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Abstract. Unsteady motion of a rarefied gas in a half space, caused by an infinitely wide plate when it starts a longitudinal and
harmonic oscillation, is investigated numerically on the basis of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann
equation. A deterministic method capable of describing the singularities in the molecular velocity distribution function
produced by the oscillating plate, which was developed recently by the authors, is used as a solution method, and the unsteady
behavior of the gas is obtained accurately. The streaming motion and the attenuation of the wave, observed in the existing
work using the direct simulation Monte Carlo (DSMC) method (T. Ohwada and M. Kunihisa, in Rarefied Gas Dynamics, AIP,
Melville, 2003, pp. 202–209), are also obtained. In addition, some pieces of numerical evidence that clarify the long-time
behavior of the gas are provided. For example, one-period averages of the momentum and energy fluxes across the oscillating
plate tend to approach their values for a periodic state (a constant for the momentum flux and zero for the energy flux) slowly,
the rate of approach being likely to be inversely proportional to the square root of time.
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INTRODUCTION

Acoustic wave propagation in a gas is one of the fundamental problems in gas dynamics. Gas motion in a semi-infinite
space induced by an infinitely wide plate oscillating longitudinally is a typical and the simplest setting, for which the
linearized Euler equation gives the plane-wave solution (see e.g., [1]).

However, when the frequency of oscillation of the plate is high, or when the gas under consideration is rarefied,
the frequency of oscillation can be comparable to the collision frequency of the gas molecules. In such cases, the
continuum gas dynamics is not applicable any more and should be replaced by kinetic theory (see e.g., [2]). In fact, this
is a classical subject in rarefied gas dynamics and has been investigated by many authors (e.g., [3, 4, 5, 6, 7, 8, 9, 10]).
More specifically, the acoustic wave propagation in a half space was studied using linearized kinetic equations, under
the assumption that the speed of the oscillating plate is much lower than the sonic speed, and it was reported that
the effect of gas rarefaction (or the non-continuum effect) led to attenuation of the propagating wave and spatial
inhomogeneity of its wave length. However, when the amplitude of oscillation is increased at a fixed frequency, or
when the frequency is increased at a fixed amplitude, the speed of oscillation of the plate may become comparable to
the sonic speed, so that the nonlinearity cannot be neglected. In the present study, we consider such cases with full
nonlinearity. More precisely, we investigate unsteady motion in a semi-infinite expanse of a rarefied gas caused by
an infinitely wide plate when it starts a longitudinal harmonic oscillation. We carry out accurate numerical analysis
using the Bhatnagar–Gross–Krook (BGK) model [11, 12] of the Boltzmann equation and give precise description of
time-evolution of the macroscopic quantities.

The same nonlinear problem was investigated using classical gas dynamics (the Euler equation) in [13, 14], where
the formation of sawtooth-like waves and the streaming motion toward infinity, accompanied by a rarefaction region,
were found and attributed to the effect of nonlinearity. In particular, with the help of a long-time computation (up to
about 190 periods of oscillation), it was pointed out that a rarefaction region develops near the oscillating plate and
extends linearly in time and that a quasi-steady periodic state is formed near the plate. On the other hand, a similar
nonlinear problem, i.e., wave propagation caused by a sudden start of a sawtooth oscillation of a plate, was studied for
a rarefied gas by the direct simulation Monte Carlo (DSMC) method in [15], where both the effect of gas rarefaction
and that of nonlinearity mentioned above were observed. In the present study, we expect to observe more or less the
same phenomena, but an emphasis will be put on the quantitative description of the long-time behavior.

Finally, we mention another aspect of the present study. In most of the works based on the linearized kinetic
equations mentioned above, the oscillating plate is approximated by a stationary wall, and the oscillation is produced
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by imposing an oscillatory macroscopic velocity in the boundary condition. In the present nonlinear problem, however,
such an approximation is not valid, so that we have to handle the problem with a moving boundary. It is a challenging
subject in kinetic theory because the oscillating plate continuously sends discontinuities in the molecular velocity
distribution function in the gas. We tackle this problem by a deterministic solution method, capable of describing the
discontinuities caused by a moving plate, that was developed recently by the authors [20].

