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Spectral statistics for the discrete Anderson model in

the localized regime

By

Francois Germinet * and Frédéric Klopp **

Abstract

We report on recent results on the spectral statistics of the discrete Anderson model in

the localized phase obtained in [6]. In particular, we describe the

\bullet locally uniform Poisson behavior of the rescaled eigenvalues,

\bullet independence of the Poisson processes obtained as such limits at distinct energies,

\bullet locally uniform Poisson behavior of the joint distributions of the rescaled energies and

rescaled localization centers in a large range of scales.

\bullet the distribution of the rescaled level spacings, locally and globally in energy,

\bullet the distribution of the rescaled localization centers spacings.

Our results show, in particular, that, for the discrete Anderson Hamiltonian with smoothly
distributed random potential at sufficiently large coupling, the limit of the level spacing dis‐

tribution is that of i.i. \mathrm{d} . random variables distributed according to the density of states of the

random Hamiltonian.

§1. Introduction

On \ell^{2}(\mathbb{Z}^{d}) ,
consider the random Anderson model

H_{ $\omega$}=-\triangle+V_{ $\omega$}
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where -\triangle is the discrete Laplace operator

(-\displaystyle \triangle u)_{n}=\sum_{|m-n|=1}u_{m} for u=(u_{n})_{n\in \mathbb{Z}^{d}}\in\ell^{2}(\mathbb{Z}^{d})

and V_{ $\omega$} is the random potential

(V_{ $\omega$}u)_{n}=$\omega$_{n}u_{n} for u=(u_{n})_{n\in \mathbb{Z}^{d}}\in\ell^{2}(\mathbb{Z}^{d}) .

We assume that the random variables ($\omega$_{n})_{n\in \mathbb{Z}^{d}} are independent identically distributed

and that their distribution admits a compactly supported bounded density, say g.

It is then well known (see e.g. [9]) that

\bullet there exists  $\Sigma$ :=[S_{-}, s_{+}]=[-2d, 2d]+supp g \subset \mathbb{R} such that, for almost every

 $\omega$=($\omega$_{n})_{n\in \mathbb{Z}^{d}} ,
the spectrum of H_{ $\omega$} is equal to  $\Sigma$ ;

\bullet for some  S_{-}<s_{-}\leq s_{+}<s_{+} ,
the intervals I_{-}=[S_{-}, s_{-} ) and I_{+}=(s_{+}, s_{+} ] are

contained in the region of complete localization for H_{ $\omega$} ,
in particular, I_{-}\cup I_{+} con‐

tains only pure point spectrum associated to exponentially decaying eigenfunctions;
for the precise meaning of the region of complete localization, we refer to [1, 9, 5];
if the disorder is sufficiently large or if the dimension d=1 then, one can pick

 I_{+}\cup I_{-}= $\Sigma$ ; define  I=I_{+}\cup I_{-} ;

\bullet there exists a bounded density of states, say  E\mapsto v(E) ,
such that, for any contin‐

uous function  $\varphi$ : \mathbb{R}\rightarrow \mathbb{R}
,

one has

(1.1) \displaystyle \int_{\mathbb{R}} $\varphi$(E)v(E)dE=\mathrm{E}(\langle$\delta$_{0},  $\varphi$(H_{ $\omega$})$\delta$_{0}\rangle) .

Here, and in the sequel, \mathrm{E} denotes the expectation with respect to the random

parameters.

Let N be the integrated density of states of H_{ $\omega$} i.e. N is the distribution function

of the measure v(E)dE . The function v is only defined E almost everywhere. In

the sequel, unless we explicitly say otherwise, when we speak of v(E) for some E,
we mean that the non decreasing function N is differentiable at E and that v(E)
is its derivative at E.

We now describe the local level and localization center statistics, the level spacing
statistics and the localization center spacings statistics in I.

§2. The local level statistics

For L\in \mathrm{N} ,
let  $\Lambda$=$\Lambda$_{L}=[-L, L]^{d}\cap \mathrm{Z}^{d}\subset \mathrm{Z}^{d} be a large box and H_{ $\omega,\ \Lambda$} be the

operator H_{ $\omega$} restricted to  $\Lambda$ with periodic boundary conditions. Let | $\Lambda$| be the volume

of  $\Lambda$ i.e. | $\Lambda$|=(2L+1)^{d}.
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H_{ $\omega$}( $\Lambda$) is an | $\Lambda$|\times| $\Lambda$| real symmetric matrix. Let us denote its eigenvalues ordered

increasingly and repeated according to multiplicity by  E_{1}( $\omega$,  $\Lambda$)\leq E_{2}( $\omega$,  $\Lambda$)\leq\cdots\leq

 E_{| $\Lambda$|}( $\omega$,  $\Lambda$) .

Let E_{0} be an energy in I such that v(E_{0})>0 . The local level statistics near E_{0} is

the point process defined by

(2.1) ---( $\xi$, E_{0},  $\omega$,  $\Lambda$)=\displaystyle \sum_{j=1}^{| $\Lambda$|}$\delta$_{$\xi$_{j}(E_{0}, $\omega,\ \Lambda$)}( $\xi$)
where

(2.2) $\xi$_{j}(E_{0},  $\omega$,  $\Lambda$)=| $\Lambda$|v(E_{0})(E_{j}( $\omega$,  $\Lambda$)-E_{0}) , 1\leq j\leq| $\Lambda$|.

