Investigation on origin of $Z_{1/2}$ center in SiC by deep level transient spectroscopy and electron paramagnetic resonance

Koutarou Kawahara, Xuan Thang Trinh, Nguyen Tien Son, Erik Janzén, Jun Suda, and Tsunenobu Kimoto

Citation: Applied Physics Letters 102, 112106 (2013); doi: 10.1063/1.4796141
View online: http://dx.doi.org/10.1063/1.4796141
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/102/11?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Resolving the $E_{\text{H}6/7}$ level in 4H-SiC by Laplace-transform deep level transient spectroscopy
Appl. Phys. Lett. 102, 152108 (2013); 10.1063/1.4802248

Deep level defects in Si-doped Al$_x$Ga$_{1-x}$N films grown by molecular-beam epitaxy
Appl. Phys. Lett. 86, 152109 (2005); 10.1063/1.1887817

Anomalous behaviors of E_1 E_2 deep level defects in 6H silicon carbide
Appl. Phys. Lett. 86, 031903 (2005); 10.1063/1.1853523

Formation of the $Z_{1,2}$ deep-level defects in 4H-SiC epitaxial layers: Evidence for nitrogen participation
Appl. Phys. Lett. 81, 4841 (2002); 10.1063/1.1529314

Annealing behavior of vacancies and $Z_{1/2}$ levels in electron-irradiated 4H–SiC studied by positron annihilation and deep-level transient spectroscopy
Investigation on origin of $Z_{1/2}$ center in SiC by deep level transient spectroscopy and electron paramagnetic resonance

Koutarou Kawahara,1,a) Xuan Thang Trinh,2 Nguyen Tien Son,2 Erik Janzén,2 Jun Suda,1 and Tsunenobu Kimoto1,b)
1Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
2Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden

(Received 26 December 2012; accepted 8 March 2013; published online 19 March 2013)

The $Z_{1/2}$ center in n-type 4H-SiC epilayers—a dominant deep level limiting the carrier lifetime—has been investigated. Using capacitance versus voltage (C-V) measurements and deep level transient spectroscopy (DLTS), we show that the $Z_{1/2}$ center is responsible for the carrier compensation in n-type 4H-SiC epilayers irradiated by low-energy (250 keV) electrons. The concentration of the $Z_{1/2}$ defect obtained by C-V and DLTS correlates well with that of the carbon vacancy (V_C) determined by electron paramagnetic resonance, suggesting that the $Z_{1/2}$ deep level originates from V_C. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4796141]

SiC is an attractive semiconductor for realizing high-power, high-temperature, and high-frequency devices. Deep levels in semiconductors can act either as carrier traps reducing the conductivity or recombination centers limiting the carrier lifetimes. The $Z_{1/2}$ center1–3 is one of the most important deep levels in 4H-SiC, known as a lifetime killer.4,5 The origin of the $Z_{1/2}$ center seems to include a carbon vacancy (V_C) because (i) this defect is generated by irradiation with electrons of energy as low as 100 keV,6–8 which corresponds to the threshold energy that can displace only carbon atoms in SiC and (ii) a lower $Z_{1/2}$ concentration is observed in SiC epilayers grown under C-rich condition.9

Based on the correlation between the energy determined by deep level transient spectroscopy (DLTS) for the $Z_{1/2}$ center and by electron paramagnetic resonance (EPR) for the single negative C vacancy (V_C^-),10 the $Z_{1/2}$ center has recently been suggested to be the acceptor level of V_C.11 In this paper, we will show the correlation in concentration between the $Z_{1/2}$ defect (obtained by capacitance-voltage (C-V) and DLTS) and V_C (determined by EPR) in n-type 4H-SiC irradiated by low-energy (250 keV) electrons with various electron fluences.

A direct comparison of the defect concentration determined by DLTS (or C-V) and by EPR is not easy. EPR measurements are suitable for relatively high defect concentrations ($>10^{12}$ spins), which require high electron fluences to create. However, materials irradiated with high electron fluences often become highly resistive and are not suitable for DLTS and C-V measurements. Therefore, in previous studies, samples used for DLTS were irradiated with much lower electron fluences compared to samples used for EPR measurements.12 In this study, in order to be able to characterize the same samples in C-V, DLTS, and EPR experiments, we chose n-type thick 4H-SiC epilayers with a relatively high N concentration ($N_d \sim 1.6 \times 10^{17} \text{ cm}^{-3}$) so that the materials can still be used for electrical measurements after irradiation with high electron fluences.

