
Heteroepitaxy between wurtzite and corundum materials
Yuki Hayashi, Ryan G. Banal, Mitsuru Funato, and Yoichi Kawakami 

 
Citation: Journal of Applied Physics 113, 183523 (2013); doi: 10.1063/1.4804328 
View online: http://dx.doi.org/10.1063/1.4804328 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/113/18?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Dislocation blocking by AlGaN hot electron injecting layer in the epitaxial growth of GaN terahertz Gunn diode 
J. Appl. Phys. 114, 104508 (2013); 10.1063/1.4820460 
 
Distorted wurtzite unit cells: Determination of lattice parameters of nonpolar a -plane AlGaN and estimation of
solid phase Al content 
J. Appl. Phys. 109, 013107 (2011); 10.1063/1.3525602 
 
Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes 
Appl. Phys. Lett. 91, 051116 (2007); 10.1063/1.2766841 
 
Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor
deposition 
Appl. Phys. Lett. 78, 1544 (2001); 10.1063/1.1352699 
 
Effect of Si doping of metalorganic chemical vapor deposition-GaN templates on the defect arrangement in
hydride vapor phase epitaxy-GaN overgrown layers 
J. Appl. Phys. 88, 5729 (2000); 10.1063/1.1318366 

 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

130.54.110.71 On: Thu, 05 Jun 2014 02:49:17

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1159287001/x01/AIP-PT/JAP_ArticleDL_051414/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Yuki+Hayashi&option1=author
http://scitation.aip.org/search?value1=Ryan+G.+Banal&option1=author
http://scitation.aip.org/search?value1=Mitsuru+Funato&option1=author
http://scitation.aip.org/search?value1=Yoichi+Kawakami&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4804328
http://scitation.aip.org/content/aip/journal/jap/113/18?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/114/10/10.1063/1.4820460?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/1/10.1063/1.3525602?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/1/10.1063/1.3525602?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/91/5/10.1063/1.2766841?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/78/11/10.1063/1.1352699?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/78/11/10.1063/1.1352699?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/88/10/10.1063/1.1318366?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/88/10/10.1063/1.1318366?ver=pdfcov


Heteroepitaxy between wurtzite and corundum materials

Yuki Hayashi, Ryan G. Banal, Mitsuru Funato, and Yoichi Kawakami
Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan

(Received 25 February 2013; accepted 24 April 2013; published online 13 May 2013)

Heteroepitaxy of wurtzite semiconductors on corundum substrates is widely used in modern

optoelectronic devices, because both crystals belong to the same hexagonal close-packed system.

However, the constituent atoms in the wurtzite structure align in an ideal hexagon within the (0001)

plane, whereas those in the corundum structure are displaced due to empty octahedral sites. Herein,

we demonstrate that this atomic arrangement mismatch at the interface generates low-angle grain

boundaries in epilayers, and step bunching of corundum substrates with an even number of molecular

layers can eliminate the boundaries. Furthermore, we propose that the weakened epitaxial relationship

between epilayers and substrates also eliminates low-angle grain boundaries, which may be useful for

practical applications. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804328]

I. INTRODUCTION

Heteroepitaxy is of great technical importance for mate-

rials on foreign substrates because it can be used to expand

available systems and lead to innovative applications.

Typical examples of heteroepitaxial materials include GaAs

on Si (Refs. 1 and 2) and GaN on sapphire3,4 or Si.5,6 A criti-

cal factor that governs heteroepitaxy is the dissimilarity

between the epilayer and substrate. Due to a lattice mismatch,

epilayers grow pseudomorphically up to a critical thickness,7

at which misfit dislocations are induced to reduce the strain

energy in the system. Domain matching epitaxy, which grows

strain-free films, while confining misfit dislocations near the

interface, has been proposed for obtaining high-quality

films.8 Meanwhile, crystallographic mismatch often leads to

rotation domains. General criteria to describe the rotation

degree have already been proposed.9,10 Previous studies,

however, have been based on the translational (lattice) mis-

match and rotational mismatch of the primitive lattices, and

have not focused on the interfacial atomic arrangement.