The main result of [12] reads

Theorem 2.1 ([12]). Let E_{0} be an energy in I such that v(E_{0})>0 . When

| $\Lambda$|\rightarrow+\infty ,
the point process  $\Xi$(E_{0},  $\omega$,  $\Lambda$) converges weakly to a Poisson process on \mathrm{R}

with intensity 1.

§2.1. Uniform Poisson convergence

In [6], we obtain a uniform version of Theorem 2.1 i.e. a version that holds uniformly
over an energy interval of size asymptotically infinite compared to | $\Lambda$|^{-1}.
Fix 1> $\beta$>(d+1)/(d+2) . Let I_{ $\Lambda$}(E_{0},  $\beta$) be the interval centered at E_{0} of length

2| $\Lambda$|^{- $\beta$} . Let the number of eigenvalues of H_{ $\omega$}( $\Lambda$) inside I_{ $\Lambda$}(E_{0},  $\beta$) be equal to N_{ $\Lambda$}( $\omega$, E_{0}) .

For 1\leq j\leq N_{ $\Lambda$}( $\omega$, E_{0})-1 ,
define the renormalized eigenvalues $\xi$_{j}( $\omega$,  $\Lambda$) by (2.2) for

E_{j}\in I_{ $\Lambda$}(E_{0},  $\beta$) . Hence, for all 1\leq j\leq N_{ $\Lambda$}( $\omega$, E_{0})-1 ,
one has $\xi$_{j}( $\omega$,  $\Lambda$)\in| $\Lambda$|^{1- $\beta$}\cdot[-1, 1].

We then prove

Theorem 2.2 ([6]). Let E_{0} be an energy in I such that v(E_{0})>0.
Then, there exists  $\delta$>0 ,

such that, for any sequences of intervals I_{1}=I_{1}^{ $\Lambda$} ,
. . .

, I_{p}=I_{p}^{ $\Lambda$}
in | $\Lambda$|^{1- $\beta$} [−1, 1] such that

(2.3) \displaystyle \inf_{j\neq k}dist(I_{j}, I_{k})\geq e^{-| $\Lambda$|^{ $\delta$}},
one has, for any sequences of integers k_{1}=k_{1}^{ $\Lambda$}, \cdots, k_{p}=k_{p}^{ $\Lambda$}\in \mathrm{N}^{p},

\displaystyle \lim_{| $\Lambda$|\rightarrow+\infty}|\mathbb{P}(\left\{\begin{array}{lllll}
 & \#\{j & $\xi$_{j}( $\omega,\ \Lambda$)\in & I_{1}\}= & k_{1}\\
 $\omega$ & \vdots &  & \vdots & \\
 & \#\{\dot{J} & $\xi$_{j}( $\omega,\ \Lambda$)\in & I_{p}\}= & k_{p}
\end{array}\right\})-e^{-|I_{1}|}\displaystyle \frac{|I_{1}|^{k_{1}}}{k_{1}!} . . . e^{-|I_{p}|}\displaystyle \frac{|I_{p}|^{k_{p}}}{k_{p}!}|=0.
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Note that, in Theorem 2.2, we do not require the limits

\displaystyle \lim_{| $\Lambda$|\rightarrow+\infty}e^{-|I_{1}|}\frac{|I_{1}|^{k_{1}}}{k_{1}!}=\lim_{| $\Lambda$|\rightarrow+\infty}e^{-|I_{1}^{ $\Lambda$}|}\frac{|I_{1}^{ $\Lambda$}|^{k_{1}^{ $\Lambda$}}}{k_{1}^{ $\Lambda$}!} ,
. . .

,

\displaystyle \lim_{| $\Lambda$|\rightarrow+\infty}e^{-|I_{p}|}\frac{|I_{p}|^{k_{p}}}{k_{p}!}=\lim_{| $\Lambda$|\rightarrow+\infty}e^{-|I_{p}^{ $\Lambda$}|}\frac{|I_{p}^{ $\Lambda$}|^{k_{p}^{ $\Lambda$}}}{k_{p}^{ $\Lambda$}!}
to exist.

Clearly, Theorem 2.1 is a consequence of the stronger Theorem 2.2. The main im‐

provement over the statements found in [12] is that the interval over which the Poisson

statistics holds uniformly is much larger. We also note that Theorem 2.2 gives the

asymptotics of the level spacing distribution over intervals I_{ $\Lambda$} of size | $\Lambda$|^{-(d+1)2)}
(see section 3.4 and, in particular, Theorem 3.6). It also gives the asymptotic indepen‐
dence of the local Poisson processes defined at energies E_{ $\Lambda$} and E_{ $\Lambda$}' such that

|E_{ $\Lambda$}-E_{0}|+|E_{ $\Lambda$}'-E_{0}|\leq| $\Lambda$|^{- $\beta$} and | $\Lambda$| |E_{ $\Lambda$}-E_{ $\Lambda$}'|_{ $\Lambda$\rightarrow \mathbb{Z}^{d}}\rightarrow+\infty
We refer to the next section for more general results on this asymptotic independence.
It is natural to wonder what is the largest size of interval in which a result like Theo‐

rem 2.2. We do not know the answer to that question.

§2.2. Asymptotic independence of the local processes

Once Theorem 2.1 is known, it is natural to wonder how the point processes ob‐

tained at two distinct energies relate to each other. We prove the following

Theorem 2.3 ([6,10 Assume that the dimension  d=1 . Pick E_{0}\in I and

E\'{O}\in I such that E0 = EÓ, v(E_{0})>0 and  $\nu$ (EÓ) >0.