The starting materials are n-type 4H-SiC epilayers (thickness: 100 μm, $N_d: 1.6 \times 10^{15} \text{ cm}^{-3}$). The epilayers were irradiated by 250 keV electrons with different fluences: (A) $7.5 \times 10^{18} \text{ cm}^{-2}$, (B) $7.2 \times 10^{18} \text{ cm}^{-2}$, (C) $5.7 \times 10^{18} \text{ cm}^{-2}$, (D) $4.3 \times 10^{18} \text{ cm}^{-2}$, and (E) $3.1 \times 10^{18} \text{ cm}^{-2}$. Ni/SiC Schottky structures have been made on the samples used for C-V, I-V, and DLTS measurements while the substrate of the other set of samples to be used for EPR was removed by mechanical polishing. For data sampling in all DLTS measurements, a period width of 0.205 s and a frequency of 1 MHz were employed. In DLTS measurements, the reverse bias voltage was varied in the range of 0–100 V, which corresponds to the monitored depth of about 100–800 nm in samples A–E. EPR measurements were performed on an X-band (~9.4 GHz) Bruker E500 spectrometer equipped with a continuous He-flow cryostat, allowing the sample temperature regulation in the range of 4–295 K. In photoexcitation EPR (photo-EPR) experiments, a 200 W halogen lamp and appropriate optical filters were used for excitation.

Figure 1(a) shows the C-V characteristics at room temperature (RT) obtained from SiC irradiated with different fluences. The capacitance of samples A–D is very small and almost constant independent of the bias voltage, indicating that deep levels are not uniformly distributed along the depth. Figure 2 shows depth profiles of the $Z_{1/2}$ center in lower doping 4H-SiC epilayers ($N_d \sim 1.6 \times 10^{15} \text{ cm}^{-3}$); initial $Z_{1/2}$ concentration: $1.7 \times 10^{13} \text{ cm}^{-3}$) after 250 keV electron irradiation with various fluences ($3 \times 10^{15} \text{ cm}^{-2}$, $1 \times 10^{16} \text{ cm}^{-2}$, and $2 \times 10^{16} \text{ cm}^{-2}$). Because the CR region is formed where the trap concentration exceeds the doping

a)Electronic mail: kawahara@seimcon.kuee.kyoto-u.ac.jp.

b)Also at Photonics and Electronics Science and Engineering Center (PESEC), Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:130.54.110.72 On: Thu, 05 Jun 2014 04:13:16

Figure 3 shows DLTS spectra observed in samples A and E. The spectrum in the lower temperature region of sample A was obtained by current deep level transient spectroscopy (I-DLTS) measurements. At higher temperatures (>400 K), the capacitance recovered to the value before electron irradiation, which enabled C-DLTS measurements of irradiated samples. As shown in Fig. 3, ET1 (EC = 0.30 eV), EH1, (EC = 0.34 eV), Z1/2 (EC = 0.67 eV), EH2 (EC = 0.72 eV), EH3 (EC = 1.2 eV), ET4 (EC = 1.3 eV), and EH6/7 (EC = 1.5 eV) centers were observed in the irradiated samples. The activation energy was derived with assuming a temperature-independent capture cross section (σ). Taking into account that the activation energy for Σ of Z1/2 center (which corresponds to the barrier for capturing the second electron to the Z1/2 level) is 0.074 eV, the energy level of Z1/2 center is recalculated to be at ~EC = 0.59 eV. All these deep levels are often observed in irradiated 4H-SiC except for the ET4 center, which is not easy to be separated from the EH6/7 center because of severe overlapping. Among these centers, the Z1/2 center has the highest concentration although the absolute concentration could not be evaluated due to very high trap concentrations (the Z1/2 concentration in sample E is about 1 × 10^{17} cm^{-3} while ND is 1.6 × 10^{17} cm^{-3}).

