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Abstract. The general theory of slip flow established in the late 1960s is revisited. For a long time, the complete set of
data of the slip and jump coefficients up to the second order of the small Knudsen number have been available only for the
Bhatnagar–Gross–Krook model. The present paper provides the complete set of data of those coefficients for a hard-sphere
gas on the diffuse reflection boundary. The data are obtained by using the general identities that have been deduced from
recently developed symmetry arguments. A few simple application examples are also presented.
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INTRODUCTION

Recent development of micro device technologies enhances the research activity of gas flows in the slip-flow regime,
both numerically and experimentally. The general theory of slip flow itself has been established with a firm foundation
in 1960s and 1970s on the basis of the Bhatnagar–Gross–Krook (BGK or Boltzmann–Krook–Welander [1, 2]) model
[3] and later on the basis of the original Boltzmann equation [4]. The slip and jump conditions up to the second order of
the small Knudsen number, which are recent concerns of many researchers (e.g., [5, 6, 7, 8]), have also been clarified
at such an early stage. They are compiled and can be found in [9, 10].
For a long time, the specific values of the second-order slip and jump coefficients occurring in that theory have

been available only partially, except for the BGK model with the diffuse reflection condition. In the present work, we
will take a step forward to provide all the values of those coefficients for a hard-sphere gas with the diffuse reflection
condition. The symmetry argument recently developed by the first author [11] makes this step rather easy, compared
with a straightforward numerical approach.

GENERAL THEORY OF SLIP FLOW

Let us denote by Lxi the space coordinates, by p0(1+P) and T0(1+ τ) the pressure and temperature of the gas, by
(2RT0)1/2ui the flow velocity, and by (2RT0)1/2uwi and T0(1+ τw) the velocity and temperature of the boundary. Here
L is the characteristic length of the system, R is the specific gas constant, p0 and T0 are the pressure and temperature in
the reference equilibrium state at rest. We also denote by ni the unit normal to the boundary, pointed to the gas, and by
ti an arbitrary unit vector tangential to the boundary. We assume that the boundary does not deform and thus uwini = 0.
The slip-flow theory describes the asymptotic behavior of the gas for small Knudsen numbers. Here the Knudsen
number Kn is defined by Kn= �0/L with �0 being the mean-free path of a molecule at the reference equilibrium state.1
In the present paper, we use the notation ε defined by ε = (

√
π/2)Kn, instead of Kn, to emphasize its smallness.

According to the general theory of slip flow [9, 10], the behavior of a slightly rarefied gas with a small Reynolds
number can be described in the bulk of the domain by the Stokes set of equations with slip and jump boundary
conditions; in the layer with the thickness of a few mean free paths, which is adjacent to the boundary and is called the
Knudsen layer, this fluid-dynamical description (to be referred to fluid-dynamical part) is necessary to be corrected

1 For the BGK model, �0 = (2/
√

π)(2RT0)1/2/(Acρ0), where ρ0 = p0/RT0 (the reference density) and Acρ0 is the collision frequency (Ac is a
positive constant). For a hard-sphere gas, �0 = (

√
2πd2(ρ0/m))−1, where d and m are the diameter and mass of a molecule.
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(the Knudsen-layer correction). The slip and jump conditions and the Knudsen-layer correction are required at the
level of the first and higher orders of the Knudsen number. This is a classical result derived by a systematic asymptotic
analysis of the linearized Boltzmann equation for small Knudsen number. The primary concern of the present paper is
the fluid-dynamical part. The Knudsen-layer corrections will be rarely discussed or mentioned hereafter.
We shall tell apart the fluid-dynamical part and the Knudsen-layer correction by putting subscript G and K to the

notation of quantities respectively. Each quantity, say h= hG+hK (h= P, τ , ui, etc.), is expanded in a power series of
ε as hG = h(0)G +h(1)G ε +h(2)G ε2 · · · and hK = h(1)K ε +h(2)K ε2 · · · . Note that the expansion of hK starts from O(ε) (see the
previous paragraph). Then, the above mentioned Stokes set of equations and the slip and jump boundary conditions
over a smooth solid body are written as follows:

Stokes set of equations

∂P(0)G
∂xi

= 0,
∂u(m)Gi
∂xi

= 0, γ1
∂ 2u(m)Gi

∂x2j
=

∂P(m+1)G
∂xi

,
∂ 2τ(m)G

∂x2j
= 0, (m= 0,1,2, . . .), (1)

