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Vibronic couplings in C−
60 anion are discussed on the basis of the concept of the vibronic cou-

pling density (VCD) [T. Sato, K. Tokunaga, and K. Tanaka, J. Chem. Phys. 124, 024314 (2006); K.
Tokunaga, T. Sato, and K. Tanaka, J. Chem. Phys. 124, 154303 (2006); and T. Sato, K. Tokunaga,
and K. Tanaka, J. Phys. Chem. A 112, 758 (2008)]. The VCD analysis clearly reveals that the cou-
pling to the bending hg(2) mode is weaker than the coupling to the stretching hg(7) and hg(8) modes.
For the vibronic couplings with the stretching modes, polarizations of the electron density difference
on the bonds play a crucial role in the vibronic couplings. Such a polarized electron density differ-
ence appears as a result of the Coulomb interactions between the electrons in the lowest unoccu-
pied molecular orbital and relevant doubly-occupied orbitals. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4709611]

I. INTRODUCTION

The vibronic coupling1, 2 in the C−
60 anion has been in-

tensively investigated3–14 because this coupling is essential
in the Jahn-Teller effect. Thus, reliable vibronic coupling
constants (VCC) are required to reveal the Jahn-Teller ef-
fect of C60, and also, the role of the effect in molecular and
solid state properties of fullerenes. However, vibronic cou-
plings obtained from a photoelectron (PE) spectrum5 have
been larger than the other experimental value9 and theoreti-
cal evaluations.3, 4, 6, 10–14 The Jahn-Teller stabilization energy
EJT derived from the PE spectrum is 88.2 meV, while the other
experimental value derived from the visible and near infrared
spectrum using the T1u ⊗ hg Jahn-Teller model is 57.9 meV
(Ref. 9) and the theoretical EJT’s are in the range from 23.6 to
57.0 meV. Among the vibronic couplings, Gunnarsson et al.
have concluded that the coupling for the bending hg(2) mode
has the largest contribution to EJT from the experiment.5 On
the other hand, many theoretical works have suggested that
the stabilizations by the stretching hg(7) and hg(8) modes are
the largest.3, 10–14 Among the investigations on the vibronic
couplings in C−

60, some authors have explained the order of the
VCCs.3, 8, 9 However, the vibronic coupling whose contribu-
tion to EJT is the largest is still controversial. Therefore, both
the agreement between experimental and theoretical VCCs of
C−

60 and physical picture of the couplings are crucial to under-
stand the vibronic couplings.

Recently, we have estimated the VCCs in C−
60 performing

the exact diagonalization of a dynamic multimode Jahn-Teller
Hamiltonian with totally symmetric ag modes to fit the exper-
imental PE spectrum of C−

60 measured by Wang et al.,15 and
evaluated the VCCs using density-functional theory (DFT)
calculations.16 The PE spectrum of Wang et al. was measured
at lower temperature and with higher resolution than that of
Gunnarsson et al.5 Thus, the VCCs obtained from Wang’s
spectrum are more reliable than Gunnarsson’s constants. It

a)Electronic mail: tsato@scl.kyoto-u.ac.jp.

has been found that the VCCs derived from the PE spectrum
of Wang et al. and the theoretical VCCs agree well with each
other. Our results show that the couplings for the hg(7) and
hg(8) modes are strong, while the coupling to the hg(2) mode
is weak. The Jahn-Teller stabilizations from Wang’s spectrum
are from 57.7 to 65.0 meV. Theoretical EJT’s calculated with
B3LYP (Refs. 11, 13, 16, and 17) or GW approximation14

are from 48.4 to 57.0 meV and in line with the experimen-
tal ones.16 On the other hand, theoretical stabilizations calcu-
lated with local-density approximation (LDA) or generalised
gradient approximation (GGA) functionals tend to be smaller
than the experimental EJT’s.10, 12, 17 In the previous work, we
have solved the disagreement between experimental and the-
oretical VCCs.