Figure 4 shows the carrier concentration (filled circles) and the Fermi level (circles) in the CR of samples A–E. The carrier concentration n in the CR was roughly estimated from the resistivity ρ in the CR of each sample using the equation: n = 1/μρ. The μ value was calculated from the series resistance of Schottky barrier diodes (R) obtained from J-V measurements using the equation: ρ = R/d_{CR}. The electron mobility μ in the CR was assumed to be 370 cm²/Vs using empirical equations given in a paper. For this estimation of μ, an ionized impurity concentration of 3.2 × 10^{17} cm^{-3} was used because there should be ionized donors of 1.6 × 10^{17} cm^{-3} and traps filled with electrons of 1.6 × 10^{17} cm^{-3}. The Fermi level EF in the CR can be estimated from the carrier concentration n using the equation: EF = EC − kT ln(NC/n), and EF is evaluated to be approximately at EC = 0.53 eV in samples A–D, which is close to the energy level of the Z1/2 center as shown in Fig. 4. With the Fermi level located at EC = 0.53 eV, the Z1/2 center (EC = 0.59 eV) is occupied with electrons (the occupancy ~91% at 300 K). Taking into account that Z1/2 has the highest concentration (over 1 × 10^{17} cm^{-3}) among deep levels observed in these samples, this defect should be the dominant compensating center, creating the CR.

It has been shown that in darkness most of VC are in the double negative charge state, giving rise to no EPR signal. The observation of the EPR signal of VC(−) requires illumination. In all samples, the EPR signal of VC(−) is found to be dominant, suggesting that the acceptor levels of VC play a key role in the formation of the CR in studied samples. Figure 5 shows the dependence of the area density of VC(−) in the samples A–E obtained by EPR measurements under illumination with light of photon energy smaller than 1.6 eV, and the value 0.1 N_{d}d_{CR} on the electron fluence. It should be noted here that under illumination, VC can be in the neutral, single-negative, or double-negative charge state. The VC(−) volume density should be limited by N_{d} because an electron is needed for VC to become VC(−). The value N_{d}d_{CR} corresponds to the maximum area density of VC(−) after 250 keV electron irradiation with various fluences (circles: 2 × 10^{15} cm^{-2}, triangles: 1 × 10^{16} cm^{-2}, squares: 3 × 10^{15} cm^{-2}).
the VC density in the CR is much higher than that in the tail uncompensated region, and most of VC in the tail region should be in the double-negative (2−) charge state since the concentration of VC is lower than that of donor concentration and the Fermi level is near the N shallow donor. As shown in Fig. 5, 10% of \(N_d \) shows a good agreement with the VC(−) area density obtained by EPR measurements, indicating that under illumination at 100 K, about 10% of electrons in the CR exists as VC(−), while most of the other electrons may do as VC(2−). Note that the calculated value \(0.1 N_d^{CR} \) in the sample E is considerably smaller than the VC(−) area density obtained by EPR. Although the assumption that the EPR signal of VC(−) comes mainly from the CR is reasonable for samples A–D with thick CR, it is not valid for sample E, which has a very thin CR and the amount of VC in the uncompensated region cannot be neglected compared to that in the very thin CR (\(\sim 0.17 \) μm). Neglecting the contribution of VC in the uncompensated region leads to the underestimation of the value \(N_d^{CR} \) in sample E. These EPR results with VC having the highest density among all defects in the samples A–E and the VC(−) density following the maximum VC(−) density limited by \(N_d \) indicate that VC is the dominant defect creating the CR.

