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The discovery of deterministic chaos in the late nineteenth century, its subsequent study, and the

development of mathematical and computational methods for its analysis have substantially

influenced the sciences. Chaos is, however, only one phenomenon in the larger area of dynamical

systems theory. This Focus Issue collects 13 papers, from authors and research groups representing

the mathematical, physical, and biological sciences, that were presented at a symposium held at

Kyoto University from November 28 to December 2, 2011. The symposium, sponsored by the

International Union of Theoretical and Applied Mechanics, was called 50 Years of Chaos: Applied
and Theoretical. Following some historical remarks to provide a background for the last 50 years,

and for chaos, this Introduction surveys the papers and identifies some common themes that appear

in them and in the theory of dynamical systems. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4769035]

Deterministic chaos is, at first glance, surprising. How

can the solution of a nonlinear differential equation, or a

sequence generated by iterating a smooth map, be so

unpredictable? Both are uniquely determined by the ini-

tial conditions and, respectively, the equation or the map.

We now know that the apparent unpredictability is due

to sensitive dependence on initial conditions caused by

rapid divergence of neighboring solutions, a property

that is quite common in nonlinear differential equations

with three or more variables, invertible maps in two or

more dimensions, and all non-invertible maps. (The logis-

tic equation is a prime example.) Chaotic dynamics is

locally expansive in one or more directions in phase space

and contractive in the remaining dimensions. Chaos was

first discovered and studied by the mathematician Henri

Poincar�e in 1889–1912 and it remained a primarily math-

ematical phenomenon until the 1960s. During this “first

period” a substantial theory, built on analysis, geometry

and 200 years of work in differential equations and classi-

cal mechanics, was developed to characterize invariant

sets that live in the phase spaces of nonlinear systems,

and to describe bifurcations in which they appear, disap-

pear, or change their stability types. Chaos occupies an

important place in this theory of dynamical systems, but

it is only a part of it. As described below, some mathema-

ticians drew on examples from the physical sciences and

engineering during the first period, but vigorous interac-

tions throughout the physical and mathematical sciences

began to develop only in the 1960s and 1970s. The last 50

years has seen a second period flourish, and applications

expand to include the biological and life sciences. Chaotic

invariant sets can form boundaries for basins of attrac-

tion of simple equilibria or periodic orbits, and they can

be attracting sets themselves. They can describe irregular

time series and spatial structures observed in nature,

they can generate quasirandom bit sequences for techno-

logical applications, and they appear in analog to digital

converters. Analytical, geometrical, and computational

methods have been developed to detect and characterize

chaotic sets, and experiments have confirmed that they

appear in a variety of real systems. The papers in this

Focus Issue provide examples of these and other manifes-

tations of chaos.

A BRIEF HISTORY OF CHAOS: 1889–1961
AND A LITTLE BIT BEYOND

This focus issue grew out of a symposium sponsored by

the International Union of Theoretical and Applied Mechan-

ics (IUTAM) that brought together researchers from the

physical and biological sciences, engineering, and mathe-

matics to discuss recent developments in nonlinear dynamics

and chaos theory. The meeting was timed to celebrate a re-

markable discovery, and held 50 years to the week after it

was made. In the Department of Electrical Engineering at

Kyoto University, on November 27, 1961, a graduate student

named Yoshisuke Ueda noticed that orbits of a periodically

forced nonlinear oscillator displayed a “randomly transi-

tional” behavior in certain parameter ranges, instead of the

periodic, sub- or superharmonic and quasi-periodic motions

that he (and his supervisors) expected.1 Before surveying the

papers that follow, we provide a background by outlining

some key work on dynamical systems prior to Ueda’s

discovery.

Dynamical systems theory began with the work of

Poincar�e (1854–1912) on the three-body problem of celestial

mechanics,2 and specifically in a massive paper,3 which won

a prize celebrating the 60th birthday of King Oscar II ofa)Former Professor, University of Tokyo.
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Sweden and Norway. In this and his earlier papers, Poincar�e
proposed new methods for studying nonlinear ordinary dif-