In this study, we demonstrate that the interfacial atomic

arrangement affects the epilayer crystalline properties, using

a technologically important heterostructure: wurtzite III-

nitride semiconductors on corundum sapphire (0001). InGaN

quantum wells (QWs) on sapphire (0001) substrates have

produced visible light emitters,4 and furthermore, due to

potential applications in ultraviolet emitters and power elec-

tronic devices, AlN-based heterostructures on sapphire have

recently received much attention.11–13

Both III-nitrides and II-oxides on sapphire structures ex-

perience significant mismatch, in lattice parameters as well as

crystallographic structures. To minimize lattice mismatch, a

30� rotation occurs within the (0001) heterointerface.4,14

Additionally, in-plane rotation domains with a small angle

difference of 3�–5� have been reported for GaN (Ref. 15) and

AlN.16–18 Such high-angle and low-angle rotation domains

necessarily introduce grain boundaries, bordered by edge

dislocation arrays, and have detrimental consequences for

epilayer and device properties. In this work using AlN-on-

sapphire (0001) heterostructures, we demonstrate that the

mismatch in the interface atomic arrangements between

wurtzite and corundum crystals causes low-angle grain boun-

daries in the epilayer, but sapphire substrate steps with

an even number of molecular layers can eliminate the

boundaries.

II. AlN SAMPLES

AlN layers with a thickness of �600 nm were grown

directly on sapphire (0001) substrates by metalorganic vapor

phase epitaxy (MOVPE), typically at 1200 �C.19 The supe-

rior quality of the grown AlN layers is demonstrated by

AlGaN QWs on AlN layers with extremely high emission

efficiencies.12,13 In addition, many samples were grown

under different conditions, including continuous and alter-

nating source supply methods.19,20 Their X-ray diffraction

(XRD) line widths were in the range of 30–300 arc sec

for the (0002) symmetric diffraction, and 250–1450 arc sec

for (10�12) asymmetric diffraction, which correspond to den-

sities of 2� 106�2� 108/cm2 for screw dislocations and

7� 108�3� 1010/cm2 for edge dislocations.

III. FORMATION OF LOW-ANGLE GRAIN
BOUNDARIES

A. Experimental results

Prior to epitaxy, the sapphire substrates were thermally

annealed in H2 at 1220 �C. Figure 1 shows the atomic force

microscope (AFM) images of (a) an annealed sapphire sub-

strate and (b) AlN after epitaxy. The sapphire substrates

have an unintentional off-angle of 0.06�, creating atomically

flat terraces with widths of a few hundred nm and single

monolayer (ML) steps. The step-terrace structure of the sub-

strate is well replicated in the AlN epilayer, as demonstrated

in Fig. 1(b).

Figure 2 shows the structural properties of the AlN epi-

layer assessed by transmission electron microscopy (TEM)

and XRD. Cross-sectional TEM (XTEM) observations indi-

cate that most of the threading dislocations are pure a-type

edge dislocations. Figure 2(a) is a plane-view TEM bright-

field image, where not only isolated edge dislocations but

also line structures denoted by arrows can be observed. To
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identify the origin of the line structure, Fig. 2(b) displays a

high-resolution image; line structures are clearly edge dislo-

cation arrays with an estimated distance D between disloca-

tions of �4 nm. Moreover, the lattice image in Fig. 2(b)

indicates that on each side of the dislocation array, the crys-

tals rotate by w ¼ 4� � 5� around the [0001] axis, suggesting

the formation of a low-angle grain boundary. If this is the

case, D should equal b=w, where b is the lattice transition

vector (i.e., Burgers vector).21 Substituting the observed

D¼ 4 nm and w ¼ 4� � 5�, we obtain b¼ 0.28–0.35 nm,

which includes b for edge dislocations in AlN (0.3112 nm).

Hence, we conclude that dislocation arrays are composed of

edge dislocations located along grain boundaries.

FIG. 1. AFM images of (a) a sapphire (0001) substrate and (b) an AlN

epilayer.

FIG. 2. Plan-view (a) bright field and (b) high-

resolution TEM images of AlN. XTEM dark

field images of AlN viewed along the [1�100]

direction under (c) g ¼ ½0002� and (d) [11�20]

two-beam conditions. (e) XRD / scans of

asymmetric planes in AlN and sapphire

substrate.

