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�����	��� Unsteady behavior of Io’s atmosphere caused by condensation and sublimation of SO2 (the main atmospheric
component) during and after eclipse is studied on the basis of kinetic theory. A deterministic computation for a model
Boltzmann equation by means of a finite-difference method is performed to obtain the time evolution of the profiles of
macroscopic quantities (density, flow velocity, and temperature) in high resolution. As a result, the transient wave motion
and oscillatory behavior in the profiles are clarified. To concentrate on the dominant effect of the noncondensable gas (SO or
O2), other effects in the real atmosphere (e.g., plasma impingement, chemical reactions, etc.) are all omitted in the present
analysis. Despite those simplifications, the overall behavior of the atmospheric column is similar to the more realistic result
of the previous DSMC analysis in C. H. Moore et al., Icarus  !", 585 (2009).
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The dynamics of Io’s atmosphere under sublimation and condensation of its main component, sulfur dioxide (SO2)
gas, has been studied for a long time (see, e.g., Refs. [1, 2, 3] and references therein). In Ref. [4], unsteady one-
dimensional behavior of an atmospheric column during eclipse was investigated for the first time via the DSMC
simulation of the Boltzmann equation. The results in Ref. [4] clearly show the effect of minor components (SO or O2),
which are considered to be (partially) noncondensable, as a barrier to the atmospheric collapse during eclipse. A trace
of noncondensable gas is carried by the condensing flow of SO2 and accumulates on the surface at the early stage of
eclipse. Then the accumulated noncondensable gas hinders further condensation of SO2 and significantly delays the
atmospheric collapse.
The DSMC analysis in Ref. [4] was extended in subsequent studies [5, 6, 7] by including various real effects, such

as three dimensionality, plasma-induced chemistry, electric and magnetic fields, sophisticated surface model, and so
on. Those extensions are surely important in, e.g., comparing the simulation with observation results. On the other
hand, the complexity may obscure the key physical and gasdynamical effect in the atmospheric behavior concerned.
In the present study (and our recent paper [8]), we consider essentially the same problem as in Ref. [4] after making

further simplifications; that is, to concentrate on the dominant effect of the noncondensable gas, other effects included
in Ref. [4] (i.e., plasma impingement, molecular internal structure, etc.) are all omitted. In addition, we employ the
model Boltzmann equation proposed in Ref. [9] for computational convenience. However, we perform an accurate
finite-difference analysis and obtain detailed time evolution of the profiles of physical quantities free from stochastic
noise. The solutions with high temporal and spatial resolution reveal some new phenomena, which were not noticed
in the previous DSMC analysis [4], and thus complement the results in Ref. [4].
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Consider a fixed point on Io’s equator and in the sub-Jovian hemisphere. The ground is located at X1 = 0 and is covered
by the frost of SO2, where XXX [= (X1,X2,X3)] be the space rectangular coordinates. The atmosphere extends over the
half-space X1 > 0 and is composed of SO2 vapor and another noncondensable gas, SO or O2.1 The eclipse starts at time

1 In reality, SO may be partially condensable in Io’s circumstances.
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t = 0 and lasts until t = 120 min. The initial atmosphere is assumed to be in a saturated equilibrium state at rest with
uniform temperature T0. The surface temperature Tw, which coincides with T0 at t = 0, varies with time according to
the change of insolation [see Eq. (11) below] and then condensation or sublimation of SO2 may occur. We investigate
unsteady one-dimensional behavior of the atmospheric column over the fixed point during eclipse under the following
assumptions: (i) the behavior of the atmosphere is described by the model Boltzmann equation for mixtures proposed
in Ref. [9]; (ii) the vapor (SO2 gas) obeys the complete-condensation boundary condition on the surface [see Eq. (7)
below]; (iii) the noncondensable gas (SO or O2) obeys the diffuse-reflection boundary condition on the surface.
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In the following, the vapor (SO2 gas) and noncondensable gas (SO or O2) will be referred to as species A and B,
respectively. The Greek letters α and β will be used to represent the species, i.e., α,β = {A,B}.
Let us denote the velocity distribution function (VDF) of molecules of species α as Fα = Fα(t,X1,ξξξ ), where ξξξ

[= (ξ1,ξ2,ξ3)] is the molecular velocity. The macroscopic quantities, such as the number density nα , flow velocity vvvα

