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Solvation dynamics is one of the central subjects in solution chemistry. Site-site Smoluchowski-
Vlasov (SSSV) equation is a diffusion equation for molecular liquid to analytically calculate the van
Hove time correlation function. However, the application has been limited to simple solvent system
such as liquid water because of the difficulty in solving the equation. In this study, an extended
treatment of SSSV equation is proposed, which is applicable to a wide range of solution systems
including mixed solution, electrolyte solution, and infinitely dilute solution. The present treatment
realizes computation of the dynamics in LiCl aqueous solution, NaCl aqueous solution, and infinitely
dilute aqueous solution of Li+ and Cs+ at the molecular level. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4732760]

I. INTRODUCTION

Solvation dynamics is one of the central subjects in so-
lution chemistry. Dielectric relaxation measurement and nu-
clear magnetic resonance (NMR) spectroscopy are represen-
tative experimental methods to treat solvation dynamics.1–3

Using these techniques, the dynamics such as orientational
relaxation and diffusional motion of molecule in solu-
tion system have been extensively studied. Numerous ex-
perimental techniques including femtosecond dielectric re-
laxation spectroscopy, femtosecond time-resolved infrared
spectroscopy, two-dimensional infrared spectroscopy, two-
dimensional NMR spectroscopy, and so on4–13 are being de-
veloped to provide new findings.

Theoretical and computational methods provide various
knowledge that is difficult to be accessed from experimental
methods. One of the most popular approaches to study con-
densed phase is molecular dynamics (MD) simulation.14–26

It is noted, however, that computation of an appropriate en-
semble to understand dynamical property is generally diffi-
cult compared to static property. An alternative is analytical
approach as typified by integral equation theory for molecular
liquid. Reference interaction site model (RISM) (Refs. 27–30)
is a representative theory to treat static property such as pair
correlation function and solvation free energy, in which an
ensemble of infinite numbers of solvent molecules can be
treated. In other words, RISM equation is free from the so-
called sampling problem and has been successfully applied to
a variety of chemical phenomena.

Although the original RISM is a theory only for static
property, an extended form of the equation enables us to treat
solvation dynamics. Site-site Smoluchowski-Vlasov (SSSV)
equation31, 32 is basically a diffusion equation for molecular
liquid, and provides van Hove correlation function describ-
ing solvation dynamics in an analytical manner.33, 34 How-
ever, the application has been limited to simple pure liquids

a)Author to whom correspondence should be addressed. Electronic mail:
hirofumi@moleng.kyoto-u.ac.jp. FAX: +81-75-383-2799.

such as water and methanol. This is because of the absence
of general framework to solve SSSV equation, especially for
solution system with complex composition. In particular, sol-
vation dynamics in electrolyte solution system could not be
treated in spite of its ubiquitousness.

In this study, we present an extended treatment of SSSV
equation by utilizing the technique to calculate state transi-
tion matrix in control engineering. The formula is applicable
to a variety of solution systems including electrolyte solution
and infinitely dilute solution, which could not be treated in
the original SSSV framework. An aqueous solution of LiCl is
computed as the first application, and then an infinitely dilute
aqueous solution of Li+ and Cs+ is investigated focusing on
the dynamics of water molecule near Li+ and Cs+. An aque-
ous solution of NaCl is also investigated and compared with
the result of MD simulation,22 which demonstrates the valid-
ity of the present treatment.

II. THEORY

A. SSSV equation

In SSSV equation, local density �ρα(r, t) is employed as
the dynamical variable

�ρα (r, t) =
[∑

a

δ
(
r − |rαa

(t)|)
]

− ρα, (1)

where r = |r|, δ(· · ·) is the delta function, rαa
(t) is the posi-

tion of site (atom) α of ath molecule at time t, and ρα is the
mean number density of the species of α. SSSV equation31

describes the local density in the Fourier space (k),

�ρα (k, t) =
∫ ∞

−∞
e−ik·r�ρα (r, t) dr, (2)

as follows:

∂

∂t
�ρ (k, t) = −D · ρ · � (k) · �ρ (k, t) , (3)
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where k equals |k|, D and ρ are diagonal matrices

D =

⎛
⎜⎜⎝

D1 0

. . .