FORMULATION OF THE PROBLEM

Problem and Assumptions
We consider a semi-infinite expanse of an ideal monatomic gas in a uniform equilibrium state at rest with density

ρ0∗ and temperature T0∗, bounded by an infinitely wide plate kept at uniform and constant temperature T0∗. The plate is
placed at X1 = a∗ (> 0), where Xi (i = 1,2,3) denotes the Cartesian coordinate system with the X1 axis perpendicular
to the plate. At time t∗ = 0, the plate starts an oscillation around X1 = 0 with angular frequency ω∗ according to
X1 = Xw(t∗) with Xw(t∗) = a∗ cosω∗t∗. We investigate the subsequent unsteady motion of the gas numerically on the
basis of kinetic theory when the frequency of oscillation of the plate is comparable to the mean collision frequency of
gas molecules.

The assumptions for our analysis are as follows:

1. The behavior of the gas is described by the BGK model of the Boltzmann equation ([11, 12]; see also [2]).
2. The gas molecules undergo diffuse reflection on the plate (see, e.g., [2]). More specifically, the molecules reflected

on the plate are distributed according to the half-range Maxwellian distribution characterized by the velocity and
temperature of the plate and with the density adjusted in such a way that there is no net mass flow across the
boundary.

3. The gas motion is one dimensional, that is, the motion is only in the X1 direction, and the physical quantities do
not depend on X2 and X3.

Before formulating the problem, we summarize the notations used throughout the present paper. We first introduce
(and repeat) basic dimensional quantities, that is, t∗ is the time variable, Xi the Cartesian coordinate system in space,
ξi the molecular velocity, Xw the position (X1 coordinate) of the plate, f∗ the velocity distribution function of gas
molecules, ρ∗ the density, (u1∗, 0, 0) the flow velocity, T∗ the temperature, p∗ the pressure, p11∗ the X1-X1 component
of the stress tensor (normal stress), and (q1∗, 0, 0) the heat-flow vector. Then, adopting the time and length scales given
respectively by

1/ω∗, c0∗/ω∗, (1)

where c0∗ = (2RT0∗)1/2 with R the gas constant per unit mass, we introduce the dimensionless counterparts, t, xi, ζi,
xw, f , ρ , u1, T , p, p11, and q1, as follows:

t = t∗/(1/ω∗), xi = Xi/(c0∗/ω∗), ζi = ξi/c0∗, xw = Xw/(c0∗/ω∗), f = f∗/(ρ0∗c3
0∗),

ρ = ρ∗/ρ0∗, u1 = u1∗/c0∗, T = T∗/T0∗, p = p∗/p0∗, p11 = p11∗/p0∗, q1 = q1∗/(p0∗c0∗),
(2)

where p0∗ = Rρ0∗T0∗. In addition, we define the Knudsen number Kn and the Mach number Ma as

Kn = l0∗/(c0∗/ω∗), Ma = a∗ω∗/(5RT0∗/3)1/2, (3)

where l0∗ is the mean free path of the gas molecules at the reference equilibrium state at rest, a∗ω∗ is the maximum
speed of the oscillating plate, and (5RT0∗/3)1/2 is the sonic speed at temperature T0∗; the l0∗ is defined in terms of the
collision frequency ν0∗ of the gas molecules at the reference state as l0∗ = (2/π1/2)(c0∗/ν0∗); for the BGK model, ν0∗
is given as ν0∗ = Acρ0∗ with a constant Ac.

Basic Equations

The independent variables (i.e., the arguments of f ) in the present spatially one-dimensional problem are x1, ζ1, ζ2,
ζ3, and t. However, in the case of the BGK model, one can eliminate ζ2 and ζ3 (the molecular velocity components
parallel to the plate) by introducing the following marginal velocity distribution functions g and h [16]:[

g(x1,ζ1, t)
h(x1,ζ1, t)

]
=

∫ ∞

−∞

∫ ∞

−∞

[
1

ζ 2
2 +ζ 2

3

]
f (x1,ζ1,ζ2,ζ3, t)dζ2dζ3. (4)
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To be more specific, the BGK model equation for f is reduced to simultaneous integro-differential equations for g and
h, which read as

∂Φ
∂ t

+ζ1
∂Φ
∂x1

=
2√
π

1
Kn

ρ (λM−Φ) ,

(
Φ =

[
g
h

]
, λ =

[
1
T

])
, (5a)

M =
ρ

(πT )1/2 exp
(
− (ζ1−u1)

2

T

)
, (5b)

ρ =
∫ ∞

−∞
gdζ1, u1 =

1
ρ

∫ ∞

−∞
ζ1gdζ1, T =

2
3ρ

∫ ∞

−∞
[(ζ1−u1)

2g+h]dζ1. (5c)

The initial condition for Eq. (5) is given by

g = h = M0, M0 = π−1/2 exp(−ζ 2
1 ), at t = 0. (6)