The purpose of this article is to discuss the order of the
VCCs of C−

60 from another aspect, the relation between the
electronic and vibrational structures. To this end, a concept
of vibronic coupling density (VCD) is employed.18–21 The
VCD whose integral over 3D space yields a VCC is defined
from the electronic and vibrational structures. Since the VCD
is a function of the position r in a molecule, it provides a
local picture of the vibronic coupling. Employing the VCD
analysis, we have succeeded in designing for novel carrier-
transporting materials.22, 23 Furthermore, with the use of the
VCD analysis, we have revealed a crucial role of the Coulomb
interaction in the VCCs of hole-transporting molecules
such as N,N’-diphenyl-N,N’-di(m-tolyl)benzidine (TPD) and
2,7-bis(phenyl-m-tolylamino)fluorene (TPF).24, 25

II. THEORY

A. Vibronic coupling constant

As a reference system, the neutral C60 in its equilibrium
geometry R0 with Ih symmetry was adopted as in Ref. 16.
We use the convention of the molecular orientation by Boyle
and Parker26 (Fig. 1). The irreducible representation of the
ground electronic state of C−

60 is T1u. From the selection rule,

0021-9606/2012/136(17)/174315/6/$30.00 © 2012 American Institute of Physics136, 174315-1
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FIG. 1. The orientation and the atomic labelling of C60.

the ground electronic state couples to two ag and eight hg

modes. The VCCs of C−
60 for the � modes (� = ag, hg) are

defined by27, 28, 34

Vag (i) = 〈�T1uλ|
(

∂Ĥ

∂Qag(i)

)
R0

|�T1uλ〉, (1)

Vhg(μ) = 〈�T1uz|
(

∂Ĥ

∂Qhg(μ)θ

)
R0

|�T1uz〉, (2)

where Ĥ is the electronic Hamiltonian which includes the
Coulomb potential between nuclei. |�T1uλ〉 (λ = x, y, z) de-
notes the electronic ground state of C−

60 at the geometry of the
reference system R0, and Q�(μ)γ is the normal coordinate of
the neutral C60 for the �(μ)γ mode (�γ = ag, hgθ , hgε, hgξ ,
hgη, hgζ ). Among the three electronic states λ = x, y, z, we
choose the T1uz electronic state because the electronic state
couples only to the hgθ modes.29 Hereafter we will present
results for the T1uz electronic state and the hgθ vibrational
modes. The phase of the ag and hgθ modes are chosen so
that the VCCs are negative. Applying the Hellmann–Feynman
theorem, we obtain

Vag (i) =
60∑

A=1

(
∂E(R)

∂RA

)
R0

· uag (i)
A√
M

, (3)

Vhg(μ) =
60∑

A=1

(
∂E(R)

∂RA

)
R0

· uhg (μ)θ
A√

M
, (4)

where E(R) = 〈�T1uz|Ĥ |�T1uz〉, A denotes an atom in C60, RA

the Cartesian coordinates of the atom A, R the set of all co-
ordinates of RA, u�(μ)γ

A the displacement of the atom A of the
mass-weighted �γ vibrational vector, and M the mass of car-
bon. For the calculation of the VCCs, we used Eqs. (3) and (4).

FIG. 2. The θ elements of the (a) hg(2) and (b) hg(8) modes. The orientation
of C60 is the same as that of Fig. 1.

The VCCs are decomposed into couplings for the atoms

Vag (i),A =
(

∂E(R)

∂RA

)
R0

· uag (i)
A√
M

, (5)

Vhg (μ),A =
(

∂E(R)

∂RA

)
R0

· uhg(μ)θ
A√

M
. (6)

We call Vag (i),A and Vhg(μ),A atomic vibronic coupling con-
stants (AVCC).