When | $\Lambda$|\rightarrow+\infty ,
the point processes  $\Xi$(E_{0},  $\omega$,  $\Lambda$) and ---(E_{0}',  $\omega$,  $\Lambda$) , defined in (2.1),

converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the

Lebesgue measure. That is, for U+\subset \mathbb{R} and U_{-}\subset \mathbb{R} compact intervals and \{k+, k_{-}\}\in
\mathbb{N}\times \mathbb{N} , one has

\displaystyle \mathbb{P}(\{ $\omega$;\left\{\begin{array}{llll}
\#\{j & $\xi$_{j}(E_{0}, $\omega,\ \Lambda$)\in & U_{+}\}= & k+\\
\#\{j & $\xi$_{j}(E_{0}', $\omega,\ \Lambda$)\in & U_{-}\}= & k_{-}
\end{array}\right\}) $\Lambda$\displaystyle \rightarrow \mathbb{Z}^{d}\rightarrow e^{-|U_{+}|}\frac{|U_{+}|^{k_{+}}}{k_{+}!}\cdot e^{-|U_{-}|}\frac{|U_{-}|^{k-}}{k_{-}!}.
So we see that, in the localized regime, in dimension 1, at distinct energies, the local

eigenvalues behave independently from each other. Theorem 2.3 is a consequence of a

decorrelation estimate for distinct energies that is proved in [10]. It is natural to expect

that this decorrelation estimate stays true and, hence, that Theorem 2.3 stays true, for

arbitrary dimensions. Nevertheless, we are only able to prove



Spectral statistics 1N the localized regime 15

Theorem 2.4 ([6,10 Pick E_{0}\in I and EÓ \in I such that |E_{0}- EÓ |>2d,
v(E_{0})>0 and  $\nu$ (EÓ) >0.

When | $\Lambda$|\rightarrow+\infty ,
the point processes  $\Xi$(E_{0},  $\omega$,  $\Lambda$) and ---(E_{0}',  $\omega$,  $\Lambda$) , defined in (2.1),

converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity
1.

Theorems 2.3 and 2.4 naturally lead to wonder how far the energies E_{0} and EÓ need to

be from each other with respect to the scaling used to renormalize the eigenvalues for

the asymptotic independence to still hold.

We prove

Theorem 2.5 ([6]). Pick E_{0}\in I such that v(E_{0})>0 . Assume moreover that

the density of states v is continuous at E_{0}.

Consider two sequences of energies, say (E_{ $\Lambda$})_{ $\Lambda$} and (E_{ $\Lambda$}')_{ $\Lambda$} such that

1. one has E_{$\Lambda$_{ $\Lambda$\rightarrow \mathbb{Z}^{d}}^{\rightarrow}}E_{0} and E_{$\Lambda$_{ $\Lambda$\rightarrow \mathbb{Z}^{d}}}'\rightarrow E_{0},
2. one has | $\Lambda$| |E_{ $\Lambda$}-E_{ $\Lambda$}'|_{ $\Lambda$\rightarrow \mathbb{Z}^{d}}\rightarrow+\infty.

Then, the point processes  $\Xi$(E_{ $\Lambda$},  $\omega$,  $\Lambda$) and---(E_{ $\Lambda$}',  $\omega$,  $\Lambda$) , defined in (2.1), converge weakly

respectively to two independent Poisson processes on \mathbb{R} with intensity 1.

A crucial tool in proving Theorem 2.5 are the generalized Minami estimates proved
in [4] that can also be interpreted as local decorrelation estimates. Theorem 2.5 shows

that, in the localized regime, eigenvalues that are sufficiently far away from each other

but still close, i.e. that are separated by a distance that is asymptotically infinite when

compared to the mean spacing between the eigenlevels, behave as independent random

variables. There are no interactions except at very short distances.

Assumption (2) can clearly not be omitted in Theorem 2.5; it suffices to consider e.g.

E_{ $\Lambda$}=E_{ $\Lambda$}'+a| $\Lambda$|^{-1} to see that the two limit random processes are obtained as a shift

from one another.

To complete this section, we note again that, when |E_{ $\Lambda$}'-E_{ $\Lambda$}|=o(| $\Lambda$|^{-d/(d+2)}) ,
Theo‐

rem 2.5 is a consequence of Theorem 2.2.

§3. Localization center statistics

Recall that E_{1}( $\omega$,  $\Lambda$)\leq E_{2}( $\omega$,  $\Lambda$)\leq\cdots\leq E_{| $\Lambda$|}( $\omega$,  $\Lambda$) denote the eigenvalues of H_{ $\omega,\ \Lambda$}
ordered increasingly and repeated according to multiplicity.

To E_{j}( $\omega$,  $\Lambda$) ,
we associate a normalized eigenvector of H_{ $\omega,\ \Lambda$} , say $\varphi$_{j}( $\omega$,  $\Lambda$) . The

components of the vector $\varphi$_{j}( $\omega$,  $\Lambda$) are denoted by ($\varphi$_{j}( $\omega$,  $\Lambda$; $\gamma$))_{ $\gamma$\in $\Lambda$}.
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For  $\varphi$\in\ell^{2}( $\Lambda$) ,
define the set of localization centers for  $\varphi$ as

 C( $\varphi$)=\displaystyle \{ $\gamma$\in $\Lambda$; $\varphi$( $\gamma$)=\max| $\varphi$($\gamma$')|\}$\gamma$'\in$\Lambda$^{\cdot}
One has

Lemma 3.1. For any p>0 ,
there exists C_{p}>0 such that, with probability

at least 1-| $\Lambda$|^{-p} , if E_{j}( $\omega$,  $\Lambda$) is in the localized regime i.e. if E_{j}( $\omega$,  $\Lambda$)\in I then the

diameter of C($\varphi$_{j}( $\omega$,  $\Lambda$)) is less than C_{p}\log| $\Lambda$|.