0 Dm

⎞
⎟⎟⎠, ρ =

⎛
⎜⎜⎜⎝

ρ1 0

. . .

0 ρm

⎞
⎟⎟⎟⎠. (4)

Here m is the number of sites constituting solvent, and Dα (α
∈ {1, . . . , m}) is self-diffusion coefficient of α. �(k) in Eq.
(3) is given as

� (k) = k2[{ρ · ω(k)}−1 − c(k)], (5)

where the element of c(k) and ω(k) is the direct correlation
function and intramolecular correlation function, respectively.
Then the van Hove function is given as

∂

∂t
G (k, t) = −D · ρ · � (k) · G (k, t) , (6)

where the element of G(k, t) is the van Hove function. The
function in the real space between sites α and β, Gαβ(r, t), is
defined as

Gαβ(r, t) = 1

ρβ

〈
�ρα(r, t)�ρβ(r = 0, t = 0)

〉
, (7)

where 〈· · ·〉 denotes the ensemble average. G(k, t = 0) is then
given as

G(k, t = 0) = ω(k) + ρ · h(k), (8)

where the matrix element of h(k) is the total correlation
function. Equation (6) is rewritten using the inverse Laplace
transform, L−1,

G (k, t) = L−1[{s1 + D · ρ · � (k)}−1] · G (k, t = 0) , (9)

where 1 is unit matrix and s is the frequency corresponding
to t.

If Eq. (9) is analytically solved, the van Hove function
at an arbitrary time t is obtained. To obtain the inverse ma-
trix in Eq. (9), the cofactor expansion has been employed.32

However, the elements of the inverse matrix obtained by the
expansion become complex as the matrix size is increased.
Accordingly, it becomes difficult to solve analytically the in-
verse Laplace transformation. This is the reason why the ap-
plication of the equation has been limited to simple liquid sys-

tem consisting of a few numbers of sites such as H2O and
methanol.

B. Bulk solvent

In this study, a technique to calculate state transition
matrix in control engineering is utilized. To generally solve
Eq. (9) for bulk solvent system, diagonalization of D · ρ

· �(k) is considered,

D · ρ · �(k) = P(k) · λ(k) · P−1(k), (10)

where λ(k) is diagonal matrix with a set of the eigenvalues λm,
and P(k) is the matrix consisting of the corresponding eigen-
vectors. The inverse matrix of s1 + D · ρ · �(k) in Eq. (9) is
then given as

{s1 + D · ρ · �(k)}−1 = P(k) · (s1 + λ(k))−1 · P−1(k), (11)

where the element of (s1 + λ(k))−1 is given as

{(s1 + λ(k))−1}αβ =
{

1
s+λα (k) (α = β),

0 (α �= β).
(12)

Using Eq. (11), the inverse Laplace transformation of Eq. (9)
can be readily performed, then the following equation is ob-
tained,

G (k, t) = P(k) · exp[−λ(k) t] · P−1(k) · G (k, t = 0) , (13)

where exp[−λ(k) t] is exponential matrix given as

exp[−λ(k) t] =

⎛
⎜⎜⎝

exp[−λ1(k) t] 0

. . .

0 exp[−λm(k) t]

⎞
⎟⎟⎠.

(14)

Here m is number of solvent sites. To derive Eq. (13), the fol-
lowing relationship of inverse Laplace transformation is uti-
lized:

L−1

[
1

s + λV
α (k)

]
= exp

[ − λV
α (k) t

]
. (15)

Using Eq. (13), SSSV equation can be solved for an arbitrary
solvent if the matrix D · ρ · �(k) is diagonalized. A problem
is then how to diagonalize the matrix,

D · ρ · �(k) =

⎛
⎜⎜⎜⎜⎝

D1ρ1	11(k) D1ρ1	12(k) · · · D1ρ1	1m(k)

D2ρ2	21(k)
...