[= (vα
1 ,v

α
2 ,v

α
3 )], pressure p

α , and temperature Tα of species α , are defined as the moments of Fα as follows:

nα =
∫
Fαdξξξ , vvvα =

1
nα

∫
ξξξFαdξξξ , pα = knαTα =

1
3

∫
mα |ξξξ − vvvα |2Fαdξξξ , (1)

where mα is the molecular mass of species α , k is the Boltzmann constant, and dξξξ = dξ1dξ2dξ3. The domain of
integration is the whole space of ξξξ . The corresponding quantities of the total mixture, i.e., the number density n, flow
velocity vvv [= (v1,v2,v3)], pressure p, and temperature T of the mixture, are given by

n= ∑
α=A,B

nα , vvv= ∑
α=A,B

mαnαvvvα
/

∑
α=A,B

mαnα , p= knT = ∑
α=A,B

(
pα +

1
3
mαnα |vvvα − vvv|2). (2)

Note that the horizontal components of the flow velocity will be ignored (i.e., vα
2 = vα

3 = v2 = v3 = 0) in the actual
analysis, whereas they are left in the formulation.
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The model Boltzmann equation in Ref. [9] for the present problem may be written as follows:

∂Fα

∂ t
+ξ1

∂Fα

∂X1
−g∂Fα

∂ξ1
= Kα(Mα −Fα), (α = A,B). (3)

Here, g (= 1.8 m/s2) is the gravitational acceleration on Io, which is treated as a constant since the scale height of the
atmosphere is much smaller than Io’s radius. The Kα and Mα are defined by

Kα = ∑
β=A,B

Kβαnβ , Mα = nα
( mα

2πkT (α)

)3/2
exp

(
−m

α |ξξξ − vvv(α)|2
2kT (α)

)
. (4)

The Kβα (= Kαβ ) is a positive constant, that determines the collision frequency of an α-species molecule with β -
species molecules via Kβαnβ . Thus, the above Kα corresponds to the total collision frequency of an α molecule. The
velocity vvv(α) and temperature T (α) of the Maxwellian Mα are defined by

vvv(α) = vvvα +
2

mαKα ∑
β=A,B

μβα Ωβαnβ (vvvβ − vvvα), (5a)

T (α) = Tα − m
α

3k
|vvv(α)− vvvα |2+ 4

Kα ∑
β=A,B

μβα Ωβαnβ

mβ +mα

(
T β −Tα +

mβ

3k
|vvvβ − vvvα |2

)
, (5b)

where μβα [= mβmα/(mβ +mα)] is the reduced mass and Ωβα (= Ωαβ ) is an additional positive constant; the
positivity of T (α) follows if Ωβα ≤ Kβα . Note that Eq. (1) is necessary to complete the model equation because
nα , vvvα , and Tα appear in Eqs. (4) and (5).
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This model was designed in such a way that, by adjusting Ωβα , the momentum and energy exchanges between
different species can be the same as those for (pseudo-)Maxwell molecules with an arbitrary value of the angular
cutoff parameter. In the present study, however, this property is not used for specifying the value of Ωβα . We first
specify KAA by the relation

KAA = 4d2(πkT0/mA)1/2, (6)

where d (= 7.16× 10−10 m) is the nominal diameter of an SO2 molecule. This relation means that the molecular
mean free path with respect to SO2–SO2 collisions in an equilibrium state with temperature T0 for the model equation
is equal to that for the hard-sphere gas with molecular diameter d. Then, for simplicity, KBB, KBA, and ΩBA are all
assumed to be identical with KAA [note that ΩAA and ΩBB are unnecessary; see Eq. (5)]. Therefore, pseudo-Maxwell
behavior of the molecules is not enforced in the present study.
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The boundary condition on the surface is written as follows. For X1 = 0 and ξ1 > 0,

Fα = nα
w

( mα

2πkTw

)3/2
exp

(
−m

α |ξξξ |2
2kTw

)
, (7a)

nAw = pAw/kTw, nBw =−
(2πmB
kTw

)1/2 ∫
ξ1<0

ξ1FBdξξξ . (7b)

Here pAw is the saturated vapor pressure of SO2 at temperature Tw and is given by the Clausius–Clapeyron relation:

pAw = Πexp(−Γ/Tw), (Π = 1.516×1013 Pa and Γ = 4510 K). (8)

In the present problem, the variation of Tw and corresponding pAw with time would induce the unsteady motion of the
atmosphere through the boundary condition (7).
The initial condition is written as follows. At t = 0,