183523-2 Hayashi et al. J. Appl. Phys. 113, 183523 (2013)
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Figures 2(c) and 2(d) are (1�100) XTEM dark field

images taken at the same position under (c) g ¼ ½0002� and

(d) [11�20] two-beam conditions. With g ¼ ½0002�, which is

an invisibility condition for edge dislocations, the image is

nearly contrast-free, whereas g ¼ ½11�20� creates striking

contrast. These findings indicate that the contrast is caused

by columnar two phases well aligned along the [0001] direc-

tion, but misaligned within the (0001) plane, consistent with

Fig. 2(b). Furthermore, the width of the contrast in Fig. 2(d)

is comparable to the spacing of the line structure in Fig. 2(a).

Therefore, it is reasonable to consider that the contrast in the

XTEM is derived from grains with low-angle boundaries.

Another important conclusion from the XTEM is that the

grain structure is generated at the initial stage of the growth

and is inherited during the growth. The sapphire-AlN inter-

face seems to trigger the grain formation.

In addition to the nanoscopic TEM observations, macro-

scopic assessments were conducted by XRD. The x scan of

the (0002) symmetric diffraction exhibits a line width as nar-

row as 65 arc sec, indicating highly c-oriented growth. On

the other hand, the AlN (10�12) asymmetric diffraction in the

/ scan is divided into two components peaking at 62:2�

with respect to the sapphire (11�23) diffraction [Fig. 2(e)]. If

AlN is a perfect single-phase crystal, the AlN (10�12) diffrac-

tion should be a single peak at around the same angular posi-

tion as the sapphire (11�23) diffraction. [Note that AlN is

rotated 30� in the (0001) plane.] Therefore, Fig. 2(e) indi-

cates the presence of two distinct phases in the AlN epilayer.

Because the estimated XRD peak separation of 4.4� agrees

well with the in-plane misorientation between two adjacent

grains revealed by TEM, the nanoscopic observation of the

grain boundary is not due to chance, but due to grains with

regular rotation angles formed in the entire area of the epi-

layer. Grains seem to be formed intrinsically.

B. The model

Because of Fig. 2(d) and the additional experimental

result showing that AlN on SiC substrates does not produce

such a low-angle rotation (data not shown), we focus on the

sapphire-AlN interface. The distance between the dislocation

arrays in AlN (Fig. 2) coincides well with the terrace widths

of the sapphire substrate and AlN (Fig. 1). Therefore, we

deduce that the step-terrace structure on sapphire is responsi-

ble for the low-angle grain boundaries. Sapphire (Al2O3) has

a corundum structure, where the O atoms are displaced by

�0.02 nm within the (0001) plane to align in a distorted hexa-

gon, due to the empty cation sites [Fig. 3(a)]. Depending on

the position of the Al empty sites, two differently distorted

hexagons appear alternately along the c axis, with a period of

ML; as illustrated in Figs. 3(a) and 3(b), we define these two

molecular layers as A and B stacking. It is interesting to note

that if the distorted hexagons are divided into three tetragonal

parts, 1, 2, and 3, as defined in Fig. 3(b), 1, 2, and 3 show a

clockwise sequence for A stacking, and a counterclockwise

sequence for B stacking. We presume that AlN on the A-

stacking sapphire and that on the B-stacking sapphire rotate

in the opposite direction due to the opposite rotational geom-

etry of the distorted hexagons. When 1-ML steps and terraces

are structured on the sapphire (0001) surface, A and B stack-

ing should appear side by side, as shown in Fig. 3(c), which

may cause the low-angle grain boundaries.

C. Interface potential calculation

To prove the above hypothesis, we initially simulated

the rotation angle using a model based on the Tersoff poten-

tial.22 Presently, the detailed interface structure has yet to be

clarified, either experimentally or theoretically. In particular,

the parameter describing the preferred angle between O-Al

and Al-N bonds comprising the interfacial O-Al-N structure

is unknown, preventing detailed analyses that fully consider

lattice distortion. Therefore, the model is simplified, so that

the O in sapphire and the Al in AlN form the sapphire-AlN

interface without distorting the sapphire and AlN lattices.

We then consider the rotation, as well as the in-plane and

out-of-plane translations of the six Al atoms aligned in an

unstrained AlN lattice with an Al-Al spacing of 0.3112 nm

around the Al sites of sapphire, as illustrated in Fig. 4(a).