With the use of the VCCs Vag (i) and Vhg(μ), the stabiliza-
tion energies for the ag modes and the hg modes are written
as follows:

Es =
2∑

i=1

V 2
ag (i)

2ω2
ag (i)

, (7)

EJT =
8∑

μ=1

V 2
hg (μ)

2ω2
hg (μ)

. (8)

B. Vibronic coupling density

The VCCs can be rewritten as the integral form using
electronic and vibrational structures.20, 21 For the hg modes,
the VCCs are written as

Vhg(μ) =
∫

d3r ηhg (μ)(r). (9)

The vibronic coupling density ηhg(μ) is defined by the product
of the electron density difference ρ and the potential deriva-
tive vhg(μ):

ηhg(μ)(r) = ρ(r) × vhg(μ)(r), (10)

where the electron density difference ρ is the difference be-
tween the electron density ρ of C−

60 and the electron density
ρ0 of C60

ρ(r) = ρ(r) − ρ0(r). (11)

The potential derivative vhg(μ) is the derivative of the one-
electron potential u(r; R) acting on a single electron from all
the nuclei of C60 with respect to Qhg(μ)θ :

vhg(μ)(r) =
(

∂u(r; R)

∂Qhg(μ)θ

)
R0

, (12)

=
60∑

A=1

−Z(r − R0,A)

|r − R0,A|3 · uhg(μ)θ
A√

M
, (13)

where u is

u(r; R) =
60∑

A=1

−Z

|r − RA| . (14)

Here Z = 6, the atomic number of carbon atom. In the present
treatment, core and valence electrons are not treated sepa-
rately. They are taken into account in the electron density dif-
ference ρ. From the VCD, we obtain a local picture of the
vibronic coupling constant.
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C. Contribution of each orbital to the electron
density difference

Within the Kohn-Sham method, ρ is written as follows:

ρ(r) =
∑
ν�λσ

(
N�(ν)λσψ2

�(ν)λσ (r) − N0,�(ν)λσ ψ2
0,�(ν)λ(r)

)
,

(15)

where {ψ�(ν)λσ } is a set of Kohn-Sham orbitals of the C−
60

anion, {ψ0, �(ν)λ} a set of the orbitals of the neutral C60, �

the irreducible representation, λ the component of �, σ the
z component of the electron spin, ν the quantum number
except for �, λ, and σ , and N�(ν)λσ and N0, �(ν)λσ the oc-
cupation numbers of the orbitals ψ�(μ)λσ and ψ0, �(μ)λ, re-
spectively. The Kohn-Sham orbitals are chosen to be real.
In order to evaluate the contribution of each orbital to
the electron density difference, we expand ρ in terms
of {ψ0, �(ν)λ}:

ρ(r) =
∑
ν�λσ

A(�(ν)λσ )ψ2
0,�(ν)λ(r)

+
∑

ν�λν ′�′λ′σ

B(�(ν)λ�′(ν ′)λ′σ )

×ψ0,�(ν)λ(r)ψ0,�′(ν ′)λ′(r), (16)

A(�(ν)λσ ) =
∑
ν̄�̄λ̄

N�̄(ν̄)λ̄σ 〈ψ0,�(ν)λ|ψ�̄(ν̄)λ̄σ 〉2 − N0,�(ν)λσ ,

(17)

B(�(ν)λ�′(ν ′)λ′σ ) =
∑
ν̄�̄λ̄

N�̄(ν̄)λ̄σ 〈ψ0,�(ν)λ|ψ�̄(ν̄)λ̄σ 〉

×〈ψ0,�′(ν ′)λ′ |ψ�̄(ν̄)λ̄σ 〉. (18)

III. METHOD OF CALCULATION

To obtain the electronic states, the equilibrium geome-
try R0, and the vibrational modes, DFT calculations were
performed. In the DFT calculations, we employed the hy-
brid functional B3LYP (Ref. 30) with a triple-zeta basis set
6-311G(d). The gradients of E(R) were calculated analyt-
ically for both a symmetrized wavefunction |�S

T1uz
〉 and a

symmetry-broken wavefunction |�BS
T1uz

〉 which comes from
the z component of the T1u state. The vibrational modes em-
ployed are symmetrized. For the DFT calculations, we used
GAUSSIAN 09.31 The VCCs and VCDs were calculated using
our code.