Fα = nα
0

( mα

2πkT0

)3/2
exp

(
−m

α(|ξξξ |2+2gX1)
2kT0

)
. (9)

Here nα
0 is the initial number density of species α on the surface (X1 = 0); nA0 = pA0/kT0 with pA0 being the saturated

vapor pressure at temperature T0 [i.e., pA0 is given by Eq. (8) with Tw being replaced by T0]. The initial temperature T0
will be chosen in the next section. The concentration χB of the noncondensable gas in the initial atmospheric column
is written as

χB =
∫ ∞

0
nB(t = 0)dX1

/∫ ∞

0
n(t = 0)dX1 =

(nB0/mB)
(nA0/mA)+(nB0/mB)

. (10)

In the following, the amount of the noncondensable gas will be specified by χB, instead of nB0 .
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The surface temperature Tw is determined by the same differential equation as that in Ref. [4]:

dTw
dt

=

{
Aσ(T 4Min−T 4w ), for 0≤ t ≤ 120 min,
Aσ(T 4E −T 4w ), for t > 120 min,

(11)

where σ is the Stefan–Boltzmann constant and A= ε/C with ε being the bolometric emissivity andC the heat capacity
per unit area of the surface. The TE is an equilibrium temperature defined as

TE =

{
(TMax−TMin)cos1/4 θ +TMin, for θ ≤ 90◦,
TMin, for θ > 90◦,

(12)
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)��.� "� Simulation cases.
Case T0 (K) Longitude(◦) Gas B (χB) A−1(J/m2K) Case T0 (K) Longitude(◦) Gas B (χB) A−1(J/m2K)
1 110 69 — (0) 350 6 110 69 O2 (0.07) 350
2 110 69 SO (0.35) 350 7 115 52 — (0) 350
3 110 69 SO (0.35) 700 8 115 52 SO (0.22) 350
4 110 69 SO (0.35) 175 9 120 351 — (0) 350
5 110 69 O2 (0.35) 350 10 120 351 SO (0.03) 350

where θ is the solar zenith angle (SZA), which varies with time according to the diurnal motion of the sun. The
maximum and minimum of TE are fixed as TMax = 120 K and TMin = 90 K throughout the following analysis.
The initial temperature T0 appearing in Eq. (9) is chosen as T0 = TE(t = 0) using Eq. (12), after we specify the

location of the atmospheric column (or the longitude on the equator) and calculate the SZA θ as a function of time t
(note that t = 0 is defined to be the time of ingress into eclipse). It should be noted that the above Tw is influenced only
by the insolation and not by the atmospheric behavior (i.e., not by the latent heat and sensible heat from the gas), since
the former is dominant. We solve Eq. (11) with the initial condition Tw(t = 0) = T0 to obtain Tw(t) beforehand.

�-��*�'�. ���.1(�(

We first eliminate the molecular-velocity variables ξ2 and ξ3 from the initial-boundary value problem (3), (7), and (9)
by introducing appropriate marginal VDF’s. Then, the reduced problem with three independent variables t, X1, and ξ1
is solved by a finite-difference method. In the present study, we used the following two schemes: (i) the same implicit
scheme as in Ref. [8], where the derivatives with respect to X1 and ξ1 are expressed by the 2nd-order up-wind finite-
difference; (ii) 2nd-order Runge–Kutta (Heun’s) scheme along the characteristics of Eq. (3) in combination with the
interpolation method devised in Ref. [10]. In the latter scheme, because of the properties of the method in Ref. [10], the
transient waves tend to be more accurately captured without overshoots in the profiles of the macroscopic quantities
(and in those of the VDF’s). However, as in the cubic interpolated pseudo-particle (CIP) method [11], equations for the
derivatives of Fα must be solved simultaneously. Thus the latter requires larger amount of computations (and involves
some difficulty in the treatment of boundary conditions for the derivatives). To compensate the increased amount of
computations, we performed a parallel computing (the latter is an explicit scheme).
The results shown in the next section were obtained by scheme (ii), while the details of the method are omitted

here [some test runs with scheme (i) were also performed and gave roughly the same results]. In the computation, we
limit the range of X1 up to X1 ∼ 282 – 313 km and impose the specular-reflection condition at the upper boundary2;
the minimum grid intervals for T0 = 110, 115, and 120 K are, respectively, 15.9 m, 8.3 m, and 4.3 m at X1 = 0; the
maximum intervals are about 0.3 – 1.1 km at the upper boundary. The range of ξ1 is limited as |ξ1| ≤ 8c0, where c0
[= (2kT0/mA)1/2] is about 173 m/s for T0 = 115 K; the minimum and maximum grid intervals are 0.005c0 at ξ1 = 0
and 0.045c0 at ξ1 =±8c0, respectively. The time steps are about 4.7 ms for T0 = 110 and 115 K and 2.3 ms for 120 K.

