to derive a new estimate
with an elementary proof.

The paper is organized as follows: In Section 2, we prove Theorem 1. In Section 3, we
state and prove some properties which are the technical parts left in the proof of Theorem 1.

2 Bilinear Estimates for Schrodinger waves

We denote the Fourier transform of the function u(t,z) by u(t, ) with respect to the space
variable and by (7, £) with respect to the space-time variables. For simplicity, we call

~  ~ya sop, 98
A = D¥o g g%
We now prove Theorem 1.

Proof. First we compute the Fourier transform of the product e #4 fe~i#4

space variables,

g with respect to

—

e—itAf*e_/i%(f) :/ it|c—n|2 f(f 77) it|n|? ( )dn—/ t(|€—n|2+n|?) J/f\(g ) ( )dn.

Thus its Fourier transform with respect to space-time variables is

/ 57— [€ — nf? — [n?)F( — m(m)dn.

where 6(7 — |€ — n|? — [n|*)dn is viewed as a measure supported on surfaces {n : 7 =
1€ = nl* + [nl*}.
We split the integral into three parts in the following way. First we define a function

of /27 —1
h(y) & +

which will appear in the proof later, see figure 1. Since the equation h(y) = 1/3 has two roots
9+ 6\/5, we denote the two roots by 74 =9 — 6v/2 and Yo =9+ 6v/2. Then we decompose
the n-space into S, U S, U S, see figure 2, where

(2.1)

Se ™ {n: |§|2 < &= >+ > < mle?),
S, & {n 71|€|2§|£—77|2+|77|2§72|£|2}, and (2.2)

ef
S, e < IE—nl + nf?).

Thus we have



Figure 2:

H Db Sm Sﬁ—( it fo—ith > B

u/yﬁ L/) (r = 1€ = n* = [n) F(€ = mg(n)dn
// /¥+K;+/; 3(r = |& = n* = ) £ — n)g(n)dn

Hence it is sufficient to bound each of the above integrals. For simplicity, we denote ®(n) =
7 — & —n|*—|n|?. Using Holder inequality, we can bound the first integral in (2.3) as follows.

e \ [ 8t =l =l = ) Fte = mitayen

2
drdé (2.3)

2

drd§.

2
drde

< [fa [ 220y [ s |ie— i Fie — miap=gon] dndra
< [[{ ] s@mar}fie - e e = miar=gio| ands < €Il ol

provided that

% 5(2(n))
A/ dn < C, forall 7, &. 2.4
5. 1€ — nPPe e 24)



For the second integral we can get the desired bound in the same vain,

2
/ / /5 € — mat)dn| drde < ClF1l o 9] o, (2.5)
provided that (@)
~ 0(P(n
A d C., f 11 . 2.6
/5,, € Py WS € dorall T (2:6)

Notice that we have [ —n| ~ |n| and | — ¢| ~ |¢| on the set S.. Using the fact that
|2|? = 2z, the Fubini theorem, and change of variables, we can bound the third integral in
(2.3) as follows.

/ / / : )J (&= m)(n)dn
= / / A / 3(®(n)) F(€ — m)G(n)dn / 5(B(9)) (€ — 9)()dipdrde

~

B / / / As(® — )&= mI) F(2)F(& — )dpdnde

. <///A5 |90||77| “1+a2 |90|a? )n”ﬁ("rz)rdwdndé)lm.
(/// = el

Hence we have the following bound

’\6 a7\ ap~ 2
/// |90||"rz| a1+a2 S‘I@I LE Ml g(m)| dedn < O\l FI2e 119150

provided that

def

1/2
€ — | (€ — @) — n]*5(€ — 'rz)’ dsodnd€> :

70(2(n) — (€ — )
/C A (T d¢ < O, for all ¢ and n, (2.7)

def
where T, = {€: [E— P+ |ol?, [E=n?+[n]* > 1[¢]*} and T = [E— > +]|p|* = [E—n]*+|n|>.

Therefore the proof of the Theorem is complete once the claims, (2.4), (2.6), and (2.7) are
proved. O

Remark 1. What left to be done are the following estimates. Claims: There is a constant
C which is independent of T, &, v, and n such that the following inequalities hold.