Comparing the data obtained from DLTS, C-V, and EPR measurements, it is clear that (i) the dominant deep level in samples A–E is the \(Z_{1/2} = 2 \) center and the dominant point defect is VC and (ii) the compensation in irradiated samples is caused by electron capture to the \(Z_{1/2} = 2 \) center (as shown from DLTS) and to the acceptor levels of VC (as shown in EPR). Thus, the \(Z_{1/2} = 2 \) center, which capture two electrons as known from DLTS, \(^{14}\) should be related to the double negative charge state of VC (it is known that the EH\(_7\) DLTS level and VC(−) area density obtained by EPR measurements, indicating that under illumination at 100 K, about 10% of electrons in the CR exists as VC(−), while most of the other electrons may do as VC(2−). Note that the calculated value \(0.1 N_d^{CR} \) in the sample E is considerably smaller than the VC(−) area density obtained by EPR. Although the assumption that the EPR signal of VC(−) comes mainly from the CR is reasonable for samples A–D with thick CR, it is not valid for sample E, which has a very thin CR and the amount of VC in the uncompensated region cannot be neglected compared to that in the very thin CR (\(\sim 0.17 \) μm). Neglecting the contribution of VC in the uncompensated region leads to the underestimation of the value \(N_d^{CR} \) in sample E. These EPR results with VC having the highest density among all defects in the samples A–E and the VC(−) density following the maximum VC(−) density limited by \(N_d \) indicate that VC is the dominant defect creating the CR.

Comparing the data obtained from DLTS, C-V, and EPR measurements, it is clear that (i) the dominant deep level in samples A–E is the \(Z_{1/2} = 2 \) center and the dominant point defect is VC and (ii) the compensation in irradiated samples is caused by electron capture to the \(Z_{1/2} = 2 \) center (as shown from DLTS) and to the acceptor levels of VC (as shown in EPR). Thus, the \(Z_{1/2} = 2 \) center, which capture two electrons as known from DLTS, \(^{14}\) should be related to the double negative charge state of VC (it is known that the EH\(_7\) DLTS level and VC(−) area density obtained by EPR measurements, indicating that under illumination at 100 K, about 10% of electrons in the CR exists as VC(−), while most of the other electrons may do as VC(2−). Note that the calculated value \(0.1 N_d^{CR} \) in the sample E is considerably smaller than the VC(−) area density obtained by EPR. Although the assumption that the EPR signal of VC(−) comes mainly from the CR is reasonable for samples A–D with thick CR, it is not valid for sample E, which has a very thin CR and the amount of VC in the uncompensated region cannot be neglected compared to that in the very thin CR (\(\sim 0.17 \) μm). Neglecting the contribution of VC in the uncompensated region leads to the underestimation of the value \(N_d^{CR} \) in sample E. These EPR results with VC having the highest density among all defects in the samples A–E and the VC(−) density following the maximum VC(−) density limited by \(N_d \) indicate that VC is the dominant defect creating the CR.

Comparing the data obtained from DLTS, C-V, and EPR measurements, it is clear that (i) the dominant deep level in samples A–E is the \(Z_{1/2} = 2 \) center and the dominant point defect is VC and (ii) the compensation in irradiated samples is caused by electron capture to the \(Z_{1/2} = 2 \) center (as shown from DLTS) and to the acceptor levels of VC (as shown in EPR). Thus, the \(Z_{1/2} = 2 \) center, which capture two electrons as known from DLTS, \(^{14}\) should be related to the double negative charge state of VC (it is known that the EH\(_7\) DLTS level and VC(−) area density obtained by EPR measurements, indicating that under illumination at 100 K, about 10% of electrons in the CR exists as VC(−), while most of the other electrons may do as VC(2−). Note that the calculated value \(0.1 N_d^{CR} \) in the sample E is considerably smaller than the VC(−) area density obtained by EPR. Although the assumption that the EPR signal of VC(−) comes mainly from the CR is reasonable for samples A–D with thick CR, it is not valid for sample E, which has a very thin CR and the amount of VC in the uncompensated region cannot be neglected compared to that in the very thin CR (\(\sim 0.17 \) μm). Neglecting the contribution of VC in the uncompensated region leads to the underestimation of the value \(N_d^{CR} \) in sample E. These EPR results with VC having the highest density among all defects in the samples A–E and the VC(−) density following the maximum VC(−) density limited by \(N_d \) indicate that VC is the dominant defect creating the CR.