Slip and jump boundary conditions [up to O(ε2)]

the leading order (non-slip and non-jump)

u(0)Gi = u
(0)
wi , τ(0)G = τ(0)w , (2)

the first order

u(1)Gi ni = 0, u(1)Gi ti = u
(1)
wi ti− k0

(∂u(0)Gi
∂x j

+
∂u(0)G j
∂xi

)
nit j−K1 ∂τ(0)G

∂xi
ti, (3)

τ(1)G = τ(1)w +d1
∂τ(0)G
∂xi

ni, (4)

the second order

u(2)Gi ti =u
(2)
wi ti− k0

(∂u(1)Gi
∂x j

+
∂u(1)G j
∂xi

)
nit j−K1 ∂τ(1)G

∂xi
ti−a1

[ ∂
∂xk

(∂u(0)Gi
∂x j

+
∂u(0)G j
∂xi

)]
n jnkti

−a2κ
(∂u(0)Gi

∂x j
+

∂u(0)G j
∂xi

)
nit j−a3κi j

(∂u(0)Gk
∂x j

+
∂u(0)G j
∂xk

)
nkti

− (a4−d1K1) ∂ 2τ(0)G
∂xi∂x j

nit j−a5κ
∂τ(0)G
∂xi

ti− (a6−d1K1)κi j
∂τ(0)G
∂x j

ti, (5)

u(2)Gi ni = −2b1
∂ 2u(0)Gi
∂xk∂x j

nin jnk−b2
( ∂ 2τ(0)G

∂xi∂x j
nin j+2κ

∂τ(0)G
∂xi

ni
)
, (6)

τ(2)G =τ(2)w +d1
∂τ(1)G
∂xi

ni+2d4
∂ 2u(0)Gi
∂xk∂x j

nin jnk+d3
∂ 2τ(0)G
∂xi∂x j

nin j+d5κ
∂τ(0)G
∂xi

ni, (7)

where γ1 is the dimensionless viscosity2, which is a constant depending on the molecular model (see Table 2 in the next
section), while k0,K1, a1∼ a6, b1, b2, d1, and d3∼ d5 are the slip and jump coefficients, which are a constant depending
on both the molecular model and the kinetic boundary condition (i.e., the model of gas-surface interaction). κi j/L and
κ/L are respectively the curvature matrix and mean curvature of the boundary.3 The system (1)–(7) determines the

2 The viscosity μ at the reference state is given by μ = γ1p0(2RT0)−1/2Lε .
3 κi j/L and κ/L are defined by κi j = κ1mimj +κ2�i� j and κ = (κ1+κ2)/2, where κ1/L and κ2/L are the principal curvatures of the boundary
and mi and �i are the direction cosines of the principal directions corresponding to κ1/L and κ2/L. Here κ1 and κ2 are taken negative when the
corresponding center of curvature lies on the gas side.
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TABLE 1. Slip and jump coefficients for the BGK model and the diffuse reflection condition (the data taken
from [10, 9]).

first-order slip & jump second-order slip second-order jump

k0 −1.01619 a1 0.76632 a4 0.27922 d3 0 b1 0.11684
K1 −0.38316 a2 0.50000 a5 0.26693 d4 0.11169 b2 0.26693
d1 1.30272 a3 −0.26632 a6 −0.76644 d5 1.82181

behavior of the bulk gas from the lowest order. Namely, the first equation of (1) means the uniform pressure at the
leading order. Equation (1) for m= 0 with (2) determines the leading order of temperature and flow velocity, together
with the first order of pressure; Equation (1) for m = 1 with (3) and (4) determine the first order of temperature and
flow velocity, together with the second order of pressure; and so on.
If we sum up the terms in the above system, the behavior of the bulk gas is seen to be described correctly up to

O(ε2) as follows:
∂uGi
∂xi

= 0, εγ1
∂ 2uGi
∂x2j

=
∂PG
∂xi

,
∂ 2τG
∂x2j

= 0, (8)

with the slip and jump conditions

uGiti =uwiti− εk0
(∂uGi

∂x j
+

∂uG j
∂xi

)
nit j− εK1

∂τG
∂xi

ti− ε2a1
[ ∂

∂xk

(∂uGi
∂x j

+
∂uG j
∂xi

)]
n jnkti

− ε2a2κ
(∂uGi

∂x j
+

∂uG j
∂xi

)
nit j− ε2a3κi j

(∂uGk
∂x j

+
∂uG j
∂xk

)
nkti

− ε2(a4−d1K1) ∂ 2τG
∂xi∂x j

nit j− ε2a5κ
∂τG
∂xi

ti− ε2(a6−d1K1)κi j ∂τG
∂x j

ti, (9)

uGini = −2ε2b1 ∂ 2uGi
∂x j∂xk

nin jnk− ε2b2
( ∂ 2τG

∂xi∂x j
nin j+2κ

∂τG
∂xi

ni
)
, (10)