*�(-.)(

We consider Cases 1 – 10 listed in Table 1 in the present study. The values of parameters were cited from Ref. [4].
Figure 1 shows the variations of the surface temperature and of the column density of SO2 in the case of T0 = 110

K. The column density of pure SO2 atmosphere (Case 1) decreases significantly at the end of eclipse, whereas in the
case of mixtures the decrease is hindered by the noncondensable gas [see Fig. 3(b) below]. The effects of the gas
species (i.e., the molecular mass ratio mB/mA), concentration χB, and heat capacity of the surface (∼ A−1) are also
examined. Except for some minor differences, the overall behavior of the column shown in Fig. 1 seems to be close to
the corresponding result of the previous DSMC analysis (i.e., Fig. 8 in Ref. [4]).

2 This condition was used to fix the total amount of the noncondensable gas in the column. A vacuum condition for the vapor, i.e., FA(ξ1 < 0) = 0
at the upper boundary, was also used in some test runs and gave essentially the same results.
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Figure 2 shows the profiles of macroscopic quantities at the beginning of eclipse. In Cases 7 and 9 (pure SO2), a fast
condensing flow is induced, and, as a result, an expansion wave is sent upward. The expansion wave is then followed
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by a shock wave appearing near the surface. While propagating upward, the shock wave stretches rapidly because the
background pressure decays exponentially with altitude (thus the local mean free path grows exponentially). In Cases
8 and 10 (mixture), the condensing flow is relatively slow because of the hindrance by the noncondensable gas [see
Fig. 3(b) below]. The expansion wave is sent as in the pure SO2 case, but is immediately followed by a relatively weak
compression wave.
Figure 3 shows the profiles of the number density in Cases 7 and 8 during eclipse. In Case 7 (pure SO2), the number

density decreases at all altitudes until the end of eclipse except at t ∼ 10 – 30 min. During that time period, the number
density at high altitudes (X1 � 100 km) is increased temporarily by the passage of the shock wave seen in Fig. 2. In
Case 8 (mixture), the number density of SO2 decreases only in the neighborhood of the surface and hardly changes at
high altitudes. This is because the noncondensable gas, which is carried by the condensing flow of SO2 to the surface
and accumulates there, forms the partial barrier to the atmospheric collapse. The number density of the noncondensable
gas near the surface increases rapidly until t ∼ 20 min and then starts to decrease because of the upward self diffusion.
Figures 4 and 5 show, respectively, the profiles of the flow velocity and temperature in Cases 7 and 8 during eclipse.

The oscillatory behavior seen in the figures is produced by waves which, as those in Fig. 2, appear in the lower
atmosphere and propagate upward successively. In Case 7, the amplitude of oscillation is large and thus a very fast
flow and high temperature may appear instantaneously, especially at high altitudes. The oscillation decays rapidly with
time and almost ceases until t ∼ 40 min. In Case 8, while the amplitude is small compared to the pure SO2 case and
decays with time, the oscillation continues until the end of eclipse except near the surface. In Case 8, a fast condensing
flow in the close vicinity of the surface remains until the end of eclipse. This is because the SO2 density on the surface
is kept much higher than the saturation density by the effect of the noncondensable gas [see Fig. 3(b)]. The temperature
in Case 8 oscillates around the initial temperature (T0 = 115 K) in most parts of the atmosphere. The atmosphere is
cooled only near the surface via conduction.
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Figure 6 shows the profiles of the number density in Cases 7 and 8 after egress. In Case 7, the number density starts
to increase immediately after egress and the initial density on the surface is restored at t ∼ 160 min. In Case 8, the
number density of SO2 remains almost unchanged during the first 10 minutes after egress until the surface temperature
and the corresponding saturation density increase sufficiently and the sublimation starts. The noncondensable gas
is swept upward by the sublimating flow of SO2 and forms a layer centered around X1 = 10 km at t = 180 min.
Correspondingly, a hollow is seen in the profile of SO2 density.
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