IV. RESULTS AND DISCUSSION

A. Calculation of the vibronic coupling constants

Experimental5, 16, 32, 35 and present theoretical VCCs are
shown in Table I. Present theoretical couplings with the
symmetry-broken wavefunction |�BS

T1uz
〉 (Table I, BS) are in

line with our couplings derived from the experimental PE
spectrum of Wang et al.16 On the other hand, in compari-
son with the experimental VCCs, some of the VCCs calcu-

TABLE I. Vibronic coupling constants to the ag and hg modes (10−4 a.u.)
and the stabilization energies (meV). The VCCs obtained from photoelectron
(PE) spectra are taken from Refs. 5 and 16. Experimental frequencies are
taken from the data of a Raman scattering measurement of fullerite.36 The
VCCs with BS and S were calculated using the symmetry-broken wavefunc-
tion |�BS

T1uz〉 and symmetrized wavefunction |�S
T1uz〉, respectively.

Freq.
PE spectra B3LYP

(cm−1) Iwahara16 Gunnarsson5 BS S

ag(1) 496 0.537 0.15 0.301 0.308
ag(2) 1470 1.644 2.33 2.352 2.396
hg(1) 273 0.215 0.36 0.185 0.128
hg(2) 437 0.458 0.84 0.435 0.448
hg(3) 710 0.837 0.77 0.740 0.655
hg(4) 774 0.628 0.99 0.554 1.163
hg(5) 1099 0.992 1.15 0.758 0.211
hg(6) 1250 1.010 0.85 0.544 0.111
hg(7) 1428 2.283 1.78 2.096 1.783
hg(8) 1575 1.581 2.29 2.031 2.110

Es 15.9 17.0 19.2 19.9
EJT 57.7 88.2 49.4 51.0
Es + EJT 73.6 105.2 68.6 70.9

lated with the symmetrized wavefunction |�S
T1uz

〉 (Table I, S)
are qualitatively different; the VCC for the hg(4) mode is
overestimated and the VCCs for the hg(5), hg(6), and hg(7)
are underestimated. As we will discuss in Sec. IV B, this
discrepancy occurs because the orbital relaxation is not fully
included in |�S

T1uz
〉. The effect of orbital relaxation is not in-

cluded correctly as long as we use a symmetrized Slater de-
terminant. Hereafter, we concentrate on the VCCs calculated
with |�BS

T1uz
〉 and analyze them.

Our theoretical VCCs for the hg(2) mode is almost the
half of Gunnarsson’s constant. Consequently the contribution
of the hg(2) mode to the Jahn-Teller stabilization energy EJT

(8) is not the strongest, which is qualitatively consistent with
many theoretical studies.3, 10–14

In order to obtain the contribution to the VCCs from
each atom, we calculated the AVCCs (Eqs. (5) and (6)). The
AVCCs are tabulated in Table II. In general, the AVCCs for
the hg(2) mode are smaller than those for the hg(7) and hg(8)
modes. In the case of the stretching hg(7) and hg(8) modes,
the AVCC is the largest at the C8 atom which is one of the 6:6
carbons (Fig. 1).

B. Vibronic coupling density analysis

The strengths of the vibronic couplings can be explained
in terms of the VCD (9). The difference between the AVCCs
for the hg(2) and the hg(8) modes (Fig. 2) is the largest at the
C8 atom (Table II), thus we focus on these two modes in the
vibronic coupling density analysis.

The t1uz lowest unoccupied molecular orbital (LUMO) of
C60 and the electron density differences of C−

60 obtained us-
ing the symmetry-broken wavefunction |�BS

T1uz
〉 and the sym-

metrized wavefunction |�S
T1uz

〉 are shown in Fig. 3. The pos-
itive (gray) area of electron density difference ρ originates
from the LUMO density. One should note that ρ (Fig. 3(b))
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TABLE II. Atomic vibronic coupling constants of the ag and hg modes (10−4 a.u.). The atomic label is shown in Fig. 1.