τG = τw + εd1
∂τG
∂xi

ni+2ε2d4
∂ 2uGi

∂x j∂xk
nin jnk+ ε2d3

∂ 2τG
∂xi∂x j

nin j+ ε2d5κ
∂τG
∂xi

ni. (11)

The system (8)–(11) might be preferred as a concise form of (1)–(7), especially for numerical computations.
In order to apply the theory to specific problems, a complete set of data of k0, K1, a1 ∼ a6, b1, b2, d1, and d3 ∼ d5

is desired. However, it is available only for the BGK model with the diffuse reflection condition ([3, 9]; see Table 1).
Even for a hard-sphere gas with the diffuse reflection condition, only a partial set of data (i.e., k0, K1, a4, b1, b2, d1,
and d4) has been available [12, 13, 14, 15], thus having restricted the application of the theory to the level of O(ε).
In the next section, we provide a complete set of numerical data of the slip and jump coefficients for a hard-sphere

gas on the diffuse reflection boundary, which was obtained by using the symmetric relation developed in [11].

IDENTITIES AMONG THE SLIP AND JUMP COEFFICIENTS

Each slip and jump coefficient is related to a specific thermal or fluid-dynamical state (shear stress, temperature
gradient, thermal stress, etc.) of the bulk gas at the boundary and is determined (together with the solution, namely
the velocity distribution function) through the analysis of the corresponding half-space problem of the linearized
Boltzmann equation with/without a source term. This half-space problem is generically written as

ζn
∂φ α

∂η
= L [φ α ]+ Iα(η ,ζζζ ), (12a)

φ α = K̃ [−2ζ j(δi j−nin j)bα
i −|ζζζ |2cα +gα(ζζζ )]+K [φ α ], ζn > 0, η = 0, (12b)

φ α → 0 as η → ∞, (12c)

where ζn = ζini, η is the (stretched dimensionless) coordinate in the direction of ni, L is the linearized collision
operator, K is the locally isotropic reflection operator on the boundary, K̃ [ f ] = f −K [ f ], Iα and gα are a given

61



function, δi j is the Kronecker delta, superscript α is the label for telling apart the elemental problems, and bα
i and

cα correspond to the slip coefficient of tangential velocity and the jump coefficient of temperature, respectively. For
instance,L is given for the BGK model by

L [φ α ] = 〈φ α〉+2ζi〈ζiφ α〉+ 2
3
(|ζζζ |2− 3

2
)〈(|ζζζ |2− 3

2
)φ α〉,

and for a hard-sphere gas by

L [φ α ] =−ν(|ζζζ |)φ α(ζζζ )+
∫
k(ζζζ ,ξξξ )φ α(ξξξ )dξξξ ,

ν(z) =
1
2
√
2

[
exp(−z2)+

(
2z+

1
z

)∫ z

0
exp(−y2)dy

]
,

k(ζζζ ,ξξξ ) =
1√

2π|ζζζ −ξξξ | exp
(
−|ξξξ |2+ |ξξξ ×ζζζ |2

|ξξξ −ζζζ |2
)
− |ζζζ −ξξξ |
2
√
2π

exp
(−|ξξξ |2) ,

where
〈Φ〉(η) = π−3/2

∫
Φ(η ,ζζζ )exp(−|ζζζ |2)dζζζ .

For the diffuse reflection condition,K is given by

K [φ α ] = 2π−1
∫

ζ ∗n<0
|ζ ∗n |φ α(ζζζ ∗)exp(−|ζζζ ∗|2)dζζζ ∗, ζn > 0.