The boundary condition on the oscillating plate is written as

g(x1,ζ1, t) = h(x1,ζ1, t) = Mw(ζ1, t), for ζ1− vw(t)> 0, at x1 = xw(t), (7a)

Mw(ζ1, t) = π−1/2σw(t)exp
(−[ζ1− vw(t)]

2) , (7b)

σw(t) =−2
√

π
∫

ζ1−vw(t)<0
[ζ1− vw(t)]g(xw(t),ζ1, t)dζ1, (7c)

where

xw(t) =
√

5/6Ma cos t, vw(t) = dxw(t)/dt =−
√

5/6Ma sin t, (8)

that is, c0∗vw is the dimensional velocity of the plate.
As is seen from Eqs. (5)–(7), the present problem is characterized by the two parameters: Kn and Ma. In place of

these, we use
K= (

√
π/2)Kn, M=

√
5/6Ma, (9)

in the following.
The dimensionless pressure p is given by the equation of state, and the dimensionless normal stress p11 and heat

flux q1 are expressed in terms of the marginals g and h, i.e.,

p = ρT, p11 = 2
∫ ∞

−∞
(ζ1−u1)

2gdζ1, q1 =
∫ ∞

−∞
(ζ1−u1)[(ζ1−u1)

2g+h]dζ1. (10)

We also denote by P and E , respectively, the X1 component of the momentum and the energy, per unit area and time,
transferred to the gas from the oscillating plate. Then, they are expressed as

P = p11|x1=xw(t), E = [q1 + p11vw(t)]|x1=xw(t). (11)

Remarks on Numerical Method

As is well known, the molecular velocity distribution function on the plane boundary is generally discontinuous for
the molecular velocity tangential to the boundary (see [2]). Unlike the case of convex boundary (here, “convex” means
convex toward the gas), the discontinuity does not propagate into the gas if the plane boundary is at rest or moving at
a constant velocity (when no external force acts on the gas molecules), since the characteristic lines of the Boltzmann
(or BGK) equation for the molecular velocity equal to the velocity of the boundary stay on the plane. However, when
the boundary is accelerated in the direction opposite to the side of the gas, the tangential characteristic lines go into
the domain of the gas as time proceeds, so that the molecular velocity distribution function becomes discontinuous in
the gas. It decays in time and space because of intermolecular collisions, as in the case of the discontinuity caused by
a convex body in steady problems ([2, 17]).

In the present problem, the oscillating plate sends the discontinuities and other types of weaker singularities
continuously in the gas (see [18, 19]). In order to obtain an accurate numerical solution, especially near the plate,
by a deterministic method, we have to treat the discontinuities carefully. Recently we have developed a method, which
is basically a method of characteristics, that is capable of describing the propagation of discontinuities, together with
other types of weaker singularities, caused by the oscillating plate [20]. This method is used in the present study (its
explanation is omitted here because of limited space).
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FIGURE 1. Profiles of ρ , u1, T , and p for M = 0.2. (a) K = 0.05, (b) K = 2. In (a), the profiles at t/2π = 19.25 (dashed), 19.5
(long-dashed), 19.75 (dash-dotted), and 20 (solid) are shown, and in (b), those at t/2π = 79.25 (dashed), 79.5 (long-dashed), 79.75
(dash-dotted), and 80 (solid) are shown.

RESULT AND DISCUSSIONS

In the present paper, we show the results only for M= 0.2 and for some different values of K. We restrict ourselves to
the macroscopic quantities, leaving the detailed description of the molecular velocity distribution function of complex
shape in the forthcoming paper [20].

Unsteady Behavior of Macroscopic Quantities

In Fig. 1, we show the profiles of the density ρ , flow velocity u1, temperature T , and pressure p over a few wave
lengths during one period for (K,M) = (0.05, 0.2) [panel (a)] and (2, 0.2) [panel (b)]. In panel (a), the profiles are
shown at t/2π = 19.25, 19.5, 19.75, and 20, whereas in panel (b), they are shown at t/2π = 79.25, 79.5, 79.75, and
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FIGURE 2. Profiles of u1 and p for M= 0.2 near the oscillating plate (closeup of Fig. 1). (a) u1 at K= 0.05, (b) u1 at K= 2, (c)
p at K= 0.05, (d) p at K= 2. The two vertical dotted lines indicate the range of the plate motion, i.e., x1 ∈ [−M,M]. In (a) and (c),
the profiles at t/2π = 19.25 (dashed), 19.5 (long-dashed), 19.75 (dash-dotted), and 20 (solid) are shown, and in (b) and (d), those
at t/2π = 79.25 (dashed), 79.5 (long-dashed), 79.75 (dash-dotted), and 80 (solid) are shown.