Atom ag(1) ag(2) hg(1) hg(2) hg(3) hg(4) hg(5) hg(6) hg(7) hg(8)

1 − 0.004 0.014 − 0.010 0.004 − 0.003 − 0.001 0.004 0.009 − 0.028 0.005
2 0.003 − 0.015 0.009 − 0.007 − 0.001 0.009 − 0.026 0.006 0.012 − 0.001
3 − 0.011 − 0.090 − 0.048 − 0.044 0.021 − 0.063 − 0.093 0.065 − 0.028 − 0.098
4 − 0.005 0.002 − 0.018 0.008 − 0.005 − 0.027 0.006 − 0.036 − 0.006 − 0.006
5 − 0.027 − 0.061 0.042 0.030 − 0.051 0.019 0.069 − 0.038 − 0.039 − 0.072
6 0.008 − 0.041 0.012 − 0.021 − 0.018 0.032 − 0.079 − 0.018 − 0.059 0.010
7 0.002 − 0.031 − 0.007 − 0.003 − 0.013 − 0.014 − 0.013 − 0.103 − 0.057 − 0.004
8 − 0.031 − 0.118 0.002 − 0.019 − 0.014 − 0.057 0.074 0.103 − 0.132 − 0.193
9 0.019 − 0.012 − 0.017 − 0.020 − 0.035 0.006 0.003 0.000 − 0.010 0.022
Total − 0.301 − 2.352 − 0.185 − 0.435 − 0.740 − 0.554 − 0.758 − 0.544 − 2.096 − 2.031

has not only positive but also polarized negative (blue) area.
This negative area appears due to the Coulomb repulsion be-
tween the electron in the t1u LUMO and the other electrons
in doubly-occupied orbitals. Polarization in ρ has been re-
ported in other π conjugated system.20

In Fig. 4, the potential derivatives and the VCDs for the
hg(2) and hg(8) modes are shown. The potential derivative
of the bending hg(2) mode (vhg(2)) is localized on each atom
(Fig. 4 (a1)). On the C1, C3, C4, C7, C8, and C9 atoms, the
displacements of the hg(2) modes are perpendicular to the
surface of the C60 cage, and the signs of vhg(2) of the inside
and outside of the cage are opposite. The VCD ηhg(2) is local-
ized on each atom (Fig. 4 (a2)), and hence the integral of the
VCD is canceled around the atom. In the case of the stretch-
ing hg(8) mode, on the other hand, vhg(8) is delocalized on the
C-C bonds of the 6:6 carbons (Fig. 4 (b1)). Since both ρ and
vhg(8) are particularly delocalized on the C8-C8′ bonds, ηhg(8)

is also delocalized on the bonds (Fig. 4 (b2)). Therefore, the
AVCC of the C8 atom is the largest. The delocalized ηhg(8) on
the C8-C8′ bonds appears because of the polarized electron
density difference. Therefore the polarization of ρ is crucial
to evaluate the vibronic coupling constants. In fact, the orbital
VCC 〈ψ0,Lz|vhg(8)θ |ψ0,Lz〉 is −0.775 × 10−4 a.u. where ψ0, Lz

is the LUMO of the neutral C60.
The electron density difference calculated using the sym-

metrized electronic state |�S
T1uz

〉 (Fig. 3(c)) has small negative
density. Moreover, ρ has negative density on the C1, C2,
and C9 atoms despite the small LUMO coefficients on these
atoms. This result suggests that the Coulomb repulsion is not
fully included in the electron density difference. The distri-
bution of ρ obtained from |�S

T1uz
〉 is small on the C8-C8′

bonds, and the VCD for the hg(8) is also small on the bonds.33

The discrepancy between the experimental VCCs and theo-
retical ones computed with |�S

T1uz
〉 originates from the elec-

tron density difference which does not include the orbital
relaxation.

Some authors have explained the order of the VCCs of
C−

60.3, 8, 9 Varma et al. considered that the contributions of the
couplings for the stretching hg(7) and hg(8) modes to EJT are
larger than that of the coupling for the bending hg(2) mode be-
cause for a normalized displacement the distortion along the
stretching mode gives larger change in energy than that along
the bending mode does.3 However, since they explained the
VCC using the force constant, their discussion will not al-
ways give a correct result. Hands et al. assumed that the vi-
bronic coupling is strong when the overlap between the t1u

LUMO and the displacements of the atoms is large.8, 9 They
concluded that the coupling for the hg(2) mode has larger con-
tribution to EJT. Nonetheless, they did not take into account
the derivative of the Coulomb potential between electron and
nuclei v(r), and that leads to an opposite result to ours.