By applying the symmetric relation developed in [11], we obtain the following identity between the half-space
problem for φ α [(12) with α = α] and that for φ β [(12) with α = β ]:

〈ζn(2ζ j(δi j−nin j)bβ
i −|ζζζ |2cβ )(φ α −gα)〉∣∣η=0+ 〈ζngβ−(φ α − 1

2
gα)〉∣∣η=0−

∫ ∞

0
〈Iβ−φ α〉dη

= 〈ζn(2ζ j(δi j−nin j)bα
i −|ζζζ |2cα)(φ β −gβ )〉∣∣η=0+ 〈ζngα−(φ β − 1

2
gβ )〉∣∣η=0−

∫ ∞

0
〈Iα−φ β 〉dη , (13)

where superscript “−” means that Φ−(·,ζζζ ) = Φ(·,−ζζζ ). The specific form of Iα and gα for various elemental half-
space problems can be found in [16]. Here we simply summarize the identities between different slip and jump
coefficients that have been obtained from (13) for various pairs of those half-space problems:

K1 =
1
2γ1

(
− γ3+

∫ ∞

0
〈(|ζζζ |2−ζ 2n )(|ζζζ |2−

5
2
)φS〉dη

)
, (14)

a4 =d1K1− 1
γ1
k0
(

γ3+
∫ ∞

0
〈|ζζζ |2φT〉dη

)
+
1
γ1

∫ ∞

0
η
(
〈|ζζζ |2φT〉+ 〈(|ζζζ |2−ζ 2n )(|ζζζ |2−

5
2
)φS〉

)
dη

+
1
2γ1

∫ ∞

0
〈(|ζζζ |2−ζ 2n )(ζnB+φS−)φT〉dη , (15)

a1 =
γ6
γ1

+
1
2

∫ ∞

0
〈(|ζζζ |2−ζ 2n )φS〉dη , (16)

a3 = − 1
4γ1

(∫ ∞

0
〈|ζζζ |2(|ζζζ |2−ζ 2n )BφS〉dη− 4

15
〈|ζζζ |4(D1− 17 |ζζζ |

2D2)B〉

+2〈ζn(|ζζζ |2−ζ 2n )(D1+
1
2
(|ζζζ |2−3ζ 2n )D2)φS〉

∣∣
η=0−

∫ ∞

0
〈(|ζζζ |2−ζ 2n )2φS−

∂φS

∂ζn
〉dη

)
, (17)

a2 =a1+a3, (18)

d4 =
2
5

γ1
γ2
a4, (19)

d3 =
4
5γ2

(
− γ3K1−K1

∫ ∞

0
〈|ζζζ |2φT〉dη +

1
2

∫ ∞

0
(2η +d1)〈(|ζζζ |2−ζ 2n )(|ζζζ |2−

5
2
)φC〉dη +

2
15
〈|ζζζ |4AF〉

+
1
2

∫ ∞

0
〈[(|ζζζ |2−ζ 2n )φC−|ζζζ |2A]φT−〉dη

)
, (20)
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TABLE 2. Dimensionless transport coefficients γ1 ∼ γ3 and γ6 (the data taken from [10]).

definition BGK hard sphere definition BGK hard sphere

γ1 2
15 〈|ζζζ |4B〉 1 1.270042427 γ3 2

15 〈|ζζζ |4AB〉 1 1.947906335
γ2 4

15 〈|ζζζ |4A〉 1 1.922284066 γ6 1
15 〈|ζζζ |4(D1+ 3

7 |ζζζ |2D2)B〉 1 1.419423836

d5 =2d3+
8
5γ2

(∫ ∞

0
〈|ζζζ |2AφT〉dη− 2

15
〈|ζζζ |4AF〉− 1

2

∫ ∞

0
〈(|ζζζ |2−ζ 2n )φT−

∂φT

∂ζn
〉dη

)
, (21)

a6 =a4+ k0
γ3
γ1
− 1

γ1

∫ ∞

0
η〈(|ζζζ |2−ζ 2n )(|ζζζ |2−

5
2
)φS〉dη− 1

4γ1

∫ ∞

0
〈|ζζζ |2(|ζζζ |2−ζ 2n )BφC〉dη

+
1
4γ1

∫ ∞

0
〈(|ζζζ |2−ζ 2n )2φS−

∂φC

∂ζn
〉dη , (22)

a5 = −a4+a6− γ3
γ1
k0+

1
γ1

∫ ∞

0
η〈(|ζζζ |2−ζ 2n )(|ζζζ |2−

5
2
)φS〉dη . (23)

Here φT(η ,ζn, |ζζζ |), ζtφS(η ,ζn, |ζζζ |), and ζtφC(η ,ζn, |ζζζ |) (ζt = ζiti) are the solution of the classical temperature-jump,
shear-slip, and thermal creep problems occurring at the first order of the Knudsen number, namely the solution of (12)
for α = T, S, and C with

IT = 0, bTi = 0, cT = d1, gT = ζnA(|ζζζ |),
IS = 0, bSi =−k0ti, cS = 0, gS = ζnζtB(|ζζζ |),
IC = 0, bCi =−K1ti, cC = 0, gC = ζtA(|ζζζ |).