. . . · ...

Dmρm	m1(k) · · · Dmρm	mm(k)

⎞
⎟⎟⎟⎟⎠. (16)

While the diagonalization of Hermite matrix yields real
eigenvalue and eigenvector, D · ρ · �(k) is not Hermitian ex-
cept for the case of ρ1 = ρ2 = · · · = ρm and D1 = D2

= · · · = Dm. In general, diagonalization of a non-Hermite
matrix often yields complex eigenvalue and eigenvector. In
the present case, however, by introducing a diagonal matrix C

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.54.110.72 On: Thu, 05 Jun 2014 07:08:33



034506-3 K. Iida and H. Sato J. Chem. Phys. 137, 034506 (2012)

expressed as

C =

⎛
⎜⎜⎝

1/
√

D1ρ1 0

. . .

0 1/
√

Dmρm

⎞
⎟⎟⎠, (17)

Eq. (10) is rewritten as

C · �(k) · C−1 = (C · P(k)) · λ(k) · (C · P(k))−1. (18)

Notice that this is an eigenvalue problem for C · �(k) · C−1

(the right-hand side of the equation). Because this matrix is
evidently Hermite, its eigenvalues (λ(k)) and the correspond-
ing eigenvectors, C · P(k), are real. Consequently, P(k) is
real, too. In other words, Eq. (18) indicates that the diago-
nalization of matrix given by Eq. (16) yields real eigenvalues
and eigenvectors. Hence, the diagonalization of matrix given
by Eq. (16) always yields real eigenvalues and eigenvectors,
which are physically appropriate as the solution of Eq. (13).

C. Solute–solvent system

In the case of infinitely dilute solution consisting of one
solute molecule and solvent molecules, the number density

of solute (ρU) is infinitely small (ρU → 0), where the super-
script U denotes solute. If Eq. (17) is directly used, the cor-
responding element of C diverges (1/

√
DU

α ρU
α → ∞). How-

ever, starting from Eq. (16), s1 + D · ρ · �(k) for the in-
finitely dilute solution is given as

s1 + D · ρ · �(k)

=
(

s1 + k2DU · ωU −1
(k) 0

−k2DV · ρV · cV U (k) s1 + DV · ρV · �V V (k)

)
,

(19)

where V denotes solvent. The matrix element of cV U (k) is
the direct correlation function between solvent and solute. To
solve Eq. (9) for the matrix given by Eq. (19), block diagonal-
ization is considered,

k2DU · ωU −1
(k) = PU (k) · λU (k) · PU −1

(k),

DV · ρV · �V V (k) = PV (k) · λV (k) · PV −1
(k). (20)

Rewriting Eq. (19) with Eq. (20), the inverse matrix is given
as

{s1 + D · ρ · �(k)}−1 =

⎛
⎜⎜⎜⎜⎜⎝

PU (k) · (
s1 + λU (k)

)−1 · PU −1
(k) 0

−PV (k) · (s1 + λV (k)
)−1 · PV −1

(k)

· k2DV · ρV · cV U (k) PV (k) · (s1 + λV (k))
−1 · PV −1

(k)

· PU (k) · (
s1 + λU (k)

)−1 · PU −1
(k)

⎞
⎟⎟⎟⎟⎟⎠. (21)

Applying the Laplace transformation to Eq. (21), the following formula for G(k, t) is yielded (see Eq. (9)):

G(k, t) =
(

GUU (k, t) GUV (k, t)

GV U (k, t) GV V (k, t)