~ e ]2 ]2
D2ﬂ0§?f+§35— / 5(T|£ —|§77|2‘Z||77|2a|2n| ) dn < C, forall T, €&. (2.8)

~oscesr a2 [ 0T — 1€ —m* — )
DZ’BOSfJ’S_ﬂ /S € — 2 [ dn < C, forall 1, ¢&. (2.9)
b

5



- _ 2 2 _ _ 2 2
/ B goe goo- 0016 = ol J(r||s|0|| : ==V se < por atp and, (210
. pln|)errez

where 7 = |€ — o> + |p]* = | —n|* +|n|®. The proofs of the above claims will be given in the
next section.

3 Proofs of Claims

Now we are ready to prove the claims. First we prove the claims which come from the proof
of bilinear estimates for uwv.

. 1
Lemma 1 (Claim (2.8)). Let S, = {n: §|€|2 <P +1E=n> <nlEP}. If Bo+28+ +26- +

n—2
2

= a1+ ay and n > 2, then

- N R 2
o — nj=in|=*2

for all T and &.

Proof. We set ( e R(n — g), where R is the rotation such that R = |€|e, then we have

the indentities

1 1
= nl=[¢ = Slelea| and ] = [¢ + Slelea]. (3.2
Then we use spherical coordinates

¢= (X1, X0) = pleos ¢, sinpw') = pu, (3.3)

where w € S™ and W’ € S"!, so that we can rewrite the integral in (3.1) as

S — 1€ =nl2 = |nl? 1 n—1
/ (T |£ 27]| . |7]| )d’f]:/ - - Po d(.d, (34)
. &= mPerlnfPe [€ = nlPerin]?e= | = 4po|

1
where p = 1(27’ — |£]?). Using the identity dw = (sin ¢)" 2d¢dw’, the identities for |¢ — 7|

and |n| in (3.2), and the change of variables p = cos ¢, we can simplify the integral further.

L s iy
0~ < sin” " pdopdw ~ dp, 3.5
[ e ret | T g 69

2€lpo _ I€lv/27 — |€? 1
— . _

Notice that 0 < A < — under the restriction = =

where \ =

w

.
1€ —nl* + [n]* for n € S,.



We set 7 % y|¢|2 which implies that A =

V2vy—1
2

which implies that 7 ~ [£]%, and py = 5/27 — 1¢| < [€]. Thus we can estimate the quantity
in (3.1) as follows.

1
= h(y). Then we have 3 <v<m

7520 G284 G26- / S(r— &=l —Inf?)
R e R

26 [/~ —1 n=2 r1 1 — p2)(n=3)/2
|7|—1’ (—7 |§|) / 1) dp.

dn

< |£|2,30+4ﬁ++4ﬁ——201—26v2

2 _1 (T4 Ap)er (1 — Ap)es
-2
The above quantity is bounded if we require that n > 2 and fy + 26, + 20_ + n 5~
a1 + ao. O
Lemma 2 (Claim (2.9)). Let Sy = {n: nl§]* < > +[§ —nl* < »l*}. If
n—2
ﬁo+25++2ﬁ—+T=041+042,
n—1 n—1
7122, 5— 204]'— 9 ﬁ— > 0, and (5—7aj) %(07 9 )7
for 5 =1,2, then
N 5 _ _ 2 _ 2
DQBOS'\_ZF/B-F‘S/?Eﬁ—/ (T |£ 277| . |77| )d,’,/ S 07 (36)
s, €= n[*r|n[

for all T and &.

Proof. As in the proof of Lemma 1, we set def R(n — g), where the rotation RE = [€|ey,
and . ;
¢ = (X1, X,) = pleos ¢, singw') = pu. (3.7)

Using the above, the identity dw = (sin ¢)"2d¢dw’, and the identities for |£ —n| and |n|, we
can rewrite the integral in (3.6) as

/ O —Jg—nl* —|nP*) - 06~ /1 (1—p) P
s, & — mlPeain|?e roatez [y (14 Ap)ei(l — Ap)ez

dp, (3.8)

1 2 27 — |€]2
where p? = 1(27' — |€]?), the change of variables p = cos ¢, and \ = |§_|’00 _ &2 — ¢ .

