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Electrically active defects in n-type 6H-SiC diode structures have been studied by deep level

transient spectroscopy (DLTS) and high-resolution Laplace DLTS. It is shown that the commonly

observed broadened DLTS peak previously ascribed to two traps referenced as E1/E2 has three

components with activation energies for electron emission of 0.39, 0.43, and 0.44 eV. Further,

defects associated with these emission signals have similar electronic structure, each possessing

two energy levels with negative-U ordering in the upper half of the 6H-SiC gap. It is argued that

the defects are related to a carbon vacancy at three non-equivalent lattice sites in 6H-SiC. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4788814]

Silicon carbide (SiC) is one of the wide-bandgap semi-

conductors which appear promising for realizing high-power

and high-temperature electronic devices.1 In addition, SiC

diodes can be used as high-energy particle detectors and

have some advantages over silicon detectors because of a

wider bandgap of SiC.2 In these applications, the presence of

various defects affects device performance due to carrier

trapping, increased leakage current, and reduced minority

carrier lifetime. This letter describes the use of high resolu-

tion Laplace deep level transient spectroscopy (LDLTS) as a

tool to characterize the behavior of some ubiquitous electri-

cally active defects in SiC.

A signal due to the so called E1/E2 electron traps has

been commonly observed by deep level transient spectros-

copy (DLTS) in pþn diode structures fabricated in n-type

6H-SiC.3–5 It is well established that the magnitude of the

E1/E2 DLTS peak is increased by both ion implantation and

electron irradiation.3–10 The peak also has a shoulder indicat-

ing that it is not a single point defect. Previously, the peak

has been separated into two components, and the correspond-

ing activation energies for electron emission determined by

fitting the DLTS spectra calculated using a two-trap model

or by employing the three-point-correlation window DLTS

method,11 which has an improved energy resolution in com-

parison with conventional DLTS.6,12 The E1 and E2 deep

levels were attributed to defects with a similar structure,

which reside on different lattice sites.3 This attribution was,

however, questioned by Pensl et al.9 In 6H-SiC there are

three non-equivalent lattice sites for the vacancy, one with

hexagonal (h) and the other two with cubic (k1 and k2) sym-

metry.13 The difference in the local structure of the lattice

can cause a small difference in energy levels of an electri-

cally active defect, which resides on different lattice sites.14

The separation of the E1/E2 DLTS peak into two components

is not consistent with a three level structure expected for an

electrically active simple defect residing on different lattice

sites in 6H-SiC. It might be possible, however, that the sepa-

ration of the E1/E2 DLTS signal into only two components is

related to the insufficient resolution of the conventional

DLTS technique.

In this letter, we show that the E1/E2 DLTS peak in 6H-

SiC can be successfully resolved into three components

using high resolution LDLTS.15 Furthermore, it has been

found that defects associated with these components are of

the same fundamental electronic structure, each having two

energy levels with negative-U ordering in the upper half of

the gap.

For these experiments, we used two kinds of 6H-SiC

diode samples, pþn diodes16 and n-type Schottky barrier

diodes (SBDs).5 The pþn diodes were fabricated on n-type

epi-layer grown on n-type 6H-SiC substrate {CREE, 3.5� off-

axis (0001)} by hot-wall chemical vapor deposition. The net

donor concentration in the epi-layer and its thickness were

approximately 2� 1015 cm�3 and 4 lm, respectively. The

150 nm-thick pþ layer (NA¼ 5� 1019 cm�3) of the diode was

formed by implantation of aluminum ions at 800 �C, followed

by a post-implantation annealing at 1800 �C for 10 min in an

argon ambient. Sequential ion implantations of aluminum

were carried out with energies of 110, 75, and 50 keV for

doses of 4.2� 1014, 1.3� 1014, and 1.2� 1014 cm�2, respec-

tively, to form a nearly uniform aluminum depth profile

within 150 nm.16 A top Ohmic contact to the pþ region was
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formed by aluminum deposition and subsequent sintering at

850 �C for 5 min. A bonding pad on the sintered aluminum

layer and a bottom Ohmic contact were made by aluminum

deposition without sintering. For comparison with the pþn
diodes, the n-type SBDs were fabricated on an n-type epi-

layer grown on a 3.5� off-axis 6H-SiC (0001) substrate.17 The

doping concentration in the epi-layer was 5� 1015 cm�3.

Electron irradiation of the SBD structures was performed

at an energy of 150 keV and fluences of 1� 1016 and

4� 1017 cm�2 without intentional heating. This low-energy

e�-irradiation results in the selective displacement of carbon

atoms in SiC crystals.10,18,19 After the e�-irradiation, the sam-

ples were annealed in an argon ambient at 950 �C for 30 min.

In the conventional DLTS and LDLTS measurements, we

typically used the reverse bias Vr¼�7 V, pulse voltage

Vp¼ 0 V, and filling pulse width tp¼ 1 ms.