Hence, in the localized regime, localization centers for an eigenfunction can be at most

as far as Clog | $\Lambda$| from each other. From now on, a localization center for a function

 $\varphi$ will denote any point in the set of localization centers  C( $\varphi$) and let x_{j}( $\omega$,  $\Lambda$) be a

localization center for $\varphi$_{j}( $\omega$,  $\Lambda$) .

§3.1. Uniform Poisson convergence for the joint

(energy,center)−distribution

We now place ourselves in the same setting as in section 2.1. We prove

Theorem 3.2. Let E_{0} be an energy in I such that v(E_{0})>0.
Then, there exists  $\delta$>0 ,

such that,

\bullet for any sequences of intervals  I_{1}=I_{1}^{ $\Lambda$} ,
. . .

, I_{p}=I_{p}^{ $\Lambda$} in | $\Lambda$|^{1- $\beta$}\cdot[-1, 1] satisfy ing (2.3),

\bullet for any sequences of cubes  C_{1}=C_{1}^{ $\Lambda$} ,
. . .

, C_{p}=C_{p}^{ $\Lambda$} in [-1/2, 1/2]^{d}

one has, for any sequences of integers k_{1}=k_{1}^{ $\Lambda$}, \cdots, k_{p}=k_{p}^{ $\Lambda$}\in \mathbb{N}^{p},

\displaystyle \lim_{| $\Lambda$|\rightarrow+\infty}|\mathbb{P}(\left\{\begin{array}{ll}
 & \#\{n;_{x_{n}/L\in C_{1}}^{$\xi$_{n}( $\omega,\ \Lambda$)\in I_{1}}\}=k_{1}\\
 $\omega$ & \vdots\vdots\\
 & \vdots\#\{n;_{x_{n}/L\in C_{p}}^{$\xi$_{n}( $\omega,\ \Lambda$)\in I_{p}}\}=k_{p}
\end{array}\right\})-\displaystyle \prod_{j=1}^{p}e^{-|I_{j}||C_{j}|}\frac{(|I_{j}||C_{j}|)^{k_{j}}}{k_{j}!}|=0
where x_{n}( $\omega$)=x_{n}( $\omega,\ \Lambda$_{L}) is the localization center associated to the eigenvalue E_{n}( $\omega,\ \Lambda$_{L})=
E_{0}+L^{d}$\xi$_{n}( $\omega$,  $\Lambda$) .

This result generalizes the results of [8, 14].
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§3.2. Covariant scaling joint (energy,center)−distribution

Fix a sequence of scales \ell=(\ell_{ $\Lambda$})_{ $\Lambda$} such that

(3.1) \underline{\ell_{ $\Lambda$}} \rightarrow +\infty and \ell_{ $\Lambda$}\leq| $\Lambda$|^{1/d}
\log| $\Lambda$|| $\Lambda$|\rightarrow+\infty

Pick  E_{0}\in I so that v(E_{0})>0 . Consider the point process

$\Xi$_{ $\Lambda$}^{2}( $\xi$, x;E_{0}, \displaystyle \ell)=\sum_{j=1}^{| $\Lambda$|}$\delta$_{l $\nu$(E_{0})(E_{j}( $\omega,\ \Lambda$)-E_{0})\ell_{ $\Lambda$}^{d}}( $\xi$)\otimes$\delta$_{x_{j}( $\omega$)/\ell_{ $\Lambda$}}(x) .

The process is valued in \mathbb{R}\times \mathbb{R}^{d} ; actually, if c\ell_{ $\Lambda$}\geq| $\Lambda$|^{1/d} ,
it is valued in \mathbb{R}\times(-c, c)^{d}.

Assuming that the scales (\ell_{ $\Lambda$})_{ $\Lambda$} are chosen so that the limits exists, define

(3.2) c_{\ell}:= \displaystyle \lim | $\Lambda$|^{1/d}\ell_{ $\Lambda$}^{-1}\in[1, +\infty].
| $\Lambda$|\rightarrow+\infty

We prove

Theorem 3.3 ([6]). The point process $\Xi$_{ $\Lambda$}^{2}( $\xi$, x;E_{0}, \ell) converges weakly to a Pois‐

son process on \mathbb{R}\times(-c\ell, c_{\ell})^{d} with intensity 1.

In the case \ell_{ $\Lambda$}=| $\Lambda$|^{1/d} ,
the result of Theorem 3.3 was obtained in [8] and it is a

consequence of Theorem 3.2 (see also [15, 14]). In general, we see that, once the energies
and the localization centers are scaled covariantly, the convergence to a Poisson process

is true at any scale that is essentially larger than the localization width. The scaling
we introduce is very natural; it is the one prescribed by the Heisenberg uncertainty

principle: the more precision we require in the energy variable, the less we can afford in

the space variable. In this respect, the energies behave like a homogeneous symbol of

degree d . This is quite different from what one has in the case of the Laplace operator.

Let us note that for the process $\Xi$_{ $\Lambda$}^{2}( $\xi$, x;E_{0}, \ell) one can prove analogues of Theo‐

rem 2.2, 2.3, 2.4, 2.5 and 3.2.