Comparing the data obtained from DLTS, C-V, and EPR measurements, it is clear that (i) the dominant deep level in samples A–E is the \(Z_{1/2} = 2 \) center and the dominant point defect is VC and (ii) the compensation in irradiated samples is caused by electron capture to the \(Z_{1/2} = 2 \) center (as shown from DLTS) and to the acceptor levels of VC (as shown in EPR). Thus, the \(Z_{1/2} = 2 \) center, which capture two electrons as known from DLTS, \(^{14}\) should be related to the double negative charge state of VC (it is known that the EH\(_7\) DLTS level and VC(−) area density obtained by EPR measurements, indicating that under illumination at 100 K, about 10% of electrons in the CR exists as VC(−), while most of the other electrons may do as VC(2−). Note that the calculated value \(0.1 N_d^{CR} \) in the sample E is considerably smaller than the VC(−) area density obtained by EPR. Although the assumption that the EPR signal of VC(−) comes mainly from the CR is reasonable for samples A–D with thick CR, it is not valid for sample E, which has a very thin CR and the amount of VC in the uncompensated region cannot be neglected compared to that in the very thin CR (\(\sim 0.17 \) μm). Neglecting the contribution of VC in the uncompensated region leads to the underestimation of the value \(N_d^{CR} \) in sample E. These EPR results with VC having the highest density among all defects in the samples A–E and the VC(−) density following the maximum VC(−) density limited by \(N_d \) indicate that VC is the dominant defect creating the CR.

Comparing the data obtained from DLTS, C-V, and EPR measurements, it is clear that (i) the dominant deep level in samples A–E is the \(Z_{1/2} = 2 \) center and the dominant point defect is VC and (ii) the compensation in irradiated samples is caused by electron capture to the \(Z_{1/2} = 2 \) center (as shown from DLTS) and to the acceptor levels of VC (as shown in EPR). Thus, the \(Z_{1/2} = 2 \) center, which capture two electrons as known from DLTS, \(^{14}\) should be related to the double negative charge state of VC (it is known that the EH\(_7\) DLTS level and VC(−) area density obtained by EPR measurements, indicating that under illumination at 100 K, about 10% of electrons in the CR exists as VC(−), while most of the other electrons may do as VC(2−). Note that the calculated value \(0.1 N_d^{CR} \) in the sample E is considerably smaller than the VC(−) area density obtained by EPR. Although the assumption that the EPR signal of VC(−) comes mainly from the CR is reasonable for samples A–D with thick CR, it is not valid for sample E, which has a very thin CR and the amount of VC in the uncompensated region cannot be neglected compared to that in the very thin CR (\(\sim 0.17 \) μm). Neglecting the contribution of VC in the uncompensated region leads to the underestimation of the value \(N_d^{CR} \) in sample E. These EPR results with VC having the highest density among all defects in the samples A–E and the VC(−) density following the maximum VC(−) density limited by \(N_d \) indicate that VC is the dominant defect creating the CR.
the $Z_{1/2}$ center originate from the same defect,7,17 and EH$_7$ is related to the $(0/\pm)$ charge state of VC (Ref. 11)).

Figure 6 shows the activation energy (E_{act}) of deep levels obtained by DLTS and the optical transition levels related to VC levels (E_{exc}) determined by photo-EPR11 with respect to the conduction band edge ($E_C = 0$). To compare E_{exc} with E_{act}, a possible Franck-Condon shift involved in the optical transitions has to be taken into account ($E_{\text{act}} = E_{\text{exc}} - E_{\text{FC}}$). The activation energy of VC obtained by \textit{ab initio} calculations18 are also shown in Fig. 6, which agrees well with the energy levels obtained by DLTS and EPR measurements.

In summary, using n-type 4H-SiC epitaxial layers irradiated by low-energy (250 keV) electrons, which can mainly create defects in the C sub-lattice (VC, C interstitials and their associated defects) with different fluences, we were able to employ different techniques (C-V, DLTS, and EPR) to study the $Z_{1/2}$ and VC defects in the same samples. It has been shown that $Z_{1/2}$ and VC are the dominant defects responsible for the carrier compensation observed in the irradiated samples, suggesting that the $Z_{1/2}$ center originates from a C vacancy and is related to the EPR inactive 2$-$ charge state of VC.

Support by the Grant-in-Aid for Scientific Research (21226008 and 80225078) from the Japan Society for the Promotion of Science, the Swedish Energy Agency, the Swedish Research Council VR/Linné LiLi-NFM, and the Knut and Alice Wallenberg Foundation is gratefully acknowledged.