C. Electron-electron interactions in the electron
density difference

In order to evaluate the contribution from each Kohn-
Sham orbital to ρ, we decomposed ρ into orbital densities
(16). Figure 5 shows the contribution of each Kohn-Sham or-
bital to ρ (

∑
λ

∑
σ = ↑, ↓A(�(ν)λσ )). Since one of the triply

degenerate t1u orbitals is occupied by an electron and the
positive density of ρ mainly originates from the t1u(7) or-
bital, the contribution of the LUMO (t1u(7)) is the largest.

FIG. 3. (a) The LUMO, (b) the electron density difference ρ calculated with the symmetry-broken wavefunction |�BS
T1uz〉, and (c) the electron density

difference calculated with the symmetrized wavefunction |�S
T1uz〉. The gray and blue indicate positive and negative, respectively. The isosurface value is 0.035

a.u. for LUMO and 0.0008 a.u for electron density difference. The orientation of C60 is the same as that of Fig. 1.
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FIG. 4. Potential derivatives for the (a1) hg(2) and (b1) hg(8) modes and
vibronic coupling densities for the (a2) hg(2) and (b2) hg(8) modes. The gray
and blue indicate positive and negative, respectively. The isosurface value is
0.01 a.u. for the potential derivatives and 5 × 10−6 a.u. for the VCDs. The
orientation of C60 is the same as that of Fig. 1.

However, as we have discussed in Sec. IV B, the contribu-
tions to ρ from the occupied orbitals are also important.
The coefficients for the doubly occupied orbitals are nega-
tive because of the Coulomb repulsions between the electron
in the LUMO and the other electrons in occupied orbitals.
Since these orbitals have finite orbital coefficients of s atomic
orbitals and in-plane p atomic orbitals, ρ has negative polar-
ized density. Among the orbitals other than the LUMO, hg(10)
and t1g(3) orbitals (Fig. 6) have the largest negative and pos-
itive coefficients, respectively. The densities of these orbitals
can mix with each other because these orbitals have common
representations in their direct products. Since the density of
the hg(10) orbital overlaps the LUMO density, the Coulomb
repulsion between the electrons occupied in the LUMO and
the hg(10) orbitals is large. The Coulomb interactions give
rise to an additional negative contribution in the ρ. Due to
the decrease of the hg(10) density, the density around C1, C2,
and C8 atoms where there is small singly occupied molecular
orbital (SOMO) density also decreases. The negative density
around C1, C2, and C8 is canceled by the t1g(3) density. As a
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FIG. 5. Contribution of each Kohn-Sham orbital to ρ. t1u(7) orbital is the
LUMO.

FIG. 6. (a) hg(10) orbitals and (b) t1g(3) orbitals. The orientation of C60 is
the same as that of Fig. 1.

result, ρ is small around the C1, C2, and C8 atoms where
the density of the t1u(7) SOMO is small, whereas there are
both positive and negative areas around the atoms where the
SOMO density is large.

It is desired that the wavefunction of C−
60 has the cor-

rect symmetry. Moreover, for the calculation of the VCCs, we
must take into account the polarization of ρ. To fulfill both
of them, a state-averaged post Hartree–Fock method could be
one of the solutions. In the post Hartree–Fock calculation, we
have to include not only frontier orbitals but also other orbitals
which contribute to ρ.

V. CONCLUSION

In this work, we analyzed the order of the VCCs using
the concept of the VCD. The coupling to the bending hg(2)
mode is small because the displacement of the vibrational
mode is perpendicular to the surface of the C60 cage and the
VCD is localized on atom. On the other hand, the coupling to
the stretching hg(8) mode is large due to the delocalization of
the VCD on the C8-C8′ bond. The polarization of the electron
density difference is crucial for the couplings to the stretching
modes. From the analysis of ρ, we found that the contribu-
tion from not only the frontier orbitals but also other orbitals
are large.
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