Figure 1 shows a conventional DLTS spectrum for an

unirradiated pþn diode and two spectra for electron-irradiated

SBD samples. The SBD samples were irradiated with elec-

tron fluences of 1� 1016 and 4� 1017 cm�2. The spectra were

recorded with a rate window of 80 s�1. A complex DLTS

peak labeled E1/E2 is observed in all the spectra. For the SBD

structures, the E1/E2 peak intensity is much stronger in the

sample which was irradiated with higher fluence of 150 keV

electrons. An analysis of the DLTS spectrum of the pþn diode

shows a high concentration of the defects associated with the

E1/E2 peak even though the pþn diode was not irradiated with

electrons. In the analysis, NT/Nd was found to be close to 0.3,

where NT is the total concentration of the defects responsible

for the E1/E2 peak, and Nd is the net shallow donor concentra-

tion. Uedono et al. reported implantation-induced vacancy-

related defects observed at depths significantly deeper than

the mean ion projected range Rp.20,21 In our pþn diodes, the

net donor concentration estimated from the capacitance-

voltage characteristic at room temperature decreases from

about 2.3� 1015 cm�3 at the end of the depleted region

(Wffi 2.44 lm at Vr¼�7 V) to about 1.6� 1015 cm�3 at the

depletion width for Vp¼ 0 V (Wffi 1.45 lm). Considering the

position of the Fermi level (EF is at about Ec – 0.275 eV at

300 K in these diodes) and electronic properties of the E1/E2

traps, which will be discussed in detail in the following, the

observed decrease in the net donor concentration is associated

with the increased concentration of the acceptor-like E1/E2

traps, which are partially filled with electrons at 300 K, in the

vicinity of the pþn junction. Furthermore, in agreement with

Uedono et al. results,20,21 it is also suggested that the E1/E2

traps were introduced into the n region near the pþn junction

by aluminum implantation.

Figure 2 shows the LDLTS spectra of the pþn diode

sample measured at various temperatures range from 200 to

220 K. This is the same diode whose DLTS spectrum is

shown in Fig. 1. The LDLTS temperature range includes the

peak temperature of the DLTS signal due to the E1/E2 traps

in the conventional DLTS spectra (Fig. 1). In Fig. 2, the

LDLTS spectra at each temperature clearly show that the

DLTS signal associated with the E1/E2 traps consists of three

emission components. An analysis of the LDLTS spectra fur-

ther indicates that the DLTS signal previously attributed to

the E2 trap consists of two components with very close emis-

sion rates, which are labeled here as E2L and E2H. It has been

mentioned above that the E1/E2 traps have been attributed to

the same defect residing on different lattice sites in 6H-SiC.3

Our LDLTS results provide a clear confirmation of such an

attribution. Furthermore, it appears that the three emission

components of the E1/E2 DLTS signal observed for the first

time by LDLTS could be related to a simple lattice defect

distributed over the hexagonal (the E1 trap) and two cubic

sites (the E2L and E2H traps) in the 6H-SiC lattice. The

Arrhenius plots for these three traps for the un-irradiated pþn
diode and e�-irradiated SBD (with the 4 � 1017 cm�2 elec-

tron fluence) are shown in Fig. 3. The activation energies for

FIG. 1. Conventional DLTS spectra for unirradiated 6H-SiC pþn diode

(solid line) and n-type 6H-SiC SBD sample irradiated with 150 keV elec-

trons with fluences of 1� 1016 cm�2 (short-dashed line) and 4� 1017 cm�2

(dashed line). A rate window of 80 s�1 was used in the measurements.

FIG. 2. LDLTS spectra of a 6 H-SiC pþn diode measured in the temperature

range of 200-220 K. Measurement conditions are given in the figure.
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electron emission from the E1, E2H, and E2L traps are deter-

mined to be 0.39 eV, 0.43 eV, and 0.44 eV from the conduc-

tion band edge, respectively, independent of whether the

measurements were taken on the pþn diodes or Schottky

diodes.

Hemmingsson et al. presented some strong arguments

that both the E1 and E2 traps had negative-U properties.22

They correlated electron emission signals due to the E1 and

E2 traps {E1(�/þ) and E2(�/þ) transitions} with electron

emission signals in the temperature range of 100-130 K from

two shallower levels {E1(0/þ) and E2(0/þ) transitions}. The

DLTS spectra showing the peaks from the shallower levels

were recorded with a filling pulse width of 300 ns and illumi-

nation before the filling pulse to prevent the transformation

from the metastable shallow level configurations to the stable

deep level configurations upon capturing two electrons dur-

ing application of the DLTS filling pulses. Negative-U prop-

erties of the E1 and E2 traps in 6H-SiC were confirmed later

by Pensl et al.9

In order to evidence the negative-U properties of the E1/

E2 traps and to obtain additional information on the elec-

tronic structure of the corresponding defects in the shallow

level configuration, we have carried out some specific DLTS

and LDLTS measurement procedures. In order to “freeze”

the defects responsible for the E1, E2H, and E2L traps into the

shallow level configuration and hence observe the emission

signals from the shallower levels, we cooled down the diodes

from room temperature to 50 K with a reverse bias of �7 V

and then recorded the DLTS spectra during heating the sam-

ples and applying fill pulses of 1 ls width. The DLTS spectra

recorded under the above conditions are presented in Fig. 4.