§3.3. Non‐covariant scaling joint (energy,center)−distribution

One can also study what happens when the energies and localization centers are

not scaled covariantly. Consider two sequences of scales, say \ell=(\ell_{ $\Lambda$})_{ $\Lambda$} and \ell'=(\ell_{ $\Lambda$}') .

Pick E_{0}\in I so that v(E_{0})>0 . Consider the point process

$\Xi$_{ $\Lambda$}^{2}( $\xi$, x;E_{0}, \displaystyle \ell, \ell')=\sum_{j=1}^{| $\Lambda$|}$\delta$_{l $\nu$(E_{0})(E_{j}( $\omega,\ \Lambda$)-E_{0})\ell_{ $\Lambda$}^{d}}( $\xi$)\otimes$\delta$_{x_{j}( $\omega$)/\ell_{ $\Lambda$}'}(x) .

Then, one proves
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Theorem 3.4 ([6]). Assume the sequences of increasing scales \ell=(\ell_{ $\Lambda$})_{ $\Lambda$} and

\ell'=(\ell_{ $\Lambda$}')_{ $\Lambda$} satisfy (3.1) and (3.2) for respectively the constants c_{\ell} and c_{\ell'} . Assume that

(3.3) if\ell_{L}=o(L) then \underline{\ell_{$\Lambda$_{L+l_{L}}}} \rightarrow 1 and \underline{\ell_{$\Lambda$_{L+l_{L}}}'} \rightarrow 1.

\ell_{$\Lambda$_{L}} | $\Lambda$|\rightarrow+\infty \ell_{$\Lambda$_{L}}' | $\Lambda$|\rightarrow+\infty

Let  J and C be bounded measurable sets respectively in \mathbb{R} and (-c_{\ell'}, c_{\ell'})^{d}\subset \mathbb{R}^{d} . One

has

1. if, for some  $\rho$>0 ,
one has \displaystyle \frac{\ell_{ $\Lambda$}}{\ell_{ $\Lambda$}}\leq| $\Lambda$|^{- $\rho$} , then  $\omega$ ‐almost surely, for  $\Lambda$ sufficiently

large,

\displaystyle \int_{J\times C}$\Xi$_{ $\Lambda$}^{2}( $\xi$, x;E_{0}, \ell, \ell')d $\xi$ dx=0.
2. if, for some  $\rho$>0 ,

one has \displaystyle \frac{\ell_{ $\Lambda$}}{\ell_{ $\Lambda$}}\geq| $\Lambda$|^{ $\rho$} , then  $\omega$ ‐almost surely,

(\displaystyle \frac{\ell_{ $\Lambda$}}{\ell_{ $\Lambda$}'})^{-d}\int_{J^{-}}-2( $\xi$, x;E_{0}, \ell, \ell')d $\xi$ dx_{| $\Lambda$|}\rightarrow|J| |C|.
Theorem 3.4 proves that the local energy levels and the localization centers become

uniformly distributed in large energy windows if one conditions the localization centers

to a cube of much smaller side‐length. On the other hand, for a typical sample, if one

looks for eigenvalues in an energy interval much smaller than the correctly scaled one

with localization centers in a cube, then, asymptotically, there are none.

Under assumption (3.1), if one replaces the polynomial growth or decay conditions on the

ratio of scales by the condition that they tend to 0 or \infty
,

or if one omits condition (3.3),
the results stays valid except for the fact that the convergence is not almost sure anymore

but simply holds in some  L^{p} norm.

§3.4. The level spacing statistics

Our goal is now to understand the level spacing statistics for eigenvalues near E_{0}\in I.
Pick I_{ $\Lambda$} a compact interval containing E_{0} such that its Lebesgue measure |I_{ $\Lambda$}| stays
bounded.

First, let us note that, by the existence of the density of states and also Theorem 2.1,
if v(E_{0})>0 ,

the mean spacing between eigenvalues of H_{ $\omega$}( $\Lambda$) near E_{0} is of size

\{v(E_{0})| $\Lambda$|\}^{-1} . Hence, to study the statistics of level spacings in I_{ $\Lambda$}, I_{ $\Lambda$} should con‐

tain asymptotically infinitely many energy levels of H_{ $\omega,\ \Lambda$} . Let us study the number of

these levels.
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3.4.1. A large deviation principle for the eigenvalue counting function De‐

fine the random numbers

(3.4) N(I_{ $\Lambda$},  $\omega$,  $\Lambda$):=\#\{j;E_{j}( $\omega$,  $\Lambda$)\in I_{ $\Lambda$}\}.

Write I_{ $\Lambda$}=[a_{ $\Lambda$}, b_{ $\Lambda$}] . We show that N(I_{ $\Lambda$},  $\omega$,  $\Lambda$) satisfies a large deviation principle
Theorem 3.5. Fix $\rho$'\in(0,1/(1+2d)) . Then, there exists  $\delta$>0 small such

that, if (I_{ $\Lambda$})_{ $\Lambda$} is a sequence of compact intervals in the localization region I satisfy ing

N(I_{ $\Lambda$})(\log| $\Lambda$|)^{1/ $\delta$} \rightarrow 0, N(I_{ $\Lambda$})| $\Lambda$|^{1-l $\nu$} \rightarrow +\infty,
| $\Lambda$|\rightarrow+\infty | $\Lambda$|\rightarrow+\infty

(3.5)
 N(I_{ $\Lambda$})|I_{ $\Lambda$}|^{-1-$\rho$'} \rightarrow +\infty.

| $\Lambda$|\rightarrow+\infty

then, for any  p>0 , for | $\Lambda$| sufficiently large (depending on $\rho$' and v but not on the

specific sequence (I)), one has

(3.6) \mathbb{P}(|N(I_{ $\Lambda$},  $\Lambda$,  $\omega$)-N(I_{ $\Lambda$})| $\Lambda$||\geq N(I_{ $\Lambda$})| $\Lambda$|(\log| $\Lambda$|)^{- $\delta$})\leq| $\Lambda$|^{-p}.