These assumptions minimize the potential energies in the

bulk regions of sapphire and AlN, and only the potential

energy with respect to the interface Al-O bonds must be

minimized.

The potential U is defined as U ¼
P

ijfA expð� k1rijÞ
�B expð�k2rijÞg, where the first and second terms are related

to the repulsive and attractive energies between O and Al,

FIG. 3. Schematic structure of sapphire:

(a) position of the O atoms, (b) top view of

the O atoms in A and B stacking, and (c)

step-terrace structure on a sapphire (0001)

surface with respect to the O atoms.

183523-3 Hayashi et al. J. Appl. Phys. 113, 183523 (2013)
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respectively, and rij denotes for the Al-O distance. For the re-

pulsive energy, A ¼ 4:861� 10�16 J and k1 ¼ 0:3734=nm

have been reported,23 while B and k2 for the attractive energy

were determined by fitting Aexpð�k1rijÞ � Bexpð�k2rijÞ to

the Al-O bond energy in sapphire, when rij is equal to the Al-

O distance in sapphire (0.1852 nm). This procedure gives

B ¼ 1:745� 10�17 J and k2 ¼ 0:1412=nm. Figure 4(b) is the

calculated result as a function of the rotation angle /, where

/ ¼ 0 corresponds to AlN [11�20] k sapphire [1�100]. The

potential is minimized when / is 1.0�. Because AlN on A and

B stackings should rotate in opposite directions, due to the op-

posite rotational geometry of the O alignments, adjacent

grains may rotate a total of 2.0�. This prediction qualitatively

agrees with the experimental results discussed in Fig. 2.

It is plausible that the transition of the Al coordination

from six in sapphire to four in AlN, which is left out of the

above simulation, plays a role in determining the crystallo-

graphic properties of the epilayer. However, as demonstrated

experimentally below, the interface geometry plays a much

greater role. [One supporting factor is that when c-oriented

AlN is grown on (11�20) sapphire, low-angle grain bounda-

ries do not appear.]

IV. PROVING THE MODEL

A. Step bunching of sapphire with 2-ML step height

If two oppositely distorted hexagons with A and B stack-

ings are the origin of low-angle grain boundaries, then grow-

ing AlN on a sapphire surface with either A or B stacking

should eliminate these boundaries. As schematically illus-

trated in Fig. 5, such sapphire surfaces may be realized by

step bunching with an even number of ML steps. Although

step bunching has been reported to occur on sapphire vicinal

surfaces upon annealing in air,24–26 we need to establish a

condition in which even-numbered ML steps are stably real-

ized. Thus, we annealed sapphire with an off-angle of 0.5�,
1�, or 3� along the [11�20] or [1�100] direction in air at

1150 �C. When the incline is along the [1�100] direction, step

edges occasionally misalign by 30� from the initial (1�100)

step and coalesce to form step junctions. On the other hand,

the incline along the [11�20] direction leads to very straight

steps, similar to Ref. 26. Hereafter, we concentrate on sap-

phire inclined along the [11�20] direction, because straight

steps may offer highly uniform step-terrace structures with

even-numbered ML steps.

Figure 6 shows the relation between the sapphire off-

angle h and formed terrace widths L, where the symbols and

broken curves denote experimental data and calculated

results using L ¼ ML=tanh, respectively. The terrace width

was assessed at ten random points from the AFM images.

For 0.5� and 3� off sapphire, the annealing time was 45 min,

while for 1� off sapphire, it was 30, 45, or 60 min. Figure 6

shows that the terrace width is about 25 nm and is independ-

ent of both the off-angle and annealing time. This can be

interpreted by considering step bunching as a consequence

of reconstructing evaporated atoms on the surface. The ter-

race width is determined by the diffusion length of migrating

atoms, which depends on the annealing temperature but not

on the off-angle or annealing time. When the off-angle is 1�

and terrace width is �25 nm, the step height should be 2 ML,

as demonstrated by the broken curve in Fig. 6. Furthermore,

it is noteworthy that for the 1� off sapphire, annealing at an

elevated temperature of 1200 �C also provides 2-ML steps

and �25 nm wide terraces, despite the enhanced migration.