1
Again we set T def € |2 and then we have v; < v < 7, and 3 < )\ < 1 under the restriction
7 =& —n*+|nl? for n € Sy. These imply that

el (=P (=), and =5/ Tle] ~ I (39)



Now we can combine the above observations to simplify the quantity in (3.1) as follows.

~ s26- [ O(T =€ =n[* = nl*)
poaspego- [ ;
’ s, &= nl*n[?
28_ 1 _ 2\(n—3)/2
v — 1‘ / (1=p) dp.
1 (14 Ap)er(l — Ap)

To bound the above integral we split it into two parts, one is over [-1, 0] while the other is
over [0, 1]. Since the estimates for the two parts are the same, thus we only prove the second

part. First we have
1 _ 2\(n—3)/2 L1 _ »\(n=3)/2
/ (1—p% i N/ (A=p)" " (3.10)
o (L4 Ap)er(l—Ap)e o (L—=Ap)*

~ |£|250+4ﬁ++4,3—+n—2—2a1—2042

Using the change of variables p = —(1 — A)g + A, the integral is changed into

A .
(1— )7 Flee /H L+
1 (A4 Ag)e

Again we split the above integral into two parts. For the first part, we have

1 (n—3)/2
/ (1+4q) iy < C.
L (T A+ Ag)ee

provided that n > 2. For the second part, we have
(I=XN""T1 for ay< =

5 (n—3)/2
/1 * (1+9) dq ~ [log(1 = A)| for ap =24,
1 (T4+ A+ A

1
C for ag> nT,

Thus we get
1 1 — p2)(n—=3)/2
(1— )\)ﬁ—/ (1-p%) dp
o (L+Ap)*(1 — Ap)e=
(1= NPT (1= )" Fe for ay < 251,
~ C(l — )\),3—4-"7_1—&2 + (1 —_ )\)5—+”T_1—a2| log(l _ )\)| for ay= n_—17

P
(1= NP+ 7920 for ay> a1

Hence the above integral is bounded if (3, az) is in the set Sy N (S U S3 U Sy), where

n—1

Sy déf{(ﬁ—,om) D> an — b S déf{(ﬁ—vo@) - 20,00 < - ; 1}’

n—1 n —

1
5 , Qg = 5 }, and Sy

S dg{(ﬁ—, ag): o> ap—

={(B-,2): f-> an—

, Qg >

2 2

def n—1 n—1

}.



Therefore the quantity in (3.6) is bounded if we require that

-2
ﬁo+25++2ﬁ—+nT=041+042,

n;17 5—2()’ and (ﬁ—a()é?)%(()?n;l)

The conditions for a; is the same as that of as. This completes the proof. O

’)’LZQ, ﬁ—2a2_

Remark 2. Notice that for the integral over S, we have 0 < A < %, e <, T =7|¢?, and
po = 27 — 1|§|/2 ~ /7I€|. If we follow the same path to estimates it, then we obtain

5260 G2+ G26- / O(r =€ =nl* = nl*)
T Js 1Pyl

~ |§ | 2B0+48++46—+n—2—2a1 22 725+ +28_ 4252 —a1—az /

dn

3

! (1—u?)"®
1 (T+ Ap)or(1 — Ap)ez

dp < C,
(3.11)

n_
— 1 — Q9 S 0.

-2
provided that By + 284 +20_+ nT =ai+ag, n>2 and 20, +20_+
The last condition implies that By > 0 which we shall see that this is not good enough.

Lemma 3 (Claim (2.10)). Let To(n, @) < {& 1 € = nl2 + |02, [€ = o2 + |o]> > 2l¢2}. If

n —

-2
ﬁo+25++2ﬁ_+nT=a1+a2andﬁo>— , then
. _ 2 2 _ _ 2 _ 2
T (lel[n[)er+as

where T = |€ — > + |p]? = |€ — 9> + |n%.