The large deviation principle (3.6) is meaningful only if  N(I_{ $\Lambda$})| $\Lambda$|\rightarrow+\infty ; as  N is

Lipschitz continuous as a consequence of (W), this implies that

| $\Lambda$| |I_{ $\Lambda$}|\rightarrow+\infty when | $\Lambda$|\rightarrow+\infty.

In this case, if N(I_{ $\Lambda$})| $\Lambda$| satisfies (3.5), one has

\mathrm{E}(N(I_{ $\Lambda$},  $\omega$,  $\Lambda$))=N(I_{ $\Lambda$})| $\Lambda$|+o(N(I_{ $\Lambda$})| $\Lambda$|) .

So (3.6) also says

\mathbb{P}(|N(I_{ $\Lambda$},  $\omega$,  $\Lambda$)-\mathrm{E}(N(I_{ $\Lambda$},  $\omega$,  $\Lambda$))|\geq$\epsilon$_{ $\Lambda$}\mathrm{E}(N(I_{ $\Lambda$},  $\omega$,  $\Lambda$ \leq e^{-\mathrm{E}(N(I_{ $\Lambda$}, $\omega,\ \Lambda$))^{ $\delta$}/ $\delta$}

Remark 3.1. Notice that the condition (3.5) allows for I_{ $\Lambda$} to be centered at a

point E_{0} where v(E_{0})=0 as long as the rate of vanishing of v near E_{0} is not too fa st.

Actually, all the results presented in this paper can be extended to this setting i.e. in

Theorems 2.1, 2.2, 2.3, 2.4, 2.5, 3.2, 3.3, 3.4, 3.6, 4.1 and 5.2, one can replace the

assumption v(E_{0})>0 by (3.5) (see [6]). Of course, for the results to remain valid, in

the definition of the points processes or the empirical distributions, one has to replace
the normalization constant | $\Lambda$|v(E) by | $\Lambda$|N(I_{ $\Lambda$})/|I_{ $\Lambda$}|.

3.4.2. The level spacing statistics near a given energy Define \mathcal{E} to be the set

of energies E such that v(E)=N'(E) exists and

\displaystyle \lim_{|x|+|y|\rightarrow 0}\frac{N(E+x)-N(E+y)}{x-y}=v(E) .
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The requirement on the points in \mathcal{E} is somewhat stronger than asking for the simple
existence of v(E) . Nevertheles, one proves that the set \mathcal{E} is of full Lebesgue measure.

It clearly contains the continuity points of v(E) .

Fix E_{0}\in \mathcal{E} . If I_{ $\Lambda$}=[a_{ $\Lambda$}, b_{ $\Lambda$}] is such that \displaystyle \sup_{I_{ $\Lambda$}}|x|_{| $\Lambda$|\rightarrow+\infty}\rightarrow 0 ,
then

N_{ $\Lambda$}(E_{0}+I_{ $\Lambda$})=v(E_{0})|I_{ $\Lambda$}|| $\Lambda$|(1+o(1)) as | $\Lambda$|\rightarrow+\infty.

Consider the renormalized eigenvalue spacings: for 1\leq j\leq N,

 $\delta$ E_{j}( $\omega$,  $\Lambda$)=| $\Lambda$|v(E_{0})(E_{j+1}( $\omega$,  $\Lambda$)-E_{j}( $\omega$,  $\Lambda$))\geq 0.

Define the empirical distribution of these spacings to be the random numbers, for x\geq 0

DLS(x;I_{ $\Lambda$},  $\omega$,  $\Lambda$)=\displaystyle \frac{\#\{j;E_{j}( $\omega,\ \Lambda$)\in I_{ $\Lambda$}, $\delta$ E_{j}( $\omega,\ \Lambda$)\geq x\}}{N(I_{ $\Lambda$}, $\omega,\ \Lambda$)}.
We first study the level spacings distributions of the energies inside an interval that

shrink to a point.
We prove

Theorem 3.6 ([6]). Fix E_{0}\in \mathcal{E} such that v(E_{0})>0 and pick (I_{ $\Lambda$})_{ $\Lambda$} a sequence

of intervals centered at E_{0} such that \displaystyle \sup_{I_{ $\Lambda$}}|x|_{| $\Lambda$|\rightarrow+\infty}\rightarrow 0.
Assume that, for some  $\delta$>0 ,

one has

(3.7) | $\Lambda$|^{1- $\delta$} |I_{ $\Lambda$}| \rightarrow +\infty and  if\ell_{L}=o(L) then \underline{|I_{$\Lambda$_{L+l_{L}}}|} \rightarrow 1.
| $\Lambda$|\rightarrow+\infty |I_{$\Lambda$_{L}}| L\rightarrow+\infty