It should be mentioned that the coefficients b1 and b2 are given by definition [10] as

b1 =−14
∫ ∞

0
〈(|ζζζ |2−ζ 2n )φS〉dη , b2 =−12

∫ ∞

0
〈(|ζζζ |2−ζ 2n )φC〉dη .

As explicitly indicated in the above equation, A, B, D1, D2 and F are isotropic functions of ζζζ , which are defined as the
solution of the following linear integral equations:

L [ζiA] =−ζi(|ζζζ |2− 52 ) with 〈|ζζζ |2A〉= 0, L [(ζiζ j− 13 |ζζζ |
2δi j)B] =−2(ζiζ j− 13 |ζζζ |

2δi j),

L [(ζiζ j− 13 |ζζζ |
2δi j)F ] = (ζiζ j− 13 |ζζζ |

2δi j)A,

L [(ζiδ jk+ζ jδik+ζkδi j)D1+ζiζ jζkD2] = γ1(ζiδ jk+ζ jδik+ζkδi j)−ζiζ jζkB with 〈|ζζζ |2(5D1+ |ζζζ |2D2)〉= 0,
and γ1 ∼ γ3 and γ6 are dimensionless transport coefficients, which are constants defined as their integral. The specific
values of γ’s depend on the molecular model and are listed in Table 2.
We stress that the identities (14)–(23) are general and hold for various intermolecular potential models (the inverse-

power law, Lennard-Jones, VHS [17], VSS [18], etc.) and boundary conditions.4 Moreover, they show that the
complete data set of the slip and jump coefficients can be obtained, once we have the solutions of the three classical
half-space problems φT, φS, and φC. Since the accurate numerical method to solve these problems [12, 13] has been
established in the late 1980s, we have recomputed the problems using the same method. Then, from the identities (14)–
(23), we obtain the complete data set of the slip and jump coefficients for a hard-sphere gas with diffuse reflection
condition. The results are listed in Table 3. Accuracy of the data of K1 and b2 has been improved from those given in
[9, 10] at the last decimal because of the recomputation with a refined grid. Incidentally, we have also confirmed that
the data for the BGK model in Table 1 were recovered by the same procedure from the identities (14)–(23).

4 See [11, 16] for the class of the boundary conditions to which the symmetric relation can be applied. In addition it should be noted that the
scattering kernel is locally isotropic and that the accommodation coefficient is O(1). These are basic assumptions that are made in Sone’s theory of
the present concern [9, 10]. For the boundary with accommodation coefficient of O(ε), e.g., the (nearly) specular reflection boundary, the slip/jump
condition is known to be qualitatively different. See, e.g., Y. Sone and K. Aoki, Phys. Fluids 20, 571 (1977) and K. Aoki, T. Inamuro, and Y. Onishi,
J. Phys. Soc. Jpn 47, 663 (1979).
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TABLE 3. Slip and jump coefficients for a hard-sphere gas on the diffuse reflection boundary.

first-order slip & jump second-order slip second-order jump

k0 −1.2540 a1 0.9039 a4 0.0330 d3 0.4992 b1 0.1068
K1 −0.6465 a2 0.6601 a5 0.2336 d4 0.0087 b2 0.4782
d1 2.4001 a3 −0.2438 a6 −1.9987 d5 4.6181

FIGURE 1. Mass flow rate per unit width in a straight channel. (a) Poiseuille flow, (b) thermal transpiration.

SIMPLE EXAMPLES

We show a few examples (see, e.g., [10]) for which the analytical solution is easily obtained by the slip flow theory.

Mass flow rate of the Poiseuille flow and thermal transpiration

Consider a slightly rarefied gas in a channel or tube. The flow that is induced by imposing a (small) uniform gradient
of pressure along the channel or tube is called the Poiseuille or Hagen–Poiseuille flow, while the flow when a (small)
uniform gradient of temperature is imposed along the channel or tube wall is called the thermal transpiration. The
Poiseuille and Hagen–Poiseuille flows are commonly observed, while the thermal transpiration is specific to a rarefied
gas. The X1-direction of the space coordinates Xi will be taken along the channel or tube. The quantity with subscript
P and T denotes that for Poiseuille (or Hagen–Poiseuille) flow and thermal transpiration, respectively. The pressure
and the wall temperature will be denoted by p and Tw, respectively.
First consider the case of a straight channel. Let L be the separation distance between the channel walls. Mass flow