ferential equations (ODEs). He described the use of first

return (Poincar�e) maps for the study of periodic motions,

defined stable and unstable manifolds, discussed stability

issues, developed perturbation methods, and proved the

(Poincar�e) recurrence theorem. While revising his prize

paper,3 he realised that certain differential equations describ-

ing mechanical systems with two or more degrees of free-

dom were not integrable in the classical sense, due to the

presence of “doubly asymptotic” points, now called homo-

and heteroclinic orbits. Moreover, he saw that these orbits

had profound implications for the stability of motion in

general, and realized that his previous claim that a version of

the restricted three-body problem of celestial mechanics

had only stable behavior was false. In December 1889 and

January 1890, he created the first explicit example of deter-

ministic chaos.4,5

G. D. Birkhoff (1884–1944) was one of relatively few

mathematicians to continue on Poincar�e’s path in the early

20th century.6,7 Birkhoff’s work on iterated mappings of the

annulus8,9 was especially relevant to the study of periodi-

cally forced oscillators to which Ueda’s advisor, C. Hayashi,

had directed him. Indeed, the van der Pol equation, a model

of the vacuum tube diode, played a central role in the devel-

opment of dynamical systems theory. This began in the

1920s with a brief paper by van der Pol and van den Mark,10

engineers at the Phillips Laboratories in Eindhoven, who

were interested in subharmonic solutions and who noted in

passing that their experimental apparatus produced “an irreg-

ular noise” in certain frequency ranges: perhaps an early ob-

servation of chaos? Cartwright and Littlewood alluded to

this paper in their proof of “discontinuous recurrent” orbits

in the van der Pol equation,11 and drew on Birkhoff’s proof

that annulus maps with coexisting stable orbits of distinct

periods also possessed complicated invariant sets. Their

analysis was later simplified by Levinson.12 In the same pe-

riod, Soviet researchers defined structurally stable systems13

(roughly speaking, those that preserve their qualitative prop-

erties under small perturbations of the defining ODEs) and

began to study bifurcations in planar systems.14,15

When Smale became interested in dynamical systems in

1959–1960,16 he conjectured that a structurally stable ODE

could possess only finite sets of periodic orbits in any

bounded region of its state space. Levinson suggested that

Cartwright–Littlewood paper might provide a counterexam-

ple. Smale’s geometric interpretation of a Poincar�e map for

the forced van der Pol equation led to his construction of the

“horseshoe map,”17 and more generally contributed to the

formulation of a broad research program in dynamics.18 Sub-

sequently, Melnikov19 and Arnold20 provided rather general

perturbative methods for proving the existence of homoclinic

tangles such as those recognized by Poincar�e and Smale.

This work, which was almost all done by mathemati-

cians, brings us to the 1960s. In that decade, a few engineers

and physical scientists became interested in chaos. Ueda’s

discovery in November 1961 was an early example, predat-

ing by 2 years Lorenz’s better known paper on a strange

(¼chaotic) attractor in a truncated model for convection in a

fluid layer.21 (Both Ueda and Lorenz acknowledged the im-

portance of Birkhoff’s work in enabling them to interpret

their observations.) Throughout the 1960s Ueda continued to

think about mathematical aspects of his findings, drawing

on Levinson’s work on second order ODEs as well as

Poincar�e’s book.2 However, apart from a brief section in one

paper [Ref. 22, §3.2, Figs. 6–8], some conference proceed-

ings and a research report,23 he did not publish them for over

10 years.24 Lorenz’s work also remained unnoticed by math-

ematicians until the 1970s, when J. A. Yorke was given a

copy by a colleague in the Department of Meteorology at the

University of Maryland, which he passed on to Smale.25

Soon thereafter, dynamical systems theory was percolating

throughout the sciences and motivations and examples were

flowing back to mathematics. By 1985, a bibliography of dy-

namical systems listed over 4400 papers and books.26

This brief history highlights only one thread within the

rich tapestry of dynamical systems. More extensive treat-

ments, along with comments on recent developments, can be

found in Refs. 5 and 27, but advances have been so rapid and

widespread that an adequate historical perspective on the

past 50 years is still lacking. Chaos theory—as a part of non-

linear dynamics—has fostered a globally interconnected

vision of the sciences in a time of strongly developing tech-

nologies. It has affected not only emerging interdisciplinary

fields but also classical ones such as mechanics, within

which the Kyoto Symposium was conceived and partially

nurtured. In spite of some inflated claims and misuses of

concepts and tools, which can augment but not replace care-

ful mathematical modeling, the past fifty years of chaos have

brought us much good sense, and a measure of order.

A detailed account of Poincar�e’s work on dynamics

appears in Ref. 4. For more on the discoveries of Ueda and

Lorenz, and their sometimes difficult paths to publication

and acceptance, see Refs. 1 and 25. For a discussion of the

sociological and cultural contexts of nonlinear dynamics and

chaos, see Ref. 28.

THE PAPERS IN THIS ISSUE

The 13 papers that follow form a varied baker’s dozen,

representing several of the classical and more recent areas of

nonlinear dynamics and ranging from basic theory to applied

technology.