)
, (22)

where the elements are given as

GUU (k, t) = PU (k) · exp[−λU (k) t] · PU −1
(k) · GUU (k, t = 0),

GV U (k, t) = PV (k) · BV U (k) · PU −1
(k) · GUU (k, t = 0) + PV (k) · exp[−λV (k) t] · PV −1

(k) · GV U (k, t = 0),

GUV (k, t) = 0,

GV V (k, t) = PV (k) · exp[−λV (k) t] · PV −1
(k) · GV V (k, t = 0). (23)

The element of BV U (k) in Eq. (23) is given as

BV U
αβ (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
λV

α (k)−λU
β (k)

(
exp

[ − λV
α (k) t

] − exp
[ − λU

β (k) t
]){PV −1

(k) · (k2DV · ρV · cV U (k)) · PU −1
(k)}αβ

(λV
α (k) �= λU

β (k)) ,

−t exp
[ − λV

α (k) t
] × {PV −1

(k) · (k2DV · ρV · cV U (k)) · PU −1
(k)}αβ

(λV
α (k) = λU

β (k)) ,

(24)

where

lim
x→0

1

x

(
ex − 1

) = 1 (25)
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is used. G(k, t = 0) in Eq. (23) is given as

GUU (k, t = 0) = ωU (k),

GV U (k, t = 0) = ρV · hV U (k),

GUV (k, t = 0) = 0,

GV V (k, t = 0) = ωV (k) + ρV · hV V (k). (26)

Notice that the formula of GV V (k, t) is the same as Eq. (13),
which is derived in Sec. II B.

A few comments are made on G(k, t) in Eq. (23).
GV U (r, t) indicates the probability of finding a solvent
molecule at r and t in the condition that a solute molecule
is at r = 0 and t = 0. Hence, GV U (r, t) and GV U (k, t) are
non-zero value. On the other hand, GUV (r, t) and GUV (k, t)
are zero. This is because GUV (r, t) corresponds to the proba-
bility of finding a solute molecule at r and t in the condition
that a solvent molecule is at r = 0 and t = 0. Since the num-
ber of solute molecule is much smaller than that of solvent
molecule, this probability is infinitely small, virtually zero.
GUU(k, t) of atomic molecule such as Li+ and Cl− is given as
GUU

αα (k, t) = exp[−k2Dαt] from Eq. (23), which is the clas-
sical formula of the self-intermediate scattering function.30

GUU
αα (k, t) of atomic molecule is therefore consistent with the

experimental knowledge if the parameter Dα is taken from
experimental data. It is also noted that Chong and Hirata pro-
posed an ab initio theory for self-diffusion coefficient.35, 36

III. COMPUTATIONAL METHOD

LiCl aqueous solution of 0.01 mol L−1 is investigated as
the first application of the present extended SSSV treatment.
Infinitely dilute aqueous solutions of Li+ and Cs+ are then in-
vestigated focusing on the difference of water motion around
these ions. NaCl aqueous solution of 1 mol L−1 is also inves-
tigated, and the result is compared with the MD simulation
result.22 Calculations were carried out at 298.15 K. Lennard-
Jones parameters and diffusion coefficients were taken from
the literatures.37–45 These are shown in Table I.

In the following discussion Gαβ (r, t) is mainly focused
on. This function corresponds to the number density of site
α at r on t in the condition that site β is at r = 0 and t
= 0. The 2D contour map of Gαβ(r, t) was plotted from t
= 0.0 s to 5.0 ps at 0.1 ps intervals. Since GUU

αα (r, t = 0)

TABLE I. Lennard-Jones parameters (σ , ε) and diffusion coefficients (D).