In contrast to the DLTS spectra shown in Fig. 1, there are

two small peaks at temperatures lower than 150 K besides

the main E1/E2 related peak with the maximum at about

200 K in Fig. 4. Apparently, the use of the above measure-

ment conditions prevented the defects responsible for E1,

E2H, and E2L traps from capturing two electrons during the

filling stage in the temperature range 100-150 K, transform-

ing them into a stable configuration with deeper energy lev-

els. Therefore, the detection of the signals due to electron

emission from the metastable shallower level configuration

became clearly observable. In order to resolve the emission

signals from the shallower levels, LDLTS measurements

were carried out on the pþn diode in the temperature ranges

of 95–105 and 130–140 K with the use of short filling pulses.

Figure 5 shows the LDLTS spectra at 100 and 135 K. Two

emission signals occur in the spectrum recorded at 100 K

and one signal in the spectrum taken at 135 K. The two emis-

sion signals in the LDLTS spectra recorded in the tempera-

ture range of 95-105 K can be associated with the E2 trap,22

and from comparison of their relative magnitudes with the

magnitudes of the signals due to the E2H and E2L traps in

Fig. 2 we have linked the lower emission rate peak with the

FIG. 3. Arrhenius plots of electron emission rates for the three components

E1, E2H, and E2L of E1/E2 traps in 6 H-SiC obtained by LDLTS measurements

of an unirradiated pþn diode and an electron-irradiated SBD (fluence of

irradiation was 4� 1017 cm�2).

FIG. 4. Conventional DLTS spectra for an unirradiated 6 H-SiC pþn diode.

The spectra were recorded with a filling pulse width of 1 ls after cooling the

diode down with reverse bias of �7 V.

FIG. 5. LDLTS spectra at (a) 100 K and (b) 135 K recorded with filling pulse

widths of 100 ls and 1 ls, respectively.
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E2H trap and the higher emission rate peak with the E2L trap.

The emission signal in the LDLTS spectra recorded in the

temperature range of 130-140 K has been assigned to the

shallower level of the E1 trap. It should be mentioned that

magnitudes of the LDLTS signals due to electron emission

from the shallower levels, which were determined from the

LDLTS measurements with a very limited number of 1 ls

filling pulses, were about half of those for their deeper coun-

terparts. This observation further confirms the proposed links

of the levels and their negative-U ordering. The activation

energies for electron emission from the shallower levels of

the E1, E2H, and E2L centers are found to be 0.26 eV,

0.18 eV, and 0.14 eV from the conduction band edge, respec-

tively. The activation energies of the E1, E2H, and E2L traps

as well as their pre-exponential factors and the capture cross

sections calculated from the pre-exponential factors are

listed in Table I. Summarizing this part of the work, we have

confirmed the results of Hemmingsson et al.22 on the elec-

tronic structure (negative-U) of the E1/E2 traps. Further, the

application of high resolution LDLTS enables us to resolve

electron emission from the E2 trap into two components for

both the shallower and deeper levels. Both E2H and E2L ex-

hibit negative-U behavior as well as E1.

The E1/E2 traps have been widely observed in the DLTS

spectra of as-grown and irradiated 6H-SiC samples.3–10,12

The traps were attributed to the same highly abundant defect,

which resides on different lattice sites in 6H-SiC.3 Although

the origin of the defect is still debated,5,9,10 strong arguments

have been presented for the assignment of the traps to energy

levels of carbon vacancy (VC).3,5,10 Further, according to an

ab initio modeling study, the carbon vacancy in 4H-SiC

could possess two acceptor levels with negative-U ordering

in the upper half of the gap.23 Considering similar electronic

properties of defects in 4H- and 6H-SiC polytypes,14 it can

be assumed that the VC center in 6H-SiC also has an inverted

order of acceptor levels. The results obtained by us are con-

sistent with the suggested assignment of the E1/E2 traps in

6H-SiC to the acceptor levels of carbon vacancy. We have

clearly shown that there are three components of electron

emission from the deeper and shallower levels of the defect

associated with the E1/E2 traps in 6H-SiC materials studied.

These components can be attributed to the acceptor levels of

the carbon vacancy at three non-equivalent lattice sites in

6H-SiC. At the three lattice sites the carbon vacancy has

inverted order of the energy levels, i.e., they are all negative-

U center.
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