This observation is reasonable because diffusion of �40 nm

is necessary to realize further step bunching with a height

of 3 ML (Fig. 6), which cannot be achieved by a small

increase of 50 �C in the annealing temperature. Thus, we

FIG. 4. (a) AlN growth model on a sap-

phire substrate. (b) AlN rotation angle

dependence of potential U.

FIG. 5. Step-terrace structures of sapphire with

(a) 1-ML and (b) 2-ML steps.

183523-4 Hayashi et al. J. Appl. Phys. 113, 183523 (2013)
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have established conditions (annealing at �1150 �C using 1�

off sapphire) to stably provide 2-ML step bunching.

Homogeneity of the step-terrace structure formed on the

1� off sapphire annealed at 1150 �C for 60 min was examined.

Figure 7(a) displays an AFM image with regular steps. To

quantify the observation, Fig. 7(b) shows its fast Fourier

transform (FFT) image. Two bright spots are detected at posi-

tions corresponding to a terrace width of �25 nm, which in

turn, corresponds to 2-ML steps, as calculated in Fig. 6.

Hence, a high degree of homogeneity is confirmed.

B. AlN growth on step-bunched sapphire

The AlN layers were grown on sapphire substrates with

2-ML step bunching under the same conditions as the AlN

shown in Figs. 1 and 2. The XRD / scan [Fig. 8(a)] shows

that an AlN single peak appears at �0.8� with respect to the

sapphire peak, indicating that although AlN slightly rotates in

the plane, the rotating direction is unified by using sapphire

covered with a single stacking of either A or B. It is interest-

ing to note that the rotation angle of �0.8� is close to the pre-

diction [Fig. 4(b)], implying that the formation of the low-

angle grain boundary may enlarge the rotation angle of the

AlN epilayer to 62.2�. Furthermore, the plan-view TEM

bright field image [Fig. 8(b)] confirms that edge dislocation

arrays are completely eliminated, indicating the absence of

low-angle grain boundaries. It is also noteworthy that the

density of isolated dislocations is nearly the same as that in

AlN with low-angle grain boundaries. Therefore, our method

successfully eliminates grains without degrading the film

quality on terraces. These observations clearly demonstrate

our hypothesis that the mismatch in the interface atomic

arrangements between wurtzite AlN and corundum sapphire

intrinsically causes grains with the opposite in-plane rotation

directions.

C. Discussion

Thus far, only the direct growth of AlN on sapphire has

been described, because high-quality AlN can be achieved

even without a nucleation layer, such as a low-temperature

buffer layer.19,20,27 However, to see the effect of initial

nucleation processes, we also have examined �20-nm-thick

AlN low-temperature (600 or 1000 �C) buffer layers and

nitridation of the sapphire substrates. It has been confirmed

that as long as the initial sapphire surfaces are sufficiently

annealed in H2, which is quite important process as demon-

strated in Sec. V, all the samples reproduce the phenomenon

discussed in this study. Furthermore, two different MOVPE

machines with vertical or horizontal reactors have exhibited

consistent results. In addition, structures similar to our

observations have been reported for GaN (Ref. 15) and

AlN.16–18,27 Particularly for AlN, the growth method is not

only MOVPE but also solid-phase epitaxy.18 On the other

hand, it has been reported that Al preflow16 or a roughened

surface18 may eliminate low-angle grain boundaries in AlN.

For GaN/sapphire, low temperature buffer layers adopted to

compensate for the low wettability between GaN and sap-

phire4 have high mosaicity and may be an obstacle to explic-

itly observing low-angle grain boundaries related to

interfacial geometry. All these findings have led us to con-

clude that the formation of the specific grain structure is

an intrinsic property for wurtzite materials grown on corun-

dum materials with the (0001) surface, and should be

observed unless some extrinsic factors weaken the epitaxial

relationship.

Considering the origin, we deduce that similar phenom-

ena possibly take place when a crystal with rotational sym-

metry is heteroexpitaxially grown on the sapphire

(0001) plane. Besides III-nitride and II-oxide semiconduc-

tors, growths of Si (Refs. 28 and 29), SiC (Ref. 30), Cu (Ref.