D (10−5 cm2 s−1)

σ (Å) ε (kcal mol−1) Set Aa Set Ba

Li 1.394 0.12800 1.029 . . .
Cs 6.057 0.00008 2.056 . . .
Na 2.274 0.10900 . . . 1.250
Cl 3.620 0.44800 2.032 1.770
O 3.166 0.15500 2.300 2.139
H 1.000 0.05600 2.300 2.139

aThe parameter set B was used only for 1 mol L−1 NaCl system, which was set to
be consistent with the previous experimental study.41–44 All other computations were
performed with set A.41, 45

FIG. 1. The self-part of the correlation function of Li+ (GUU
Li+Li+ (r, t):

left-hand panel), and the distinct part of the correlation function of Li+
(GV U

Li+Li+ (r, t): right-hand panel).

is the delta function, which cannot be numerically treated,
GUU

αα (r, t = 0.01 ps) is alternatively employed to describe the
area of t < 0.1 ps.

IV. RESULT AND DISCUSSION

A. LiCl aqueous solution

The left panel of Figure 1 is the self-part of correlation
function of Li+ in LiCl aqueous solution, GUU

Li+Li+ (r, t). This
distribution means the probability density of finding Li+ at r
and t in the condition that the same Li+ is at r = 0 Å and
t = 0 s. As the time proceeds, Li+ diffuses from the initial po-
sition, r = 0 Å, and the distribution becomes broader. Because
the diffusion is spatially isotropic, the average position stays
around r = 0 Å. The right panel shows the distinct part be-
tween Li+ (solvent) and Li+ (solute). Note that GV U

Li+Li+ (r, t)
is simply plotted according to precedent while the number
density is described by GV U

Li+Li+ (r, t) + ρLi+ . Because Li+ at
r = 0 Å and t = 0 s (solute) excludes other Li+ (solvent),
the distribution is not found at r = 0 Å and t = 0 s. As time
proceeds, the distribution at r = 0 Å increases and the peak
is found at t = 1.5 ps. As described below, Cl− should exist
near the origin. A plausible explanation of this peak is that
Li+ at t = 0 (solute) is replaced with other Li+ (solvent) to
make a different pair with the anion. Because solvent water
molecules strongly coordinate to Li+, the replacement should
occur between two solvation shells, respectively, consisting of
Li+ and water molecules. It is also noted that the time scale
of this replacement is consistent with the diffusion constant.

Figure 2 shows the intermolecular correlation function
between Cl− and Li+, GV U

Cl−Li+ (r, t). Similarly, GV U
Cl−Li+ (r, t)

+ ρCl− corresponds to the number density of Cl− in the con-
dition that Li+ is at r = 0 Å and t = 0 s. The sharp peak at
r = 2 Å and t = 0 s is evidently Cl− adjacent to Li+. The
peak height decreases and the width is broadened as the time
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FIG. 2. Correlation function between Cl− and Li+ (GV U
Cl−Li+ (r, t)).

proceeds. According to the definition of the van Hove corre-
lation function, this change is assigned to motion of Cl− with
respect to the position occupied by Li+ at t = 0 s (the ori-
gin). Because Cl− is strongly attracted by Li+, the decrease
and broadening would be mainly attributed to accompanying
Li+ that moves from r = 0 Å. As illustrated in Figure 3, when
Li+ moves toward the Cl− (i), Cl− goes further, which con-
tributes to the peak broadening to longer r. On the other hand,
when Li+ moves away from Cl− (ii), the anion should also
move to the same direction because of the strong interaction.
This contributes to the broadening to shorter r. As discussed
above, solvation shell of Li+ may be exchanged with a dif-
ferent shell during this movement. A significant broadening
of Cl− occurs within ∼3 ps, which is a similar time scale of
Li+ shell exchange. Consequently, Li+ and Cl− tend to make
a pair because of the strong Coulombic interaction between
them. However, this is dissolved with in a few ps, which is
mainly governed by diffusion process of ions.

Cl−

Li+

(ii)

(ii)(i)

Cl−

Li+

(i) Cl−

Li+

t = 0t =Δt t =Δt

: Direction of motion of Li+

FIG. 3. Schematic motion of Cl− adjacent to Li+. Dotted circle is the posi-
tion of Li+ at t = 0.