Proof. Let ®(€) % |¢ — o> + |¢ — |€ = n)> — [n]? and P(p,n) < {& : ®(€) = 0}. Since

1€ — o> + |¢|* > 12|&|* and v, > 16, thus we have |p| + |£ — ¢| > 4]¢| and analogously we
have [n[ + [§ —n| = 4[¢].
Using triangle inequality, we get

3 5) 3 5
Il < 1€ —=nl < zInl and o] < [§—¢| < Z[el,
5) 3 5
and then 5
(€] = g min{lnl, € =nl. lol, 1€ = ¢l}
On the plane P we have |¢ — o> + |¢]* = |¢ — n|> + |n|* which implies that

1€ — | ~ || ~ & —=n]~|n].

Set (£ —n) - (—n) o |& —n||n| cos @, through some calculations we can show that

V5 V2
— > — = COS

cosf > cosby = 3 5 %

9



nl 8] < 5l€ —l

Figure 3:

Hence the angle between —n and & — 7 is restricted on 0 < 6 < 0y < %

Without loss of generality, we assume || > |n|. Follow the idea used in [FK], we decom-
N

pose S"7% = U 2;, where Q; are disjoint and the angle between any two unit vectors lie in
j=1
the same €; is less than 6y, and N is a finite integer. Denote

I, aof {f e R"/{0}: % € Qj} y X 4 characteristic function of';, f; aof x; f, and g; aof X; 9.

N N

Thus we have f = Z fjand g = Z gj- Then we can split the integral into finitely many
j=1 j=1
pieces,

H/D%Sﬁ*sf‘é(f — & =P = [n®)F(& = n)g(n) dn

< X
Gk

There exists a cone I' with an aperture 26, such that n € I'y CT'and { —n e I'; C —T.

L2(r=16]¢?)

/ DPS% 8% 8(7 — [€ =l — ) (€ — mgi(n) dn

L2(r>16|¢[2, Oo<r/4)

2

H / Dh S35 6(r — [€ — nf* — %) Fi(€ — )i(n) dn

L2(1>16¢|?)
= [[[ st s@en e - naoh @il - o) do dn de

wheren e I'y C I, £ —nel, Cc I, oeI; C I, and { —¢ € 'y, C I". Through
elementary argument, we have the following identity, see [H],

o 028+ 26—
D2'BOSQB+SEB_ 5(®(€)) d¢ = DQIB S+ SZ d/“L 3.13
[ st (Tl vz / (el [VaE) (3.13)

10



[ with

2610 <

to| =

Figure 4:

where dy is the surface measure on the surface {£ : ®(§) = 0}. The facts £ — ¢ € ' and
& —n € =TI imply that |[V®(&)| ~ |p| since

V)] = |=2(¢ = n)l = 2Vl + [n]> = 20 -7 ~ |¢].
Let £ be the projection of £ onto the plane P, see figure 5,

D) =0

Figure 5:
g/défg_ﬂ i O |
o —nlle —nl’
e+

and Pg%q the projection of onto the plane P,

p A YEn _ ptn p-n p—n
etn = - : ;
- 2 2 Je—nlle—mn|

Denote the rotation taking ¢ — 7 to |¢ —nle; by R and the change of coordinates

,/CiéfR(g_“OTM) © X, Xy, e, X

11



Thus we get €| < €] and

O R e R s R G L =)

= Vv=rv-e 61:()(17)(% "'aXn)_(Xlaov 70):(()’ X27 "'7Xn)a
and then d¢’ = dX. dX, = du. Hence we obtain §(®(&))d¢ = e dE
o MKIGIREE
Therefore we can now bound the integral (3.13) as follows.
28+ 28— §(P(&
/ 0l — ol + ol + €| 1€ = ol + foft — pe| " 2ABE)_
Plne), €1<31n] (leollm])

!
~ |S0|45++4ﬁ——201—26v2 / |€|2ﬁ0§_
€l<lel ]

If By > 0, then we get the bound

Lum%%s/ (02 e’ ~ ||0tn-1
<l¥

€<l

If By < 0, then we get the bound

/ €17 d¢’ < / €200 dg’ ~ [ oot
1€ [<]¢l €71 <]l

provided that 2fj +7 — 1 > 0. Finally combining the above results we have
(3.13) < || 19+ 18- ~201-202+4 260402 < (7

provided that 28, + 26_ + Gy + ”7_2 = ay +ag and 28y +n — 1 > 0. This completes the
proof. O
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