The mechanics of elastic structures and rigid bodies is

treated in the papers of Lenci et al.,29 Strzalko et al.,30 and

Kapitaniak et al.31 Issues of mechanical modeling (e.g., of

friction and impacts in Ref. 31), synchronization, control of

chaos, imperfections, and symmetries of the mechanical sys-

tems play important roles in these studies. Lenci et al.
exploit chaos properties to control the global nonlinear dy-

namics of simplified models of a large class of structures

exhibiting interacting buckling phenomena, thus increasing

their practical load carrying capacities. Strzalko et al. study

synchronous behavior in an experimental set of two pairs of

double pendula, with a view to converting base oscillations

into rotational motions exploitable for energy production.

Kapitaniak et al. present simulations and experiments on

die throwing, addressing the theoretical predictability of

047501-2 Hikihara et al. Chaos 22, 047501 (2012)
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outcomes in contrast with the difficulty of practical

implementation.

Kreilos and Eckhardt32 investigate stability and bifurca-

tions in transitional and weakly turbulent Couette flow. The

model—the incompressible Navier-Stokes equation—is not

in question here; the issue is to extract useful information

from direct numerical simulations of a very high-

dimensional system, and by following branches of equilibria

representing steady flow patterns, most of which are unsta-

ble. Chaotic saddles (homoclinic tangles) are found to pro-

duce transient turbulent bursts. Cvitanovič et al.,33 building

on earlier work on similar channel flows, show that a proper

understanding of symmetries imposed by the governing

equations is essential to visualizing and decomposing the

global structure of high-dimensional state spaces.

Mathematical methods are developed in the paper of

Sabuco et al.34 and at substantially greater lengths in those

of Bush et al.,35 Lingala et al.,36 and Budi�sić et al.37 Sabuco

et al. extend their earlier work on safe sets in the context of

chaos control to asymptotically safe sets, providing an algo-

rithm that approximates the set of initial conditions that

eventually enters a safe set. Bush et al. review an extensive

program that uses algebraic-topological and combinatorial

methods to deduce rigorous global information on iterated

nonlinear maps, proving connections from saddle-type invar-

iant sets to attracting sets. Lingala et al. describe particle fil-

tering methods that approximate distributions of state

variables observed in chaotic systems. Budi�sić et al. review

the Koopman operator (an infinite-dimensional linear map

that advances observable functions along orbits of a dynami-

cal system) and explain how its eigenfunctions preserve

global information; they also introduce continuous quantifi-

cations or ergodicity and mixing behaviors. These “data-

driven” papers all illustrate theories and methods by means

of multiple examples.

Hirata et al.38 revisit a data set collected from the giant

axon of the squid (the preparation used in Hodgkin and

Huxley’s Nobel Prize winning work in which the dynamics

of action potentials were first modeled). The authors show

that a relaxed, numerically adapted version of Devaney’s cri-

teria for chaos39 identifies the neuron’s voltage time series as

chaotic, and also briefly describe a simple mapping that pro-

duces deterministic chaos in a neural network model of

memory recall.

Finally, three papers describe interesting electronic sys-

tems with technological implications. Kohda et al.40 show

that expanding attractors (originally, purely abstract mathe-

matical objects) can be used to build analog-to-digital con-

verters with high bit-rate accuracies. Sunada et al.41 take a

complementary view, using a chaotically oscillating laser to

produce bit sequences that pass stringent statistical tests for

random number generators. In et al.42 construct an integrated

circuit containing an array of bistable oscillators that can be

made to entrain to distinct frequency ranges, enabling a

“circuit on a chip” to rapidly lock on components of an arbi-

trary radio-frequency spectrum.

While most of these papers were prepared independently

(one pair30,31 does share three authors and another38,40 shares

one), they nicely illustrate common interests in nonlinear dy-

namics. In particular, computational methods (rigorously

based, as in Refs. 35 and 37, or more formal) play an impor-

tant part. This is likely to last for some time: 123 years after

Poincar�e’s prize paper it is still embarassingly difficult to

extract global information on ODEs defined in 3 or more

dimensions, or invertible maps of 2 or more dimensions.

Symmetries and bifurcations, cross sections and Poincar�e
maps are prevalent, and increasingly high dimensional phase

spaces are being considered. Several papers discuss multiple

applications, or present an approach or methods that apply

beyond their specific examples, those of Bush et al.,35 Cvita-

novič et al.,33 Hirata et al.,38 Lingala et al.,36 and Budi�sić

et al.37 provide examples.
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