(M,0,0) per unit time for unit spanwise width can be computed to yield [10, 19]

MP
ρ0(L2/2μ)L(dp/dX1)

=−1
6
+ k0ε−2(a1−2b1)ε2, (24)

MT
2ρ0RL2(2RT0)−1/2(dTw/dX1)

=−(K1+2b2ε)ε. (25)

It should be noted that the expansion has been completed in the above expression (the third and higher order terms do
not appear). However, the above should be recognized as the asymptotic solution and can be applied only for small ε .
The results for a hard-sphere gas are plotted and compared with the direct numerical solution [19] in Fig. 1.
Next, consider the case of a straight tube with a circular cross-section. Let L be the radius of the tube. Mass flow

(M,0,0) per unit time can be computed [20] to yield

MP
ρ0(πL3/2μ)L(dp/dX1)

=−1
4
+ k0ε +(4b1−a1− a22 )ε2+ · · · , (26)

MT
2ρ0R(πL3)(2RT0)−1/2(dTw/dX1)

=−K1ε− (2b2− a52 )ε2+ · · · . (27)

The results for a hard-sphere gas are plotted and compared with the numerical solution [21] in Fig. 2.

64



FIGURE 2. Mass flow rate in a straight tube with a circular cross-section. (a) Hagen–Poiseuille flow, (b) thermal transpiration.

FIGURE 3. Forces acting on a spherical particle. (a) Drag force, (b) thermal force.

Drag and thermal forces acting on a spherical particle

Consider a spherical particle of radius L suspended in a slightly rarefied gas. The thermal conductivities of the
particle and the gas will be denoted by λp and λg, respectively. The origin of the space coordinates Xi is the center of
the sphere.
The drag force (F,0,0) acting on the sphere in a slow uniform gas flow (U,0,0) can be computed [10, 22] to yield

F
6πμUL

= 1+ k0ε +
(
3k20−3a1+2a3+2b1+

8
5

PrK21
λp/λg+2

)
ε2+ · · · , (28)

where μ is the viscosity, Pr(= γ1/γ2) is the Prandtl number. This formula is taken from [10], but is simplified by using
(14) and (18). The results for a hard-sphere gas are plotted and compared with the direct numerical solution [23] in
Fig. 3(a).
When there is a small temperature gradient in the background gas, namely when the temperature of the gas in the

absence of the sphere is given by T0+(dT/dX1)∞X1, the sphere is subjected to a force from the gas (the thermal force).
The thermal force (F,0,0) is computed [10, 22] to yield

F
λgL2(2RT0)−1/2(dT/dX1)∞

=
48π
5
Pr
( K1
2+λp/λg

ε +(a4− C
2+λp/λg

)ε2
)
+ · · · , (29a)

C =−b2−3K1k0+3a4−a5−a6+ 2K1
2+λp/λg

(
d1

λp
λg
− 4
5γ2

∫ ∞

0
HBdη

)
, (29b)

∫ ∞

0
HBdη = 1.2765 (hard sphere), 0.41556 (BGK). (29c)

The results for a hard-sphere gas are plotted and compared with the direct numerical solution [23] in Fig. 3(b). When
λp/λg is finite, the first term is dominant, and the thermal force is acting in the direction opposite to the imposed
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gradient of temperature (the usual thermophoresis) because K1 < 0. When λp/λg is very large or ideally infinite, only
the a4ε2 remains in the parenthesis, and the thermal force is acting in the same direction as the temperature gradient
(the negative thermophoresis [24, 14]) because a4 > 0. Therefore, the direction of the thermophoresis may change
depending on the material of the particle, though the negative thermophoresis has not been verified experimentally.
The reversal of the thermal force is due to the change of its physical mechanism. In the usual thermophoresis,

the surface temperature of the sphere is nonuniform because of the finite thermal conductivity of the particle. The
nonuniform surface temperature, then, induces the thermal creep flow and is subjected to the reaction from the gas.
The first term of (29a) represents this effect. On the other hand, in the negative thermophoresis, the surface temperature
is uniform because of the infinite thermal conductivity of the particle, thus the thermal creep effect is absent. Then, the
higher-order effect of the thermal-stress slip is dominant, inducing a flow (thermal-stress slip flow) in the opposite to
the thermal creep. Thus, the reaction from the gas is in the opposite direction to the case of the thermal creep effect.
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