FIG. 4. Correlation function between OW and Li+ (GV U
OWLi+ (r, t): left-hand

panel), and correlation function between OW and Cs+ (GV U
OWCs+ (r, t): right-

hand panel).

B. Water dynamics around Li+ and Cs+

Here we compare water motion around Li+ and that
around Cs+. Li+ strongly attracts water whereas Cs+ weakly
attracts water comparing to Li+. Accordingly, the dynamics
of water around these ions are different from each other.

The left panel of Figure 4 is the correlation function of
water oxygen (OW) around Li+, GV U

OWLi+ (r, t). Since the peak

at r = 2 Å and t = 0 s corresponds to the first solvation shell,
the change of peak profile reflects the motion of OW that is
adjacent to Li+ at t = 0 s. The peak position (r ∼ 2 Å) re-
mains unchanged, indicating the strong interaction between
Li+ and OW. A water molecule is rarely separated from the
ion. The right panel shows the correlation function of OW

around Cs+, GV U
OWCs+ (r, t). The peak at r = 3 Å and t = 0

s corresponds to the first solvation shell, and this peak posi-
tion is in well accord with other studies (r = 3.0–3.2).46, 47

The peak height (0.046) is much lower than that of the Li+

case (0.19). This is, of course, attributed to the difference in
the interaction strength between the two ions. The time evo-
lution of the distribution is clearly different from the Li+ case
especially in terms of the peak position. Figure 5 plots the
first peak position (rmax) of GV U

OWLi+ (r, t) and GV U
OWCs+ (r, t) as a

function of t. As noted above, the peak position of OW around
Li+ remains mostly unchanged. On the other hand, the peak
position of OW around Cs+ shifts away about 1 Å. The differ-
ence may be readily understood by looking at the distribution
in the Cs+ case at r ∼ 0 Å and t ∼ 1.5 ps. Because Cs+ exists
at the origin at t = 0 s, this distribution of OW clearly indicates
that Cs+ moves from the original position and the generated
vacant space is fulfilled with another water molecule to partic-
ipate the hydration. The correlation function therefore implies
that the solvation shell around Cs+ is readily rearranged. No-
tice that the corresponding distribution at r ∼ 0 Å is not found
in the case of OW around Li+. This is because the solvation

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.54.110.72 On: Thu, 05 Jun 2014 07:08:33



034506-6 K. Iida and H. Sato J. Chem. Phys. 137, 034506 (2012)

1

2

3

4

0 1 2 3 4

O
W

-Li+

O
W

-Cs+

t / ps

Pe
ak

 p
os

iti
on

 / 
Å

FIG. 5. Dependency of peak position (rmax) on time t of the correlation func-
tion between OW and Li+ (solid line), and between OW and Cs+ (dashed
line).

shell around Li+ is more rigid than that around Cs+, as shown
by the experimental studies.1–3

Figure 6 shows the time evolution of correlation func-
tions normalized with respect to the peak top,

GV U
OWLi+ (r = rmax, t)

/
GV U

OWLi+ (r = rmax, 0) and

GV U
OWCs+(r = rmax, t)

/
GV U

OWCs+ (r = rmax, 0).

The value of this function at t = 0 is one and converges to
zero at t = ∞. Since the logarithmic axis is employed, a lin-
ear line corresponds to the ideal exponential decay. Clearly,
the decay of the Li+ case is slower than that of Cs+, in-
dicating that the relative motion of water molecule around
Li+ is slower and the hydration structure is rigid compared
to that around Cs+. While the hydration dynamics of Cs+ is
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FIG. 6. Normalized correlation function in terms of peak top, ln{GV U
OWLi+ (r

= rmax, t)/GV U
OWLi+ (r = rmax, 0)} (solid line) and ln{GV U

OWCs+ (r = rmax, t)/

GV U
OWCs+ (r = rmax, 0)} (dashed line).