31), Nb (Ref. 32), and even graphene33 on sapphire have al-

ready been demonstrated experimentally, and those material

systems may experience the same issue. For corundum sub-

strates, our proposal will offer a simple way to eliminate

low-angle grain boundaries with edge dislocations and pro-

mote the development of novel devices.

V. INTERFACE CONTROL TO ELIMINATE LOW-ANGLE
GRAIN BOUNDARIES IN AlN ON SAPPHIRE (0001)
ON-AXIS SUBSTRATES

In the preceding sections, we have proposed the model

that explains formation mechanism of low-angle grain boun-

daries in AlN, and proven it, using sapphire (0001) vicinal

substrates. In practice, however, sapphire (0001) nearly
FIG. 7. (a) AFM image of 1� off sapphire (0001) substrate annealed at

1150 �C in air. (b) FFT image of (a).

FIG. 6. Sapphire off-angle, h, dependence of the terrace width, L, on the

sapphire surface annealed at 1150 �C in air. The curves are the calculated

L based on L ¼ ML=tanh, using the step height as a parameter.

183523-5 Hayashi et al. J. Appl. Phys. 113, 183523 (2013)
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on-axis substrates are widely used. In this section, we dem-

onstrate that control of the interfacial bonding can eliminate

low-angle grain boundaries in AlN even on the (0001)

on-axis sapphire substrates.

A. Control of the surface termination of sapphire

Sapphire (0001) nominally singular substrates were first

annealed in air under the conditions established in Sec. IV A.

At this stage, the sapphire surface was quite stable and

unreactive, since experiments showed that without additional

high-temperature annealing in H2 atmosphere, GaN cannot

nucleate on this surface at all, even at the typical growth tem-

perature for low-temperature buffer layers (�600 �C). This is

why in the preceding sections, the sapphire surface was sub-

sequently annealed in H2 atmosphere at high temperatures.

We compare the surface states of sapphire annealed in

air and that followed by annealing in H2 at 1220 �C via

Fourier transform infrared spectroscopy (FTIR). An attenu-

ated total reflection (ATR) configuration was adopted, using

a Ge crystal. The resolution was 4 cm�1. Figure 9 shows the

result. After H2 annealing (process a), a signal appeared at

1730 cm�1, and no signal was detected between 3000 and

3800 cm�1. Because the hydrogen stretching frequency for

Al-H is in the range of 1700–1800 cm�1, while that for O-H

should appear in the 3000–3800 cm�1 range,34 the observed

peak can be attributed to the surface termination with Al-H

bonds. On the other hand, the sapphire surface just after air

annealing (process b) shows no FTIR signals within the spec-

tral range of interest.

AlN films were subsequently grown on these surfaces.

Figure 10 shows their temperature profiles. Prior to the proc-

esses shown in Fig. 10, all sapphire substrates were subjected

to air annealing at 1150 �C. In profile a, the air-annealed sap-

phire is exposed to H2 at 1220 �C for 10 min, whereas in pro-

file b, the substrate temperature is kept relatively low at

1000 �C. Therefore, the sapphire surface just before the AlN

growth is expected to be terminated with H atoms in profile

a, but not in profile b. (Data supporting this hypothesis are

given below.)

On these surfaces, medium-temperature AlN buffer

layers were grown at 1000 �C. The aim of the buffer layer in

profile b is to preserve the stable sapphire surface until the

AlN growth is initiated, whereas that in profile a is to grow

AlN under conditions identical to profile b, except for the

initial surface states of sapphire. After growing medium-

temperature AlN buffer layers for 1.5 min, which corre-

sponds to a thickness of 45 nm, AlN was grown at the opti-

mal temperature of 1200 �C.

Figure 11 shows XRD / scans of AlN grown on the sap-

phire (0001) on-axis substrates with different temperature

profiles a and b. The diffractions of the asymmetric AlN

(10�12) plane and sapphire (11�23) plane are compared.

Profile a provides a similar XRD profile to Fig. 2(e), indicat-

ing the formation of low-angle grain boundaries, whereas

profile b eliminates the grains with low-angle boundaries.

FIG. 8. (a) XRD / scan of AlN on the 1�

off sapphire (0001) substrate annealed at

1150 �C. (b) Plan-view TEM bright field

image of AlN on the sapphire substrate.

FIG. 9. FTIR spectra for sapphire with (process a) and without (process b)

annealing in H2 at 1220 �C.