80. In both panels, one can see the time evolution by following the four different types of lines in the order of the
dashed line, the long-dashed line, the dash-dotted line, and the solid line. Figure 2 is a close-up of Fig. 1 near the plate
for u1 and p; panels (a) (K= 0.05) and (b) (K= 2) are for u1, and panels (c) (K= 0.05) and (d) (K= 2) are for p.

Since the Knudsen number is small (K = 0.05) in Fig. 1(a), a sawtooth-like wave is observed as in the case of
nonlinear acoustic wave based on the Euler equation [13, 14]. Such a wave is also observed in the DSMC simulation
[15]. In Fig. 1(b), where the Knudsen number is intermediate (K = 2), the wave attenuates quickly, and the sawtooth
like profile is not observed. The amplitude of the wave near the plate is smaller for larger K, as seen from Fig. 2.
The strong attenuation of the wave at intermediate Knudsen numbers is also reported in the previous studies based on
linearized kinetic equations.

One-period Averages of Macroscopic Quantities

Let h(x1, t) stand for the macroscopic quantities, i.e., h = ρ , u1, T, etc., and h̄(x1, t) be its time average over one
period from t−2π to t, i.e.,

h̄(x1, t) =
1

2π

∫ t

t−2π
h(x1, s)ds. (12)

We show in Fig. 3 the time evolution of the profiles of the one-period averages, ρ̄ , ū1, and T̄ , for M= 0.2 and K= 2:
panels (a) and (d) are for ρ̄ , panels (b) and (e) for ū1, and panels (c) and (f) for T̄ . In the figure, the profiles at t/2π = 20
(dashed line), 30, 40, ..., 70 (solid line for all), and 80 (bold line) are shown, and panels (a), (b), (c) show the profiles in
the near field. In Fig. 3(e), the small circle indicates the profile of the one-period average of the mass flux ρu1. It is seen
from Fig. 3 that a weak compression wave, decreasing very slowly, propagates toward infinity, and a high-temperature
(low-density) region is developed slowly near the plate. The former wave is called the streaming motion [13, 14, 15],
since the one-period average of the mass flux is positive, i.e., there is a net mass flux toward infinity, behind the wave
front [see Fig. 3(e)]. The average flux ρu1 is almost the same as ū1 in the far field because the deviation of ρ from 1
is small there. Note that ρu1 is almost constant in time in the far field in the case of the Euler equations (see Fig. 9 in
[14]). We note here that the behavior shown in Fig. 3 is qualitatively similar to that in the unsteady rarefied gas flow in
a half space caused by sudden heating of the stationary plate [21] (or Chap. 4.8 in [2]) though the present computation
up to t/2π = 80 is not long enough to compare with the long-time asymptotes in [21]. In the latter problem, the heating
of the gas is caused by the energy supply by the heated plate, which eventually vanishes in the long-time limit. In the
present problem, the corresponding energy supply is provided by the oscillation of the plate, and it should also vanish
in the long-time limit in which a steady oscillation is established in the near field.

Now we give a close look at the development of the high-temperature region. Let x1 = x0.02(t) be the position at
time t of the point at which T̄ (x1, t)− 1 = 0.02 holds [see Fig. 3(c); if there are more than one such points, we take
the largest one]. Figures 4(a), 4(b), and 4(c) show, respectively, x0.02 vs t, dx0.02/dt vs t (in the double-logarithmic
scale), and α(dx0.02/dt) vs t at some different K for M = 0.2, where α(dx0.02/dt)[= dlog10(dx0.02/dt)/dlog10 t] is
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FIGURE 3. Profiles of the one-period averages ρ̄ , ū1, and T̄ for M = 0.2 and K = 2. (a), (d) ρ̄; (b), (e) ū1; (c), (f) T̄ . The
profiles at t/2π = 20 (dashed), 30, · · · ,70 (solid for all) and 80 (bold) are shown. In (a), (b), (c), the region x1 ∈ [0,100] is shown,
and in (d), (e), (f), the region x1 ∈ [0,600] is shown with a magnified vertical scale. In (e), ρu1 at t/2π = 80 is also shown by small
circles.

the gradient of a curve in panel (b). The curves in panel (c) exhibit small fluctuations because they are essentially
the second derivatives of the curve in panel (a). Nevertheless, they tend to approach −1/2. Therefore, for each K, the
velocity of the point, dx0.02/dt, tends to approach a straight line with gradient −1/2 in the double-logarithmic plot in
panel (b). This means that dx0.02/dt ≈ c1t−1/2 and thus x0.02 ≈ 2c1t1/2 +c2 for large t, where c1 (> 0) and c2 are some
constants depending on M and K. Therefore, we may conclude that the high-temperature region formed near the plate
diffuses away from the plate, its width increasing in proportion to t1/2.