almost perfectly described with the exponential function, the
Li+ case evidently deviates and strong hydration is observed.
Since the fast decay is remarkable only in the case of Li+,
we consider that the fast decay is related to the response to
the motion of adjacent ion. The slow one is considered to be
related to the translation and collective relaxation. These as-
signments are consistent with the shift of the peak position.
It is also noted that in the studies with MD simulation, analo-
gous assignments are applied.22, 23 The correlation time of the
water molecule rotation is reported based on molecular simu-
lation; 6.8 ps for 2.2 M LiI solution at 305 K (Ref. 24) and
2.9 ps for dilute Cs+.25 Although these cannot be directly
compared, they should be related to the present slow dynam-
ics in Li+ system.

C. NaCl aqueous solution

Finally, 1 mol L−1 NaCl aqueous solution is computed
to confirm the validity of the present approach since the
van Hove function of this system was reported with MD
simulation.22 To the best of our knowledge, the work by Za-
setsky and Svishchev is the only example of the report of the
van Hove function in the present system. The computed van
Hove functions of OW around Cl− and around Na+ with the
present treatment (not shown) resemble those obtained by the
MD simulation, which is the good indication of the validity of
the treatment. To evaluate the difference more quantitatively,
the ratio of the peak height

GV U
OWNa+ (r = rmax, t)

/
GV U

OWNa+ (r = rmax, 0) and

GV U
OWCl− (r = rmax, t)

/
GV U

OWCl−(r = rmax, 0)

is focused on, and the correlation times are evaluated by the
double exponential fitting: 0.26 ps and 1.13 ps are obtained for
OW around Na+, 0.53 ps and 1.66 ps for that around Cl−. Za-
setsky and Svishchev reported several correlation times based
on MD simulation,23 but it is not straightforward to compare
the result because of the difference in the definition of the cor-
relation time and of the sampling uncertainty in simulation.
It is noted, however, that the present results are in the same
time region with their values; τ T’s corresponding to the trans-
lational correlation time evaluated from van Hove functions
in their work; 2.2 and 0.8 ps for Na+ and 1.5 and 0.3 ps for
Cl−, respectively, evaluated at 298 and 378 K. Namely, strong
temperature dependency was reported. They also reported the
correlation time of rotation (τR, 1–5 ps), and the correlation
time of the system derived from the dielectric properties (τ 1,
τ 2, and τ 3), in which the fast component (τ 1) is indepen-
dent on the temperature (∼0.15 ps). Several rotational times
of water ranging from 3 to 7 ps are also reported based on
MD studies,26 in which van Hove function was not evalu-
ated. As a whole, the computed correlation time seems to be
slightly faster than the other studies. Similar tendency was
already pointed out by Nishiyama et al. on the studies of sim-
ple ion in acetonitrile solution. They showed that the decay
rate obtained with the SSSV equation is faster than that with
the mode-coupling theory.48 Further careful investigation on
the van Hove function is highly desired, both from molecular
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simulation and from statistical mechanics. Anyway, it would
be interesting that the present theory reasonably describes the
solvation dynamics using only the diffusion constant.

V. CONCLUSION

In this study, a generalized treatment of SSSV equation
was proposed. The obtained equation is applicable to a variety
of solution including electrolyte solution and infinitely dilute
solution. The van Hove correlation function of LiCl aqueous
solution and infinitely dilute aqueous solution of Li+ and Cs+

were computed. The differences of water motion around Li+

and Cs+ were discussed focusing on the shift of peak position
as well as the normalized correlation function.

NaCl solution was then computed to compare with the
result of MD simulation. The obtained time constants show
reasonably agree with the simulation results. It is also noted
that in the case of bulk water, a good agreement between the
functions computed by SSSV and those by MD has been al-
ready known,31 and the general picture of solvation dynamics
computed from the present treatment agrees well with the re-
sults from experimental knowledge. It is therefore concluded
that the dynamical aspects of the hydration structure around
ions are successfully described with the present approach.
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