FIG. 10. Two temperature profiles for AlN growth with the control of sap-

phire surface termination. Profiles a and b correspond to processes a and b
for FTIR, respectively.
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These findings strongly suggest that it is not the AlN growth

conditions but the sapphire surface state prior to the AlN

growth that determines the formation of grains. We believe that

the sapphire surface after air annealing is quite unreactive, as

mentioned above, so that in profile b, the epitaxial relationship

between sapphire and AlN is weakened. As discussed in

Sec. IV C, such a situation may suppress a small-angle rotation.

Finally, the stability of the sapphire surface was exam-

ined. AlN layers were grown with the profile b displayed in

Fig. 11, but here the growth temperatures of the medium-

temperature AlN buffer layers were varied in the range

between 900 and 1200 �C. (Note that when this temperature

is 1200 �C, profile b corresponds to profile a.) Figure 12 com-

pares XRD / scans of AlN (10�12) asymmetric diffraction of

the grown AlN layers. The buffer growth temperatures below

1050 �C realize single-phase AlN, whereas those above

1100 �C cause the splitting of the diffraction peak, indicating

the introduction of low-angle grain boundaries. That is, the

sapphire surface stabilized by air annealing is preserved even

under H2 atmosphere up to 1050 �C, and the Al-H bonding

starts to form above 1100 �C. These experimental findings

lead us to conclude that the unreactive sapphire surfaces

weaken the epitaxial relationship and effectively suppress

low-angle grain boundaries. This is quite reasonable because

the formation mechanism of the grain boundaries is inti-

mately related to the interfacial geometrical atomic arrange-

ment, as demonstrated in Secs. III and IV.

In this study, we have been using the term “weakened epi-

taxial relationship between the epilayer and substrate” to

explain the observed phenomena. Generally, the epilayer

structures are determined by the energy balance between com-

petitive factors in the heterosystem. A typical example is

lattice-mismatched heteroepitaxy; an epilayer initially grows

pseudomorphically, but eventually induces misfit dislocations.

This is because accommodating the misfit strain within the epi-

layer is energetically favorable for a thin layer, but releasing

the strain by misfit dislocations is favorable for a thick layer.

When a wurtzite epilayer well inherits the nature of a corun-

dum substrate, the formation of low-angle grain boundaries

could be the most stable structure, as demonstrated in Sec. III.

On the other hand, when the surface of a corundum substrate is

less reactive, the epilayer is relatively free from the constraints

of the substrate, and could form a single phase crystal without

forming low-angle grain boundaries, because breaking the epi-

taxial relationship is energetically more favorable than forming

grains with a low-angle difference. This is the situation that we

call the “weakened epitaxial relationship” and that of AlN

growth on air-annealed sapphire, shown in this section. It is

noteworthy that the bond strengths of diatomic molecules are

in the order of Al-O (502 kJ/mol)�Al-N (368 kJ/mol)>Al-H

(288 kJ/mol),35 which could explain the less reactive sapphire

surface after air annealing and the recovered reactivity after

the H2 treatment.

VI. SUMMARY

We have demonstrated that the mismatch in the inter-

face atomic arrangements causes low-angle grain boundaries

accompanied by edge dislocation arrays in wurtzite AlN epi-

layers grown on corundum sapphire (0001) substrates. The

simulation predicts that the alignment of the O atoms in sap-

phire causes a small angle (�1�) in-plane rotation of AlN,

and the 1-ML step-terrace structures on the sapphire surface

cause low-angle grain boundaries. The experiment demon-

strates that using sapphire substrates step-bunched with the

even-numbered steps can eliminate the low-angle grain

boundaries, strongly supporting our hypothesis that the mis-

match in the interface atomic arrangements causes grains

FIG. 11. XRD / scans of AlN grown on the sapphire (0001) on-axis sub-

strates with different temperature profiles a and b.

FIG. 12. XRD / scans of AlN grown with profile b. The temperatures

shown in the figure are those for the buffer layers, on which AlN was grown

at the optimal temperature of 1200 �C for all the samples.
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with the different in-plane rotation directions. Furthermore,

we propose that unreactive sapphire surface produced by air

annealing may suppress the low-angle rotation.
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