We also try to measure the rate of decrease of the local peak at the wave front of streaming motion (or the weak
compression wave). Let us denote by Θ(t) the value of T̄ (x1, t)−1 at the local peak of the wave front [i.e., the height
of the peak in Fig. 3(f)]. Figure 5(a) is the double-logarithmic plot of Θ(t) vs t, and the gradients of the curves,
α(Θ) = dlog10 Θ/dlog10 t, vs t are plotted in Fig. 5(b). The figure shows a tendency that the gradients approach
a constant value between −0.16 and −0.2, but we need further computation until much later times to draw some

FIGURE 4. Time evolution of x0.1, dx0.1/dt, and α(dx0.02/dt) for M = 0.2. (a) x0.1 vs t, (b) dx0.1/dt vs t (in the double-
logarithmic scale), (c) α(dx0.02/dt) vs t. The results for K = 1 (dash-dotted), 2 (solid), 5 (dashed), and 10 (long-dashed) are
shown.
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FIGURE 5. Time evolution of Θ and α(Θ) for M = 0.2. (a) Θ vs t (in the double-logarithmic scale), (b) α(Θ) vs t. The results
for K= 1 (dash-dotted), 2 (solid), 5 (dashed), and 10 (long-dashed) are shown.

dashed:
 

solid: solid:                 dashed:

FIGURE 6. Time evolution of P̄ , Ē , α(P̄), and α(Ē ) for M= 0.2. (a) P̄ (solid) and Ē (dashed) vs t (in the double-logarithmic
scale), (b) α(P̄) (solid) and α(Ē ) (dashed) vs t. The results for K= 1, 2, 5, and 10 are shown.

conclusion. Within the information provided by Fig. 5, we may say that the decay of the peak is very slow and its
asymptotic decay rate is something like Θ ∝ 1/tγ with γ around 0.2.

One-period Averages of Momentum and Energy Fluxes on the Plate

Let us denote by P̄ and Ē the time averages (over one period) of P and E [Eq. (11)], the X1 component of the
momentum and the energy, per unit area and time, transferred to the gas from the oscillating plate. More precisely,
they are defined by

[P̄(t), Ē (t)] =
1

2π

∫ t

t−2π
[P(s), E (s)]ds. (13)

If a periodic state is established near the plate, P̄(t)−1 and Ē (t) vanish because of the periodicity. We now investigate
the time evolution of P̄(t) and Ē (t). Figure 6(a) is the plot of P̄(t) and Ē (t) vs t in double logarithmic scale
for M = 0.2 and for some different values of K. Figure 6(b) shows the gradients of the curves in Fig. 6(a), i.e.,
α(P̄) = dlog10(P̄−1)/dlog10 t and α(Ē ) = dlog10 Ē /dlog10 t, as functions of t. We must say that our computation
up to t/2π = 80 is not enough, in particular for large K, to draw some definite conclusions. Nevertheless, it is seen
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from Figs. 6(a) and 6(b) that P̄(t)− 1 and Ē (t) tend to vanish as time goes on and that the curves in Fig. 6 tend to
approach straight lines with gradient−1/2. In other wards, as time proceeds, P̄(t)−1 and Ē (t) tend to vanish in such
a manner that P̄−1≈ cpt−1/2 and Ē ≈ cet

−1/2 with positive constants cp and ce. This provides a piece of numerical
evidence that the gas near the plate approaches steady oscillation.

CONCLUDING REMARKS

In the present study, we have investigated numerically the nonlinear acoustic wave propagation in a semi-infinite
expanse of a rarefied gas, caused by an infinitely wide plate that starts longitudinal oscillation, on the basis of the BGK
model of the Boltzmann equation and the diffuse reflection boundary condition on the plate. An emphasis is placed
on accurate description of the discontinuities in the molecular velocity distribution function in the gas that is produced
continuously by the oscillating plate (though the behavior of the velocity distribution function is omitted in the paper
because of the limited space). The resulting macroscopic quantities show that a weak compression wave propagates
toward infinity (streaming motion) and decays very slowly. It is also shown that a high-temperature region is formed
near the oscillating plate and diffuses slowly toward infinity and that the gas near plate approaches a periodic state
slowly, the rate of approach being more or less proportional to t−1/2.
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