Then, with probability 1, as | $\Lambda$|\rightarrow+\infty, DLS(x;I_{ $\Lambda$},  $\omega$,  $\Lambda$) converges uniformly to the

distribution x\mapsto e^{-x}
,

that is, with probability 1,

\displaystyle \sup_{x\geq 0}|DLS(x;I_{ $\Lambda$},  $\omega$,  $\Lambda$)-e^{-x}|_{| $\Lambda$|\rightarrow+\infty}to0.
Hence, the rescaled level spacings behave as if the eigenvalues were i.i. \mathrm{d} . uniformly
distributed random variables (see [18] or section 7 of [16]). This distribution for the

level spacings is the one predicted by physical heuristics in the localized regime ([7,11,
13, 17]). It is also in accordance with Theorem 2.1. In [12, 3], the domains in energy

where the statistics could be studied were much smaller than the ones considered in

Theorem 3.6. Indeed, the energy interval was of order | $\Lambda$|^{-1} whereas, here, it is assumed

to tend to 0 but be large when compared to | $\Lambda$|^{-1} . In particular, in [12, 3], the intervals

were not large enough to enable the computation of statistics of levels as not enough
levels were involved: the intervals typically contained only finitely many intervals.

The first condition in (3.7) ensures that I_{ $\Lambda$} contains sufficiently many eigenvalues
of H_{ $\omega$}( $\Lambda$) . The second condition in (3.7) is a regularity condition of the decay of |I_{ $\Lambda$}| . If
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one omits either or both of these two conditions and only assumes that | $\Lambda$|\cdot|I_{ $\Lambda$}|\rightarrow+\infty,
one still gets convergence in probability of DLS(x;I_{ $\Lambda$},  $\omega$,  $\Lambda$) to e^{-x} i.e.

\displaystyle \mathbb{P}(\sup_{x\geq 0}|DLS(x;I_{ $\Lambda$},  $\omega$,  $\Lambda$)-e^{-x}|\geq $\epsilon$)| $\Lambda$|\rightarrow+\infty\rightarrow 0.
3.4.3. The level spacing statistics on macroscopic energy intervals Theo‐

rem 3.6 seems optimal as the density of states at E_{0} enters into the correct rescaling
to obtain a universal result. Hence, the distribution of level spacings on larger intervals

needs to take into account the variations of the density of states on these intervals.

Indeed, on intervals of non vanishing size, we compute the asymptotic distribution of

the level spacings when one omits the local density of states in the spacing and obtain

Theorem 3.7 ([6]). Pick J\subset I a compact interval such  $\lambda$\mapsto v( $\lambda$) be continuous

on J and N(J) :=\displaystyle \int_{J}v( $\lambda$)d $\lambda$>0 . Define the renormalized eigenvalue spacings, for

1\leq j\leq N,

$\delta$_{J}E_{j}( $\omega$,  $\Lambda$)=| $\Lambda$|N(J)(E_{j+1}( $\omega$,  $\Lambda$)-E_{j}( $\omega$,  $\Lambda$))\geq 0

and the empirical distribution of these spacing to be the random numbers, forx\geq 0

DLS'(x;J,  $\omega$,  $\Lambda$)=\displaystyle \frac{\#\{j;E_{j}( $\omega,\ \Lambda$)\in J,$\delta$_{J}E_{j}( $\omega,\ \Lambda$)\geq x\}}{N(J, $\omega,\ \Lambda$)}.
Then, as | $\Lambda$|\rightarrow+\infty ,

with probability 1,  DLS'(x;J,  $\omega$,  $\Lambda$) converges uniformly to the

distribution x\mapsto g_{l $\nu$,J}(x) where

(3.8)  g_{ $\nu$,J}(x)=\displaystyle \int_{J}\mathrm{e}^{-l$\nu$_{J}( $\lambda$)x}v_{J}( $\lambda$)d $\lambda$ where  v_{J}=\displaystyle \frac{1}{N(J)}v.
We see that, in the large volume limit, the rescaled level spacings behave as if the

eigenvalues were i.i. \mathrm{d} . random variables distributed according to the density \displaystyle \frac{1}{N(J)}v( $\lambda$)
i.e. to the density of states normalized to be a probability measure on J (see section 7

of [16]).
In Theorem 3.7, we assumed the density of states to be continuous. This is known to

hold in the large coupling limit if the density of the distribution of the random variables

is sufficiently smooth (see [2]).

§4. The localization center spacing statistics

Pick E_{0} as above. Inside the cube  $\Lambda$
,

the number of centers that corresponds to

energies in  I_{ $\Lambda$} is roughly equal to v(E_{0})|I_{ $\Lambda$}|N . Thus, if we assume that the localiza‐

tion centers are uniformly distributed as is suggested by Theorems 3.3 and 3.4, the

reference mean spacing between localization centers is of size (| $\Lambda$|/(v(E_{0})|I_{ $\Lambda$}|| $\Lambda$|)^{1/d}=
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(v(E_{0})|I_{ $\Lambda$}|)^{-1/d} . This motivates the following definition.

Define the empirical distribution of center spacing to be the random number

(4.1)

DCS(s;I_{ $\Lambda$},  $\omega$,  $\Lambda$)=\displaystyle \frac{\#\{j;E_{(} $\omega,\ \Lambda$)\in I_{ $\Lambda$},\sqrt[d]{v(E_{0})|I_{ $\Lambda$}|}\cdot\min_{i\neq j}|x_{j}( $\omega$)-x_{i}( $\omega$)|\geq s\}}{N(I_{ $\Lambda$}, $\omega,\ \Lambda$)}
where N(I_{ $\Lambda$},  $\omega$,  $\Lambda$) is defined in (3.4).
We prove an analogue of Theorems 3.6, namely

Theorem 4.1 ([6]). Pick E_{0}\in I such that v(E_{0})>0 . Assume

|I_{ $\Lambda$}|=o(\displaystyle \frac{1}{\log^{d}| $\Lambda$|})
Then, as | $\Lambda$|\rightarrow+\infty ,

in probability,  DCS(s;I_{ $\Lambda$},  $\omega$,  $\Lambda$) converges uniformly to the distri‐

bution x\mapsto e^{-s^{d}}
,

that is, for any  $\epsilon$>0,

\displaystyle \mathbb{P}(\{ $\omega$;\sup_{s\geq 0}|DCS(s;I_{ $\Lambda$},  $\omega$,  $\Lambda$)-e^{-s^{d}}|\geq $\epsilon$\})_{ $\Lambda$\nearrow \mathbb{R}^{d}}\rightarrow 0.
Of course, Theorem 3.7 also has an analogue for localization centers.

§5. Another point of view

In the present section, we want to adopt a different point of view on the spectral
statistics. Instead of discussing the statistics of the eigenvalues of the random system
restricted to some finite box in the large box limit, we will describe the spectral statistics

of the infinite system in the localized phase. Let I be an interval in the region of complete
localization. Then, it is well known ([9, 1, 5]) that, in this region, the following property
holds

(Loc�) there exists  $\gamma$>0 such that, with probability 1, if E\in I\cap $\sigma$(H) and  $\varphi$ is

a normalized eigenfunction associated to  E then, for x(E)\in \mathbb{Z}^{d} ,
a maximum of

x\mapsto\Vert $\varphi$\Vert_{x} ,
for some C_{ $\omega$}>0 ,

one has, for x\in \mathbb{R}^{d},

| $\varphi$(x)|\leq C_{ $\omega$}(1+|x(E)|^{2})^{q/2}e^{- $\gamma$|x-x(E)|} ;

moreover, one has \mathrm{E}(C_{ $\omega$})<+\infty.

As above x(E) is called a center of localization for the energy E or for the associated

eigenfunction  $\varphi$.

Without restriction on generality, we assume that  $\sigma$(H_{ $\omega$})\cap I=I $\omega$‐almost surely. Hence,

any sub‐interval of  I contains infinitely many eigenvalues and to define statistics, we

need a way to enumerate these eigenvalues. To do this, we use the localization centers;

namely, we prove
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Proposition 5.1 ([6]). Fix q>2d . Then, there exists  $\gamma$>0 such that,  $\omega$ ‐almost

surely, there exists  C_{ $\omega$}>1 such that

1. if x(E) and x'(E) are two centers of localization for E\in I then

|x(E)-x'(E)|\leq$\gamma$^{-2}(logx (E)\rangle+\log C_{ $\omega$})^{1/ $\xi$}.

2. for L\geq 1 , pick I_{L}\subset I such that  L^{d}N(I_{L})\rightarrow+\infty (see Theorem ??); if  N(I_{L}, L)
denotes the number of eigenvalues of H_{ $\omega$} having a center of localization in $\Lambda$_{L} , then

N(I_{L}, L)=N(I_{L})|$\Lambda$_{L}|(1+o(1)) .

Point (1) is proved in [5] (see Corollary 3 and its proof). Point (2) is proved in [6].
For L\geq 1 , pick I_{L}\subset I such that  L^{d}N(I_{L})\rightarrow+\infty . In view of Proposition 5.1, we

can consider the level spacings for the eigenvalues of  H_{ $\omega$} having a localization center in

$\Lambda$_{L} ; indeed, for L large, there are only finitely many such eigenvalues, let us enumerate

them as E_{1}( $\omega$, L)\leq E_{2}( $\omega$, L)\leq\cdots\leq E_{| $\Lambda$|}( $\omega$, L) where we repeat them according to

multiplicity. Consider the renormalized eigenvalue spacings, for 1\leq j\leq| $\Lambda$|,

 $\delta$ E_{j}( $\omega$, L)=|$\Lambda$_{L}|(E_{j+1}( $\omega$, L)-E_{j}( $\omega$, L))\geq 0.

Define the empirical distribution of these spacing to be the random numbers, for x\geq 0

DLS(x;I_{L},  $\omega$, L)=\displaystyle \frac{\#\{j;E_{j}( $\omega$,L)\in I_{L}, $\delta$ E_{j}( $\omega$,L)\geq x\}}{N(I_{L},L)}
Then, we prove

Theorem 5.2 ([6]). One has

\bullet if  E_{0}\in \mathcal{E}\cap I_{L} s.t. v(E_{0})>0 and |I_{L}|\rightarrow 0 and satisfies (3.7), then,  $\omega$ ‐almost surely,

for  x\geq 0

\displaystyle \lim_{L\rightarrow+\infty}\sup_{x\geq 0}|DLS(x;I_{L},  $\omega$, L)-e^{-x/l $\nu$(E_{0})}|=0 ;

\bullet if, for all  L large, I_{L}=J such that v(J)>0 and v is continuous on J then,
 $\omega$ ‐almost surely, one has

\displaystyle \lim \sup|DLS(x;I_{L},  $\omega$, L)-g_{l $\nu$,J}(N(J)x)|=0
L\rightarrow+\infty_{x\geq 0}

where g_{l $\nu$,J} is defined in (3.8).

In the first part of Theorem 5.2, if (3.7) is not satisfied, then the convergence still holds

in probability.
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